首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Strains of Yarrowia lipolytica were engineered to express the poly-3-hydroxybutyrate (PHB) biosynthetic pathway. The genes for β-ketothiolase, NADPH-dependent acetoacetyl-CoA reductase, and PHB synthase were cloned and inserted into the chromosome of Y. lipolytica. In shake flasks, the engineered strain accumulated PHB to 1.50 and 3.84% of cell dry weight in complex medium supplemented with glucose and acetate as carbon source, respectively. In fed-batch fermentation using acetate as sole carbon source, 7.35 g/l PHB (10.2% of cell dry weight) was produced. Selection of Y. lipolytica as host for PHB synthesis was motivated by the fact that this organism is a good lipids producer, which suggests robust acetyl-CoA supply also the precursor of the PHB pathway. Acetic acid could be supplied by gas fermentation, anaerobic digestion, and other low-cost supply route.  相似文献   

2.
张悦  徐硕  王楠  池萍  张馨月  程海荣 《微生物学报》2022,62(11):4165-4175
微生物发酵过程中泡沫的产生是发酵领域遇到的共性问题。在不影响发酵性能的前提下抑制菌株的产泡,对简化操作以及降低发酵成本具有较为重要的意义。解脂耶氏酵母(Yarrowia lipolytica,之前称为Candida lipolytica)是一种常用的合成生物学底盘,也是合成赤藓糖醇等功能糖醇的生产菌株。但在发酵合成赤藓糖醇的过程中会产生大量的泡沫,需要添加消泡剂以消除泡沫。【目的】本研究旨在开发一种产泡能力显著降低的解脂耶氏酵母新菌株,以减少赤藓糖醇发酵过程中消泡剂的添加。【方法】本研究利用解脂耶氏酵母中非同源靶向重组占支配地位的原理,采用一段外源DNA随机插入基因组的手段,随机突变基因组,改变菌株的发酵产泡性能,使突变株在发酵过程中不产泡或者降低其产泡的能力。【结果】通过筛选,获得一株在发酵过程中产泡性能显著降低的工程菌株,该菌株在保留高效合成赤藓糖醇性能的同时,显著降低了泡沫的产生。【结论】所获得的菌株对工业发酵合成赤藓糖醇具有较为重要的意义,也为控制其他微生物发酵过程中泡沫的生成提供了思路。  相似文献   

3.
Medium-chain alcohols are used to produce solvents, surfactants, lubricants, waxes, creams, and cosmetics. In this study, we engineered the oleaginous yeast Yarrowia lipolytica to produce 1-decanol from glucose. Expression of a fatty acyl-CoA reductase from Arabidopsis thaliana in strains of Y. lipolytica previously engineered to produce medium-chain fatty acids resulted in the production of 1-decanol. However, the resulting titers were very low (<10 mg/mL), most likely due to product catabolism. In addition, these strains produced small quantities of 1-hexadecanol and 1-octadecanol. Deleting the major peroxisome assembly factor Pex10 was found to significantly increase 1-decanol production, resulting in titers exceeding 500 mg/L. It also increased 1-hexadecanoland and 1-octadecanol titers, though the resulting increases were less than those for 1-decanol. These results demonstrate that Y. lipolytica can potentially be used for the industrial production of 1-decanol and other fatty alcohols from simple sugars.  相似文献   

4.
The conversion of lignocellulosic sugars, in particular xylose, is important for sustainable fuels and chemicals production. While the oleaginous yeast Yarrowia lipolytica is a strong candidate for lipid production, it is currently unable to effectively utilize xylose. By introducing a heterologous oxidoreductase pathway and enabling starvation adaptation, we obtained a Y. lipolytica strain, E26 XUS, that can use xylose as a sole carbon source and produce over 15 g/L of lipid in bioreactor fermentations (29.3% of theoretical yield) with a maximal lipid productivity of 0.19 g/L/h. Genomic sequencing and genetic analysis pointed toward increases in genomic copy number of the pathway and resulting elevated expression levels as the causative mutations underlying this improved phenotype. More broadly, many regions of the genome were duplicated during starvation of Yarrowia. This strain can form the basis for further engineering to enhance xylose catabolic rates and conversion. Finally, this study also reveals the flexibility and dynamic nature of the Y. lipolytica genome, and the means at which starvation can be used to induce genomic duplications.  相似文献   

5.
Slices of 25- to 28-day-old developing castor bean endosperm were incubated with various 14C- and 3H-labeled substrates to determine the amount of glucose dissimilated in the pentose phosphate pathway and to determine the use of the reduced nucleotides so produced in fatty acid synthesis. Ten to 12% of the metabolized glucose traversed the pentose phosphate pathway, and reduced nicotinamide adenine dinucleotide phosphate (NADPH) production would be sufficient to supply 51 to 68% of the reducing equivalents required for fat synthesis. However, using 3H-NADPH produced from 3-3H-glucose as a tracer, it was found that only 40% of the NADPH produced in the pentose phosphate pathway was used in fat synthesis. Thus the actual contribution of the reducing equivalents generated from the pentose phosphate pathway to fat synthesis was 20 to 27% of that required. Because of the methods and assumptions, this value represents a minimal estimate of NADPH used in fat synthesis, and the actual contribution may be somewhat higher. However, tritium from 3H-NADH generated from 1-3H-ethanol was incorporated into fatty acids, and it is contended that NADH may supply a large proportion of the reducing equivalents necessary for fat synthesis in this tissue.  相似文献   

6.
The conversion of industrial by‐products into high‐value added compounds is a challenging issue. Crude glycerol, a by‐product of the biodiesel production chain, could represent an alternative carbon source for the cultivation of oleaginous yeasts. Here, we developed five minimal synthetic glycerol‐based media, with different C/N ratios, and we analyzed the production of biomass and fatty acids by Yarrowia lipolytica Po1g strain. We identified two media at the expense of which Y. lipolytica was able to accumulate ~5 g L?1 of biomass and 0.8 g L?1 of fatty acids (0.16 g of fatty acids per g of dry weight). These optimized media contained 0.5 g L?1 of urea or ammonium sulfate and 20 g L?1 of glycerol, and were devoid of yeast extract. Moreover, Y. lipolytica was engineered by inserting the FatB2 gene, coding for the CpFatB2 thioesterase from Cuphea palustris, in order to modify the fatty acid composition towards the accumulation of medium‐chain fatty acids. Contrary to the expected, the expression of the heterologous gene increased the production of oleic acid, and concomitantly decreased the level of saturated fatty acids. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:26–35, 2016  相似文献   

7.
Summary Microbial esterification of primary and secondary short chain alcohols with butyric acid in organic solvent has been studied. A screening for 2-octylbutyrate hydrolysis between microorganisms belonging to different genera allowed the selection of 12 microbial strains able to hydrolyze this substrate. The potential of these microorganisms in catalyzing ester formation was checked for various 1- and 2-alkylbutyrate derivatives:Rhizopus delemar,Rhizopus oryzae andSarcina lutea promoted both 1- and 2-alkylbutyrate synthesis with almost complete molar conversion of the primary alcohols, whileAspergillus niger andYarrowia lipolytica only catalyzed 1-alkanol esterification.  相似文献   

8.
Recombinant strains of the oleaginous yeast Yarrowia lipolytica expressing the PHA synthase gene (PhaC) from Pseudomonas aeruginosa in the peroxisome were found able to produce polyhydroxyalkanoates (PHA). PHA production yield, but not the monomer composition, was dependent on POX genotype (POX genes encoding acyl-CoA oxidases) (Haddouche et al. FEMS Yeast Res 10:917–927, 2010). In this study of variants of the Y. lipolytica β-oxidation multifunctional enzyme, with deletions or inactivations of the R-3-hydroxyacyl-CoA dehydrogenase domain, we were able to produce hetero-polymers (functional MFE enzyme) or homo-polymers (with no 3-hydroxyacyl-CoA dehydrogenase activity) of PHA consisting principally of 3-hydroxyacid monomers (>80%) of the same length as the external fatty acid used for growth. The redirection of fatty acid flux towards β-oxidation, by deletion of the neutral lipid synthesis pathway (mutant strain Q4 devoid of the acyltransferases encoded by the LRO1, DGA1, DGA2 and ARE1 genes), in combination with variant expressing only the enoyl-CoA hydratase 2 domain, led to a significant increase in PHA levels, to 7.3% of cell dry weight. Finally, the presence of shorter monomers (up to 20% of the monomers) in a mutant strain lacking the peroxisomal 3-hydroxyacyl-CoA dehydrogenase domain provided evidence for the occurrence of partial mitochondrial β-oxidation in Y. lipolytica.  相似文献   

9.
The main carbon source used for growth by four yeast strains (Yarrowia lipolytica CCMA 0357, Y. lipolytica CCMA 0242, Wickerhamomyces anomalus CCMA 0358, and Cryptococcus humicola CCMA 0346) and their lipid production were evaluated, using different concentrations of crude and pure glycerol and glucose. Whereas crude glycerol (100?g/L) was the main carbon source used by Y. lipolytica CCMA 0357 (nearly 15?g/L consumed at 120?hr) and W. anomalus CCMA 0358 (nearly 45.10?g/L consumed at 48?hr), pure glycerol (150?g/L) was the main one used by C. humicola CCMA 0346 (nearly 130?g/L consumed). On the other hand, Y. lipolytica CCMA 0242 used glucose (100?g/L) as its main source of carbon (nearly 96.48?g/L consumed). Y. lipolytica CCMA 0357 demonstrated the highest lipid production [about 70% (wt/wt)], forming palmitic (45.73% of fatty acid composition), stearic (16.43%), palmitoleic (13.29%), linolenic (10.77%), heptadecanoic (4.07%), and linoleic (14.14%) acids. Linoleic acid, an essential fatty acid, was produced by all four yeast strains but in varying degrees, representing 70.42% of the fatty acid profile of lipids produced by C. humicola CCMA 0346.  相似文献   

10.
Orotate (OA) is a precursor of pyrimidine nucleotides and is widely used in food, pharmaceutical, and cosmetic industries. Although various microorganisms have been used for OA production, the production efficiency needs to be further improved for industrial application. In this study, we engineered Escherichia coli native metabolism for efficient OA production. The entire pathway was divided into the downstream OA synthesis, the midstream aspartate/glutamine supply, and the upstream glycolysis modules. First, the downstream module was optimized by disrupting pyrE to block OA consumption and release the feedback inhibition, and tuning expression of the biosynthetic genes. Second, the midstream pathway was enhanced by increasing the supply of the precursors and the cofactor nicotinamide adenine dinucleotide phosphate (NADPH). More importantly, we observed that pyrE disruption may lead to metabolic disorder as indicated by the accumulation of large amount of acetate. This problem was solved by reducing the flux of glycolysis. With these efforts, the final strain produced 80.3 g/L OA with a yield of 0.56 g/g glucose in fed-batch fermentation, which are the highest titer and yield reported so far. This work paves the way for industrial production of OA and represents as a good example of modulating cell metabolism for efficient chemical production.  相似文献   

11.
12.
Zhang  Ling  Nie  Ming-Yue  Liu  Feng  Chen  Jun  Wei  Liu-Jing  Hua  Qiang 《Biotechnology letters》2021,43(7):1277-1287
Objective

Erythritol (1,2,3,4-butanetetrol) is a 4-carbon sugar alcohol that occurs in nature as a metabolite or storage compound. In this study, a multiple gene integration strategy was employed to enhance erythritol production in Y. lipolytica.

Results

The effects on the production of erythritol in Y. lipolytica of seven key genes involved in the erythritol synthesis pathway were evaluated individually, among which transketolase (TKL1) and transaldolase (TAL1) showed important roles in enhancing erythritol production. The combined overexpression of four genes (GUT1, TPI1, TKL1, TAL1) and disruption of the EYD1 gene (encoding erythritol dehydrogenase), resulted in produce approximately 40 g/L erythritol production from glycerol. Further enhanced erythritol synthesis was obtained by overexpressing the RKI1 gene (encoding ribose 5-phosphate isomerase) and the AMPD gene (encoding AMP deaminase), indicating for the first time that these two genes are also related to the enhancement of erythritol production in Y. lipolytica.

Conclusions

A combined gene overexpression strategy was developed to efficiently improve the production of erythritol in Y. lipolytica, suggesting a great capacity and promising potential of this non-conventional yeast in converting glycerol into erythritol.

  相似文献   

13.
The synthesis of several industrially useful compounds are cofactor‐dependent, requiring reducing equivalents like NADPH in enzymatic reactions leading up to the synthesis of high‐value compounds like polymers, chiral alcohols, and antibiotics. However, NADPH is costly and has limited intracellular availability. This study focuses on the study of the effect of the two transhydrogenase enzymes of Escherichia coli, PntAB and UdhA (SthA) on reducing equivalents‐dependent biosynthesis. The production of (S)‐2‐chloropropionate from 2‐chloroacrylate is used as a model system for monitoring NADPH availability because 2‐haloacrylate reductase, the enzyme catalyzing the one‐step conversion to (S)‐2‐chloropropionate in the synthesis pathway, requires NADPH as a cofactor. Results suggest that the presence of UdhA increases product yield and NADPH availability while the presence of PntAB has the opposite effect. A maximum product yield of 1.4 mol product/mol glucose was achieved aerobically in a pnt‐deletion strain with udhA overexpression, a 150% improvement over the wild‐type control strain. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1124–1130, 2013  相似文献   

14.
The effect of ethanol, zinc, and iron (Fe2+ and Fe3+) concentration and of oxygen supply on cell growth and the production of citric acid (CA) and isocitric acid (ICA) from ethanol by mutant Yarrowia lipolytica N 1 was studied under continuous cultivation. The following peculiarities of Y. lipolytica metabolism were found: (1) intensive CA production occurred under yeast growth limitation by nitrogen; (2) inhibition of yeast growth by ethanol was accompanied by significant alterations in fatty acid composition of lipids; (3) the production of CA and ICA from ethanol required high concentrations of zinc and iron ions; (4) the intracellular iron concentration determined whether CA or ICA was predominantly formed; (5) the cell's requirement for oxygen depended on the intracellular iron concentration. The events taking place in the production of CA and ICA were evaluated through the activities of enzyme systems involved in the metabolism of ethanol and CA in this strain. Electronic Publication  相似文献   

15.
Under in vitro conditions, the fatty acid synthesis from labelled substrates was studied in the leucoplasts isolated from developing seeds of Brassica campestris L. The rate of fatty acid synthesis with Na-(1-14C) acetate was higher at lower concentrations (up to 1 mM). However, with 14C(U)-D-glucose, the rate was higher at higher concentrations (3–4 mM) at all the three stages of seed development. ATP and NAD(P)H were absolutely required in acetate utilization. Even for glucose utilization, the exogenous supply of ATP and NAD(P)H was required. At the early stage of seed development, the maximum reduction in labelled glucose and acetate utilization for fatty acid synthesis was observed with pyruvate and glucose, respectively. However, at mid-early and mid-late stages, maximum reduction in their utilization for fatty acid synthesis was observed with glc-6-P. This suggests a shift in the utilization of substrates for fatty acid synthesis during the development of seeds probably via different translocators activated at different stages.  相似文献   

16.
17.
Cellular fatty acid compositions of Candida tropicalis pK 233 and Candida lipolytica NRRL Y -6795 and the time-course changes during yeast growth were studied using individual n-alkanes of various chain lengths (from C11 to C18) and a mixture of n-alkanes (C11 to C18) as a sole carbon source. Observed relationships of the chain-length of n-alkane substrate to time-course changes and final patterns of the fatty acid compositions of these yeasts, especially those of the cells grown on odd-carbon alkanes, indicated that “intact incorporation mechanism,” that is, accumulation of the fatty acid having the same chain-length as that of the alkane substrate used was predominant in the yeasts cultivated on a longer alkane such as n-heptadecane and n-octadecane. On the other hand, “chain elongation pathway” and “de novo synthesis pathway” following β-oxidation of substrate were simultaneously operative in the cells growing on a relatively shorter alkane such as undecane and dodecane.  相似文献   

18.
19.
Yarrowia lipolytica is widely used as a microbial producer of lipids and lipid derivatives. Here, we exploited this yeast’s potential to generate aromatic amino acids by developing chassis strains optimized for the production of phenylalanine, tyrosine and tryptophan. We engineered the shikimate pathway to overexpress a combination of Y. lipolytica and heterologous feedback-insensitive enzyme variants. Our best chassis strain displayed high levels of de novo Ehrlich metabolite production (up to 0.14 g l−1 in minimal growth medium), which represented a 93-fold increase compared to the wild-type strain (0.0015 g l−1). Production was further boosted to 0.48 g l−1 when glycerol, a low-cost carbon source, was used, concomitantly to high secretion of phenylalanine precursor (1 g l−1). Among these metabolites, 2-phenylethanol is of particular interest due to its rose-like flavour. We also established a production pathway for generating protodeoxyviolaceinic acid, a dye derived from tryptophan, in a chassis strain optimized for chorismate, the precursor of tryptophan. We have thus demonstrated that Y. lipolytica can serve as a platform for the sustainable de novo bio-production of high-value aromatic compounds, and we have greatly improved our understanding of the potential feedback-based regulation of the shikimate pathway in this yeast.  相似文献   

20.
The regulation of fatty acid synthesis, measured by 3H2O incorporation into fatty acids, was studied in hepatocytes from rats meal-fed a high carbohydrate diet. Ca2+ increased fatty acid synthesis, which became maximal at physiological concentrations of Ca2+. Ethanol markedly inhibited fatty acid synthesis. Maximum inhibition was reached at 4 mm ethanol. However, ethanol did not decrease lipogenesis in the presence of pyruvate. dl-3-Hydroxybutyrate increased fatty acid synthesis. Acetoacetate decreased lipogenesis when used alone and reversed the effect of dl-3-hydroxybutyrate when both were added. dl-3-Hydroxybutyrate moderately decreased flux through the pyruvate dehydrogenase system and markedly inhibited citric acid cycle flux. By measurement of glycolytic intermediates, two ethanol-induced crossover points were observed: one between fructose 6-phosphate and fructose 1,6-diphosphate and the other between glyceraldehyde 3-phosphate and 1,3-diphosphoglycerate. The concentrations of pyruvate and citrate were decreased by ethanol and increased by dl-3-hydroxybutyrate. Aminooxyacetate and l-cycloserine inhibited fatty acid synthesis and these effects were overcome by dl-3-hydroxybutyrate. Results indicate that in hepatocytes in a metabolic state favoring a high rate of lipogenesis, production of reducing equivalents in the cytosol via ethanol metabolism inhibits fatty acid synthesis from glucose by inhibition of both phosphofructokinase and glyceraldehyde 3-phosphate dehydrogenase and by promoting reduction of pyruvate to lactate. Production of reducing equivalents in the mitochondria via dl-3-hydroxybutyrate enhances fatty acid synthesis in liver cells by altering the partition of citrate between oxidation in the citric acid cycle and conversion to fatty acids in favor of the latter pathway. These interactions indicate the importance of the intracellular pyridine nucleotide redox states in the rate control of hepatic fatty acid synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号