首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tractable plasmids (pAC-Mv-based plasmids) for Escherichia coli were constructed, which carried a mevalonate-utilizing gene cluster, towards an efficient functional analysis of cytochromes P450 involved in sesquiterpene biosynthesis. They included genes coding for a series of redox partners that transfer the electrons from NAD(P)H to a P450 protein. The redox partners used were ferredoxin reductases (CamA and NsRED) and ferredoxins (CamB and NsFER), which are derived from Pseudomonas putida and cyanobacterium Nostoc sp. strain PCC 7120, respectively, as well as three higher-plant NADPH-P450 reductases, the Arabidopsis thaliana ATR2 and two corresponding enzymes derived from ginger (Zingiber officinale), named ZoRED1 and ZoRED2. We also constructed plasmids for functional analysis of two P450s, α-humulene-8-hydroxylase (CYP71BA1) from shampoo ginger (Zingiber zerumbet) and germacrene A hydroxylase (P450NS; CYP110C1) from Nostoc sp. PCC 7120, and co-transformed E. coli with each of the pAC-Mv-based plasmids. Production levels of 8-hydroxy-α-humulene with recombinant E. coli cells (for CYP71BA1) were 1.5- to 2.3-fold higher than that of a control strain without the mevalonate-pathway genes. Level of the P450NS product with the combination of NsRED and NsFER was 2.9-fold higher than that of the CamA and CamB. The predominant product of P450NS was identified as 1,2,3,5,6,7,8,8a-octahydro-6-isopropenyl-4,8a-dimethylnaphth-1-ol with NMR analyses.  相似文献   

2.
We report a method for the integration of expression cassettes into the Escherichia coli chromosome using rare and dispensable sugar degradation gene loci as sites for integration. Clones carrying successfully recombined DNA fragments in the chromosome are easily screened using a solid differential medium containing the respective sugar compound. As an example for the heterologous expression of a complex natural product biosynthesis pathway, we show the stepwise chromosomal integration of the zeaxanthin biosynthesis pathway from Pantoea ananatis into E. coli.  相似文献   

3.
4.
The heterologous synthesis of lycopene in non-carotenogenic Escherichia coli required the introduction of the biosynthesis genes crtE, crtB, and crtI. Recombinant E. coli strains, expressing each lycopene biosynthesis gene from Pantoea ananatis using multi-copy plasmid or single-copies after stable chromosomal integration, were cultivated and the formation of lycopene was investigated. The different expression conditions significantly influenced the lycopene formation as well as the growth behaviour. High plasmid expression levels of crtI with a single copy background of crtE and crtB in E. coli led to a predominate synthesis of tetradehydrolycopene at 253 μg g−1 (cdw).  相似文献   

5.
应用FLP重组酶介导的染色体定点整合技术,将带有不同拷贝数的乙肝病毒融合表面抗原SA-28基因表达单元的质粒整合在酵母不同的染色体位点,并测定了SA-28基因的表达情况,初步研究了基因拷贝数与染色体位置对酵母表达外源基因的影响。结果表明SA-28基因在HIS3位点整 合时的表达水平随基因拷贝数的增加而提高,遵循基因剂量效应;在某些染色体位点整2合时,插入方向对其表达有不同程度的影响,呈现出明显的染  相似文献   

6.
E. coli (P450pyrTM‐GDH) with dual plasmids, pETDuet containing P450pyr triple mutant I83H/M305Q/A77S (P450pyrTM) and ferredoxin reductase (FdR) genes and pRSFDuet containing glucose dehydrogenase (GDH) and ferredoxin (Fdx) genes, was engineered to show a high activity (12.7 U g?1 cdw) for the biohydroxylation of N‐benzylpyrrolidine 1 and a GDH activity of 106 U g?1 protein. The E. coli cells were used as efficient biocatalysts for highly regio‐ and stereoselective hydroxylation of alicyclic substrates at non‐activated carbon atom with enhanced productivity via intracellular recycling of NAD(P)H. Hydroxylation of N‐benzylpyrrolidine 1 with resting cells in the presence of glucose showed excellent regio‐ and stereoselectivity, giving (S)‐N‐benzyl‐3‐hydroxypyrrolidine 2 in 98% ee as the sole product in 9.8 mM. The productivity is much higher than that of the same biohydroxylation using E. coli (P450pyrTM)b without expressing GDH. E. coli (P450pyrTM‐GDH) was found to be highly regio‐ and stereoselective for the hydroxylation of N‐benzylpyrrolidin‐2‐one 3 , improving the regioselectivity from 90% of the wild‐type P450pyr to 100% and giving (S)‐N‐benzyl‐4‐hydroxylpyrrolidin‐2‐one 4 in 99% ee as the sole product. A high activity of 15.5 U g?1 cdw was achieved and (S)‐ 4 was obtained in 19.4 mM. E. coli (P450pyrTM‐GDH) was also found to be highly regio‐ and stereoselective for the hydroxylation of N‐benzylpiperidin‐2‐one 5 , increasing the ee of the product (S)‐N‐benzyl‐4‐hydroxy‐piperidin‐2‐one 6 to 94% from 33% of the wild‐type P450pyr. A high activity of 15.8 U g?1 cdw was obtained and (S)‐ 6 was produced in 3.3 mM as the sole product. E. coli (P450pyrTM‐GDH) represents the most productive system known thus far for P450‐catalyzed hydroxylations with cofactor recycling, and the hydroxylations with E. coli (P450pyrTM‐GDH) provide with simple and useful syntheses of (S)‐ 2 , (S)‐ 4 , and (S)‐ 6 that are valuable pharmaceutical intermediates and difficult to prepare. Biotechnol. Bioeng. 2013; 110: 363–373. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
8.
A system is described that enables the cloning of genes specifying detrimental proteins inEscherichia coli. The system is based on pUC plasmids and was developed for the expression of theBacillus subtilis csaA gene, which is lethal when expressed at high levels. Suppressor strains that tolerate the presence of plasmids for high-level expression ofcsaA were isolated, which contained small cryptic deletion variants of the parental plasmid in high copy numbers. The cryptic plasmids consisted mainly of the pUC replication functions and lacked thecsaA region and selectable markers. The co-resident, incompatible, cryptic plasmids enabled the maintenance of thecsaA plasmids by reducing their copy number 20-fold, which resulted in a concomitant 3- to 7-fold reduction in the expression of plasmid-encoded genes. Strains carrying these cryptic endogenous plasmids proved to be useful for the construction of pUC-based recombinant plasmids carrying other genes, such as theskc gene ofStreptococcus equisimilis, which cannot be cloned in high copy numbers inE. coli. Several strategies to reduce production levels of heterologous proteins specified by plasmids are compared.  相似文献   

9.
The catalytic turnover of cytochrome P450 cam from Pseudomonas putida requires two auxiliary reduction partners, putidaredoxin (Pd) and putidaredoxin reductase (PdR). We report the functional expression in Escherichia coli of tricistronic constructs consisting of P450 cam encoded by the first cistron and the auxiliary proteins, Pd and PdR by the second and the third. Transformed bacterial whole cells efficiently oxidized (1R)-(+)-camphor to 5-exo-hydroxycamphor and, interestingly, limonene to (−)-perillyl alcohol. These bioengineered E. coli cells possess a heterologous self-sufficient P450 catalytic system that may have advantages in terms of low cost and high yield for the production of fine chemicals. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
To elucidate the effects of codon optimization and chaperone coexpression on the heterologous expression of mammalian cytochrome P450s (P450) in Escherichia coli, the expression of P450s 2B1, 2S1, 2U1, 2W1, and 27C1 were investigated. With codon optimization for N-terminus or the entire gene, the expression levels of P450 27C1, 2U1 and 2W1 increased 22-fold, 3.6-fold and 2.1-fold, respectively, while those for P450s 2B1 and 2S1 remained unchanged. With coexpression of E. coli molecular chaperones GroEL/ES, the expression level increased up to 14-fold for P450 27C1, and 3- to 5-fold for P450s 2B1, 2S1, and 2W1. Simultaneous application of these two techniques resulted in synergetic effects.  相似文献   

11.
Pravastatin, an important cholesterol lowering drug, is currently produced by hydroxylation of mevastatin (ML-236B) with Streptomyces carbophilus, in which the enzyme P450sca-2 plays a key role. Little information on the recombinant expression of this enzyme is available. As it is of industrial interest to develop an alternative simplified enzymatic process for pravastatin, as a first step, further study on the heterologous expression of this enzyme is warranted. We report here, for the first time, the purification, and characterization of P450sca-2 expressed in Escherichia coli. A synthetic gene encoding P450sca-2 was designed to suit the standard codon usage of E. coli. Expression of P450sca-2 in E. coli under optimized conditions yielded about 100 nmol purified active P450sca-2 per liter. Directed evolution was further carried out to improve the soluble expression level. In the absence of a facile and sensitive assay, green fluorescent protein (GFP) was used as a reporter to enable high-throughput screening. After three rounds of evolution by error-prone PCR and DNA shuffling, six almost totally soluble mutants were obtained, with the soluble expression levels dramatically improved by about 30-fold. For six most frequently occurring mutations, the corresponding single mutants were created to dissect the effects of these mutations. A single mutation, P159A, was found to be responsible for most of the enhanced solubility observed in the six mutants, and the corresponding single mutant also retained the hydroxylation activity. Our study provides a foundation for future work on improving functional expression of P450sca-2 in E. coli.  相似文献   

12.
13.
Two single-base mutations in 16S rRNA conferring high-level resistance to spectinomycin were isolated on a plasmid-borne copy of the rrnD operon from Salmonella enterica serovar Typhimurium. Neither of the mutations (C1066U and C1192U) had appreciable effects on cell growth, but each had differential effects on resistance to spectinomycin and fusidic acid. Both mutations also conferred resistance to spectinomycin in Escherichia coli strains containing deletions of all seven chromosomal rrn operons and expressing plasmid-encoded Salmonella rRNA exclusively. In contrast, when expressed in E. coli strains containing intact chromosomal rrn operons, the strains were sensitive to spectinomycin. However, chromosomal mutations arose that allowed expression of the rRNA-dependent spectinomycin resistance phenotype. It is proposed that in heterogeneous rRNA populations, the native E. coli rRNA out-competes the heterologous Salmonella rRNA for binding to ribosomal proteins, translation factors, or ribosome assembly, thus limiting entry of the antibiotic-resistant 30S subunits into the functioning ribosome pool. Received: 28 September 2001 / Accepted: 26 March 2002  相似文献   

14.
Three indigenous plasmids designated pRK1, pRK2 and pRK3 were identified among producers of penicillin G acylase, (PGA) derived from the strainEscherichia coli W ATCC 9637. Their size and copy number (CN) inE. coli W were determined (kb; CN); pRK1 (80; 3.4), pRK2 (5.1; 71), and pRK3 (4.8; 13.7). StrainE. coli RE2 harboring these plasmids was used for selection of strains with reduced number of plasmids: the strain RE3 without plasmid pRK1 and the plasmid-less strain cERE3 were isolated. Indigenous plasmids did not code for the resistance determinants against 23 antibiotics and 10 heavy metals.  相似文献   

15.
16.
The products ofPRP17 andPRP18 genes are required for the second step of pre-mRNA splicing reactions inSaccharomyces cerevisiae. Temperature-sensitive mutants at either of these loci accumulate products of the first splicing reaction at nonpermissive temperature. To characterize functional regions in these proteins the mutations in three temperature-sensitive alleles ofPRP17 and two temperature-sensitive alleles ofPRP18 were mapped by the plasmid rescue strategy, One of the procedures adopted in the past is plasmid rescue of the mutant allele followed by sequencing of the entire gene. In this work we describe an adaptation of the above procedure that allows, first, rapid mapping of chromosomal segments bearing the mutations, followed by sequence characterization of the minimal segment. The strategy adopted was to integrate a wild-type copy of the gene at the homologous mutant chromosomal locus, followed by recovery of the chromosomal fragments from these integrants as plasmids inE. coli. The recovered plasmids were screened by a complementation assay for those that contained in them the chromosomal mutation. The mutations in all the three alleles ofPRP17 map to a small region in the N-terminal half of the protein, whereas the temperature-sensitive mutations in the two alleles ofPRP18 map to different regions of the PRP18 protein. The recovered mutant plasmids from all five alleles at the two loci were sequenced and the nucleotide changes were found to result in missense mutations in each case. Our strategy is therefore a rapid method to map chromosomal mutations and is of general use in structure-function analysis of cloned genes.  相似文献   

17.
A thorough understanding of the sequence–structure–function relationships of cytochrome P450 (P450) is necessary to better understand the metabolic diversity of living organisms. Significant amounts of pure enzymes are sometimes required for biochemical studies, and their acquisition often relies on the possibility of their heterologous expression. In this study, we performed extensive heterologous expression of fungal P450s in Escherichia coli using 304 P450 isoforms. Using large-scale screening, we confirmed that at least 27 P450s could be expressed with/without simple sequence deletion at the 5′ end of cDNAs, which encode the N-terminal hydrophobic domain of the enzyme. Moreover, we identified N-terminal amino acid sequences that can potentially be used to construct chimeric P450s, which could dramatically improve their expression levels even when the expression of the wild-type sequence was unpromising. These findings will help increase the chance of heterologous expression of a variety of fungal and other eukaryotic membrane-bound P450s in E. coli.  相似文献   

18.
Sierd Bron  Erik Luxen 《Plasmid》1985,14(3):235-244
To study plasmid instability in Bacillus subtilis the pUB110-derived hybrid plasmid pLB2 (3.6 kb) and the bifunctional replicon pLB5 (5.9 kb), able to replicate in B. subtilis and Escherichia coli, were constructed. In both vectors homologous B. subtilis, or heterologous E. coli DNA fragments of various lengths were inserted. Irrespective of the source of the cloned DNA, the segregational stability of the recombinant plasmids in B. subtilis was severely affected by the DNA inserts. In contrast, no instability was observed in E. coli. In B. subtilis a steep inverse relationship existed between the size of the inserts and the level of stability. Increased size of the pLB plasmids resulted in strongly reduced copy numbers. This seems to be the primary cause of the size-dependent segregational instability.  相似文献   

19.
The site-specific integration of the phage CTX genome, which carries the gene for a pore-forming cytotoxin, into the Pseudomonas aeruginosa chromosome was analysed. The 1,167 by integrase gene, int, located immediately upstream of the attachment site, attP, was characterized using plasmid constructs, harbouring the integration functions, and serving as an integration probe in both P. aeruginosa and Escherichia coli. The attP plasmids p1000/p400 in the presence of the int plasmid pIBH and attP-int plasmids pINT/pINTS can be stably integrated into the P. aeruginosa chromosome. Successful recombination between the attP plasmid p1000 and the attB plasmid p5.1, in the presence of the int plasmid pIBH in E. coli HB101 showed that the int gene is active in trans in E. coli. The int gene product was detected as a 43 kDa protein in E. coli maxicells harbouring pINT. Proposed integration arm regions downstream of attP are not necessary for the integration process. pINT and phage CTX could be integrated together into P. aeruginosa chromosomal DNA, yielding double integrates.  相似文献   

20.
An operon encoding enzymes responsible for degradation of the EPA priority contaminant para‐nitrophenol (PNP) from Pseudomonas sp. ENV2030 contains more genes than would appear to be necessary to mineralize PNP. To determine some necessary genes for PNP degradation, the genes encoding the proposed enzymes in the degradation pathway (pnpADEC) were assembled into a broad‐host‐range, BioBricks‐compatible vector under the control of a constitutive promoter. These were introduced into Escherichia coli DH10b and two Pseudomonas putida strains, one with a knockout of the aromatic transport TtgB and the parent with the native transporter. The engineered strains were assayed for PNP removal. E. coli DH10b harboring several versions of the refactored pathway was able to remove PNP from the medium up to a concentration of 0.2 mM; above which PNP was toxic to E. coli. A strain of P. putida harboring the PNP pathway genes was capable of removing PNP from the medium up to 0.5 mM. When P. putida harboring the native PNP degradation cluster was exposed to PNP, pnpADEC were induced, and the resulting production of β‐ketoadipate from PNP induced expression of its chromosomal degradation pathway (pcaIJF). In contrast, pnpADEC were expressed constitutively from the refactored constructs because none of the regulatory genes found in the native PNP degradation cluster were included. Although P. putida harboring the refactored construct was incapable of growing exclusively on PNP as a carbon source, evidence that the engineered pathway was functional was demonstrated by the induced expression of chromosomal pcaIJF. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号