首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biological denitrification was reviewed regarding its potential application to treating nitrate in industrial wastewater. Although heterotrophic denitrification is an efficient and well-developed process, some carbon content in wastewater is essential to maintain bacterial activity. Because of the high operating cost of heterotrophic denitrification caused by the required addition of a carbon source and potential “carbon breakthrough”, the study of autotrophic denitrification has attracted the interest of numerous researchers. Many advances in autotrophic processes have been made in the application of novel concepts and reaction schemes. While the main advantage of autotrophic bacteria rests on the reduction of operating costs by the replacement of an external carbon source with a cheaper electron donor, further decrease in cost requires additional refinement of these processes, including further improvement of reactor structure and optimization of reaction conditions. In the long term, new concepts are required for a compact wastewater treatment process. This review addresses the state of the art of each electron donor candidate for its potential application to the treatment of industrial wastewater containing nitrate.  相似文献   

2.
杨丽  何腾霞  张漫漫  杨露 《微生物学报》2022,62(12):4781-4797
好氧反硝化作用的发现打破了反硝化只能在严格厌氧条件下进行的传统认知,为生物脱氮提供了一条新的途径,已成为近些年的研究热点。碳源可为好氧反硝化过程提供能量和电子供体,其代谢难易程度直接影响着好氧反硝化细菌的脱氮效率,因此有必要明确碳源在好氧反硝化脱氮过程中的代谢机理。基于此,本文阐述了好氧反硝化细菌的种类及其对硝态氮与亚硝态氮的代谢途径;系统分析了不同好氧反硝化细菌对碳氮源代谢的差异与代谢机理;综合分析了碳代谢差异对好氧反硝化脱氮过程的影响,并对未来的研究方向进行了展望,旨在深入理解好氧反硝化细菌同时去除碳氮的机理,为提高废水生物脱氮除碳效率提供理论依据。  相似文献   

3.
Experimental work was carried out on nitrogen and phosphorus removal from real wastewater using a bench-scale SBR process. The phosphorus removal was stable and the phosphorus concentration remaining in the reactor was maintained within 1.5 ppm, regard-less of the addition of an external carbon source. In the case of nitrogen, an external carbon source was necessary for denitrification. The effect on denitrification with the addition of various carbon sources, such as glucose, methanol, acetate, and propionate, was also investigated. Acetate was found to be the most effective among those tested in this study. When 100 ppm (theoretical oxygen demand) of sodium acetate was added, the average rate of denitrifiaction was 2.73 mg NO3-N (g MLSS)−1 h−1, which wasca. 4 times higher than that with the addition of 200 ppm of methanol. The phosphorus and nitrogen concentrations were both maintained within 1.5 ppm by the addition of an appropriate amount of a carbon source during a long-term operation of the SBR. The mathematical modeling was performed using Monod kinetics, other microbial kinetics, mass balances, and stoichiometry. The modeling was found to be useful for predicting the SBR operation and optimizing the HRT.  相似文献   

4.
The presence of suitable carbon sources for enhanced biological phosphorus removal (EBPR) plays a key role in phosphorus removal from wastewater in urban WWTP. For wastewaters with low volatile fatty acids (VFAs) content, an external carbon addition is necessary. As methanol is the most commonly external carbon source used for denitrification it could be a priori a promising alternative, but previous attempts to use it for EBPR have failed. This study is the first successful report of methanol utilization as external carbon source for EBPR. Since a direct replacement strategy (i.e., supply of methanol as a sole carbon source to a propionic‐fed PAO‐enriched sludge) failed, a novel process was designed and implemented successfully: development of a consortium with anaerobic biomass and polyphosphate accumulating organisms (PAOs). Methanol‐degrading acetogens were (i) selected against other anaerobic methanol degraders from an anaerobic sludge; (ii) subjected to conventional EBPR conditions (anaerobic + aerobic); and (iii) bioaugmented with PAOs. EBPR with methanol as a sole carbon source was sustained in a mid‐term basis with this procedure. Biotechnol. Bioeng. 2013; 110: 391–400. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
Bio-electrochemical removal of nitrate from water and wastewater--a review   总被引:12,自引:0,他引:12  
Nitrates in different water and wastewater streams raised concerns due to severe impacts on human and animal health. Diverse methods are reported to remove nitrate from water streams which almost fail to entirely treat nitrate, except biological denitrification which is capable of reducing inorganic nitrate compounds to harmless nitrogen gas. Review of numerous studies in biological denitrification of nitrate containing water resources, aquaculture wastewaters and industrial wastewater confirmed the potential of this method and its flexibility towards the remediation of different concentrations of nitrate. The denitrifiers could be fed with organic and inorganic substrates which have different performances and subsequent advantages or disadvantages. Review of heterotrophic and autotrophic denitrifications with different food and energy sources concluded that autotrophic denitrifiers are more effective in denitrification. Autotrophs utilize carbon dioxide and hydrogen as the source of carbon substrate and electron donors, respectively. The application of this method in bio-electro reactors (BERs) has many advantages and is promising. However, this method is not so well established and documented. BERs provide proper environment for simultaneous hydrogen production on cathodes and appropriate consumption by immobilized autotrophs on these cathodes. This survey covers various designs and aspects of BERs and their performances.  相似文献   

6.
Quan ZX  Jin YS  Yin CR  Lee JJ  Lee ST 《Bioresource technology》2005,96(15):1690-1695
Hydrolyzed molasses was evaluated as an alternative carbon source in a biological nitrogen removal process. To increase biodegradability, molasses was acidified before thermohydrolyzation. The denitrification rate was 2.9-3.6 mg N/g VSSh with hydrolyzed molasses, in which the percentage of readily biodegradable substrate was 47.5%. To consider the hydrolysate as a carbon source, a sequencing batch reactor (SBR) was chosen to treat artificial municipal wastewater. During the 14 days (28 cycles) of operation, the SBR using hydrolyzed molasses as a carbon source showed 91.6 +/- 1.6% nitrogen removal, which was higher than that using methanol (85.3 +/- 2.0%). The results show that hydrolyzed molasses can be an economical and effective external carbon source for the nitrogen removal process.  相似文献   

7.
The recovery of an organic carbon source from a waste activated sludge by using alkaline hydrolysis and radiation treatment was studied, and the feasibility of the solubilized sludge carbon source for a biological denitrification was also investigated. The effects of an alkaline treatment and gamma-ray irradiation on a biodegradability enhancement of the sludge were also studied. A modified continuous bioreactor for a denitrification (MLE reactor) was operated by using a synthetic wastewater for 47 days. Alkaline treatment of pH 10 and gamma-ray irradiation of 20 kGy were found to be the optimum carbon source recovery conditions. COD removal of 84% and T-N removal of 51% could be obtained by using the solubilized sludge carbon source through the MLE denitrification process. It can be concluded that the carbon source recovered from the waste activated sludge was successfully employed as an alternative carbon source for a biological denitrification.  相似文献   

8.
External carbon sources can enhance denitrification rates and thus improve nitrogen removal in wastewater treatment plants. The effects of adding methanol and ethanol on the genetic and metabolic diversity of denitrifying communities in activated sludge were compared using a pilot-scale plant with two parallel lines. A full-scale plant receiving the same municipal wastewater, but without external carbon source addition, was the reference. Metabolic profiles obtained from potential denitrification rates with 10 electron donors showed that the denitrifying communities altered their preferences for certain compounds after supplementation with methanol or ethanol and that methanol had the greater impact. Clone libraries of nirK and nirS genes, encoding the two different nitrite reductases in denitrifiers, revealed that methanol also increased the diversity of denitrifiers of the nirS type, which indicates that denitrifiers favored by methanol were on the rise in the community. This suggests that there might be a niche differentiation between nirS and nirK genotypes during activated sludge processes. The composition of nirS genotypes also varied greatly among all samples, whereas the nirK communities were more stable. The latter was confirmed by denaturing gradient gel electrophoresis of nirK communities on all sampling occasions. Our results support earlier hypotheses that the compositions of denitrifier communities change during predenitrification processes when external carbon sources are added, although no severe effect could be observed from an operational point of view.  相似文献   

9.
Due to serious eutrophication in water bodies, nitrogen removal has become a critical stage for wastewater treatment plants (WWTPs) over past decades. Conventional biological nitrogen removal processes are based on nitrification and denitrification (N/DN), and are suffering from several major drawbacks, including substantial aeration consumption, high fugitive greenhouse gas emissions, a requirement for external carbon sources, excessive sludge production and low energy recovery efficiency, and thus unable to satisfy the escalating public needs. Recently, the discovery of anaerobic ammonium oxidation (anammox) bacteria has promoted an update of conventional N/DN-based processes to autotrophic nitrogen removal. However, the application of anammox to treat domestic wastewater has been hindered mainly by unsatisfactory effluent quality with nitrogen removal efficiency below 80%. The discovery of nitrate/nitrite-dependent anaerobic methane oxidation (n-DAMO) during the last decade has provided new opportunities to remove this barrier and to achieve a robust system with high-level nitrogen removal from municipal wastewater, by utilizing methane as an alternative carbon source. In the present review, opportunities and challenges for nitrate/nitrite-dependent anaerobic methane oxidation are discussed. Particularly, the prospective technologies driven by the cooperation of anammox and n-DAMO microorganisms are put forward based on previous experimental and modeling studies. Finally, a novel WWTP system acting as an energy exporter is delineated.  相似文献   

10.
Biological treatment of nitrogen deficient wastewaters are usually accomplished by external addition of nitrogen sources to the wastewater which is an extra cost item. As an alternative for effective biological treatment of nitrogen deficient wastewaters, the nitrogen fixing bacterium, Azotobacter vinelandii, was used in activated sludge and also in pure culture. Total organic carbon (TOC) removal performances of Azotobacter-added and free activated sludge cultures were compared at different initial TN/TOC ratios. The rate and extent of TOC removal were comparable for all cultures when initial TN/TOC ratio was larger than 0.12; however, both the rate and extent of TOC removal from nitrogen deficient (TN/TOC<12%) synthetic wastewater were improved by using Azotobacter-added activated sludge as compared to the Azotobacter-free activated sludge culture. More than 90% TOC removal was obtained with pure Azotobacter or Azotobacter-added activated sludge culture from a nitrogen deficient synthetic wastewater.  相似文献   

11.
Eleven industrial carbon source nutrients were evaluated for their efficiency in supplying energy for biological denitrification of high nitrate (1259 mg liter) waters in single-stage continuous flow fermenters. The defined criterion for comparison was the minimum carbon-to-nitrogen ratio necessary to achieve at least 95% nitrate reduction and 90% total organic carbon (TOC) removal. Methanol was the most efficient carbon source of those evaluated. Some of the carbon sources studied failed to achieve a 90% reduction in TOC. The relative rankings in efficiency of the various carbon sources may change once consideration is given to cost, transportation, handling and availability.  相似文献   

12.
13.
External carbon sources can enhance denitrification rates and thus improve nitrogen removal in wastewater treatment plants. The effects of adding methanol and ethanol on the genetic and metabolic diversity of denitrifying communities in activated sludge were compared using a pilot-scale plant with two parallel lines. A full-scale plant receiving the same municipal wastewater, but without external carbon source addition, was the reference. Metabolic profiles obtained from potential denitrification rates with 10 electron donors showed that the denitrifying communities altered their preferences for certain compounds after supplementation with methanol or ethanol and that methanol had the greater impact. Clone libraries of nirK and nirS genes, encoding the two different nitrite reductases in denitrifiers, revealed that methanol also increased the diversity of denitrifiers of the nirS type, which indicates that denitrifiers favored by methanol were on the rise in the community. This suggests that there might be a niche differentiation between nirS and nirK genotypes during activated sludge processes. The composition of nirS genotypes also varied greatly among all samples, whereas the nirK communities were more stable. The latter was confirmed by denaturing gradient gel electrophoresis of nirK communities on all sampling occasions. Our results support earlier hypotheses that the compositions of denitrifier communities change during predenitrification processes when external carbon sources are added, although no severe effect could be observed from an operational point of view.  相似文献   

14.
A comparative study on the use of methanol as a supplementary carbon source to enhance denitrification in primary and secondary anoxic zones is reported. Three lab-scale sequencing batch reactors (SBR) were operated to achieve nitrogen and carbon removal from domestic wastewater. Methanol was added to the primary anoxic period of the first SBR, and to the secondary anoxic period of the second SBR. No methanol was added to the third SBR, which served as a control. The extent of improvement on the denitrification performance was found to be dependent on the reactor configuration. Addition to the secondary anoxic period is more effective when very low effluent nitrate levels are to be achieved and hence requires a relatively large amount of methanol. Adding a small amount of methanol to the secondary anoxic period may cause nitrite accumulation, which does not improve overall nitrogen removal. In the latter case, methanol should be added to the primary anoxic period. The addition of methanol can also improve biological phosphorus removal by creating anaerobic conditions and increasing the availability of organic carbon in wastewater for polyphosphate accumulating organisms. This potentially provides a cost-effective approach to phosphorus removal from wastewater with a low carbon content. New fluorescence in situ hybridisation (FISH) probes targeting methanol-utilising denitrifiers were designed using stable isotope probing. Microbial structure analysis of the sludges using the new and existing FISH probes clearly showed that the addition of methanol stimulated the growth of specific methanol-utilizing denitrifiers, which improved the capability of sludge to use methanol and ethanol for denitrification, but reduced its capability to use wastewater COD for denitrification. Unlike acetate, long-term application of methanol has no negative impact on the settling properties of the sludge.  相似文献   

15.
Industrial effluents from various sectors have become a matter of major environmental concern. The treatment of wastewater in recent year plays a significant role in order to remove the pollutants and to safeguard the water resource. The conventional wastewater treatment is considered costlier and associated with problem of sludge generation. Biosorption methods are considered as the potential solution due to their economical efficiency, good adsorption capacity and eco-friendliness. In this review, an extensive list of biosorbents from algae, bacteria, fungi and agricultural byproducts have been compiled. The suitability of biosorbents towards the eradication of heavy metals, textile dyes and phenolic compounds were highlighted. It is evident from the literature survey of recently published research articles that the biosorbents have demonstrated outstanding removal potential towards the wastewater pollutants. Therefore, biosorbents from the source of dead microbial and agricultural byproduct can be viable alternatives to activated carbon for the wastewater treatment.  相似文献   

16.
A two-stage non-conventional bench scale biological treatment system was investigated for the treatment of the wastewater laden with ammonium nitrate. The first stage which consisted of a fixed film anoxic reactor effected denitrification of nitrate ion, while the second stage consisting of a pond effected ammonia removal. Dissimilatory denitrification requires external carbon source as an electron donor. Methanol was used as electron donor in this system. The system exhibited substantial nitrate and ammonia removal. The influent nitrate-N concentration which was on average 193.87 ± 12.68 mg/l was reduced to 5.86 ± 4.86 mg/l in the denitrification unit. There was only a marginal reduction of ammonia in the denitrification unit and most of the ammonia-N was removed in the pond. The ammonia-N was reduced from an average value of 104.87 ± 3.49 mg/l at denitrification unit inlet to 33.37 ± 8.12 mg/l at the pond outlet. There was no corresponding increase in the nitrite or nitrate concentration in proportion to ammonia reduction in the pond. The average nitrate concentration in the pond outlet was 2.4 ± 0.93 mg/l. Microbiological investigation of the system revealed the presence of significant populations of denitrifying organisms in the first stage, and denitrifying, nitrifying and algal populations in the second stage. The system also sustained wastewater of pH as low as 3.87 and appears to be very promising for larger scale industrial wastewater treatment.  相似文献   

17.
Park KY  Lee JW  Song KG  Ahn KH 《Bioresource technology》2011,102(3):2462-2467
Potential use of the municipal sludge ozonolysate as a carbon source was examined for phosphorus removal from low strength wastewater in a modified intermittently decanted extended aeration (IDEA) process. At ozone dosage of 0.2 g O3/g solids, readily biodegradable COD accounted for about 36% of COD from sludge ozonolysate. The denitrification potential of ozonolysate as a carbon source was comparable to that of acetate. Although, the first order constant for phosphorus release with the ozonolysate was half that of acetate, it was much higher than that of wastewater. Continuous operation of the modified IDEA process showed that the removals of nitrogen and phosphorus were simultaneously enhanced by addition of the ozonolysate. Phosphorus release was significantly induced after complete denitrification indicating that phosphorus release was strongly depended on nitrate concentration. Effectiveness of the ozonolysate as a carbon source for EBPR was also confirmed in a track study of the modified IDEA.  相似文献   

18.
Application of polyhydroxyalkanoates (PHAs) and related biodegradable polymers has gained momentum in various areas of biotechnology. A promising application that started appearing in the past decade is the use of PHAs as the solid substrate for denitrification of water and wastewater. This type of denitrification, termed here "solid-phase denitrification", has several advantages over the conventional system supplemented with liquid organic substrate. PHAs serve not only as constant sources of reducing power for denitrification but also as solid matrices favorable for development of microbial films. In addition, in contrast to conventional processes, the use of PHAs has no potential risk of release of dissolved organic carbon with the resultant deterioration of effluent water quality. If the production cost of PHAs can be brought down, its application to the denitrification process will become economically more promising. A number of PHA-degrading denitrifying bacteria have been isolated and characterized from activated sludge and continuous flow-bed reactors for denitrification with PHAs. Most of these isolates have been assigned phylogenetically to members of beta-Proteobacteria, especially those of the family Comamonadaceae. The metabolic and regulatory relationships between PHA degradation and denitrification, and the interactive relationship between PHA-degrading cells and the solid surface structure are important subjects awaiting future studies, which would provide a new insight into our comprehensive understanding of the solid-phase denitrification process.  相似文献   

19.
The effect of addition of organic carbon sources (acetic acid and waste activated sludge alkaline fermentation liquid) on anaerobic–aerobic (low dissolved oxygen, 0.15–0.45 mg/L) biological municipal wastewater treatment was investigated. The results showed that carbon source addition affected not only the transformations of polyhydroxyalkanoates (PHA), glycogen, nitrogen and phosphorus, but the net removal of nitrogen and phosphorus. The removal efficiencies of TN and TP were, respectively, 61% and 61% without organic carbon source addition, 81% and 95% with acetic acid addition, and 83% and 97% with waste activated sludge alkaline fermentation liquid addition. It seems that the alkaline fermentation liquid of waste biosolids generated in biological wastewater treatment plant can be used to replace acetic acid as an additional carbon source to improve the anaerobic–aerobic (low dissolved oxygen) municipal wastewater nutrients removal although its use was observed to cause a slight increase of effluent BOD and COD concentrations.  相似文献   

20.
微生物甲烷氧化反硝化耦合反应研究进展   总被引:2,自引:1,他引:1  
甲烷氧化反硝化耦合过程是连接碳循环和氮循环的重要桥梁.该过程的深入研究有助于完善人们对全球碳氮生物化学循环的认识.甲烷作为反硝化外加气体碳源,既能调控大气甲烷平衡,有效减缓由甲烷引起的温室效应,又能降低反硝化工艺中因投入外加碳源带来的成本.因此近年来甲烷氧化反硝化耦合反应及其机理研究倍受关注.本文主要讨论了好氧和厌氧两种类型的甲烷氧化反硝化过程,重点对其微生物耦合反应机理及其影响因素进行了综述,同时指出了其工程化应用存在的问题,并对其应用前景提出展望.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号