首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The robust growth of coastal communities in the southeastern United States is putting unique pressures on estuarine resources. Urbanization of estuarine systems may alter ecosystem function and thus affect the spatial scale and magnitude of nutrient concentrations and primary production temporally and spatially. We examined the spatial and temporal patterns of nutrient and chlorophyll a (Chl a) concentrations in two shallow well-mixed estuaries, (1) a developed estuary, Murrells Inlet (MI), South Carolina, and (2) a relatively pristine estuary, North Inlet (NI), South Carolina. The summer chlorophyll a maximum in MI was characteristically higher than in NI, which may be indicative of eutrophication. Correlations between salinity and inorganic nutrients (N and P) suggest that nutrient import from upland sources may be more pronounced in MI during stochastic precipitation events. Although inorganic nutrient concentrations between the estuaries were similar overall, during a wet period, inorganic N concentration in MI was increased to a greater extent than in NI, while only minimal increases in inorganic P were observed in both estuaries. Chlorophyll a concentrations decreased from the dry to wet period. Geographic Information System (GIS) plots of intensive spatial sampling in MI indicated spatial gradients of nutrient concentrations within this estuary that appeared to be consistent over time. These observations were investigated in more detail using regression analyses to examine the influences of coastal dilution and nutrient sources on relationships between water quality constituents. Results indicate the importance of stochastic rain events in affecting the linkages of estuarine processes to upland runoff in the urbanized estuary, MI.  相似文献   

2.
河口浮游植物生态学研究进展   总被引:20,自引:1,他引:20  
综述了河口浮游植物种类组成、时空分布、初级生态及其影响因素等方面的主要研究进展,同时,对河口浮游植物在水环境监测中的作用以及河口浮游植物多样性与边缘效应进行了初步探讨。研究表明,通常河口区重要的浮游植物有硅藻、甲藻等,微型、超微型浮游植物在河口生态系统中占有重要地位。河口浮游植物种类组成、初级生产的时空变化明显,并受到光、温度、营养盐、动物摄食以及径流等因素的影响。  相似文献   

3.
《Acta Oecologica》1999,20(4):237-248
Eutrophication of European estuaries due to massive nutrient loading from urban areas and diffuse runoff from extensively cultivated land areas is analysed. Consequences for the ecology of estuaries, namely changes in plant species composition, which also affects heterotrophic organisms, are approached based on examples showing that the result is often a fundamental structural change of the ecosystem, from a grazing and/or nutrient controlled stable systems to unstable detritus/mineralisation systems, where the turnover of oxygen and nutrients is much more dynamic and oscillations between aerobic and anaerobic states frequently occur. Several relevant aspects are examined, namely the influence of rooted macrophytes on nutrient dynamics, by comparing bare bottom sediments with eelgrass covered sediments, primary production and the development of organic detritus, and hydrodynamics and its relations to the spatial distribution of macrophytes in estuarine systems.  相似文献   

4.
We conducted nutrient enrichment experiments and field sampling to address three questions: (1) is there nutrient limitation of phytoplankton accumulation within an estuary whose waters are exposed to relatively high nitrogen loading rates, (2) where in the salinity gradient from fresh to seawater (0 to 32‰) is there a shift from phosphorus to nitrogen limitation of phytoplankton accumulation, and (3) is there a seasonal shift in limiting function of phosphorus and nitrogen anywhere in the estuarine gradient. Nitrogen and phosphorus enrichment experiments in the Childs River, an estuary of Waquoit Bay, Massachusetts, USA, showed that the accumulation of phytoplankton biomass in brackish and saline water was limited by supply of nitrate during warm months. The effects of enrichment were less evident in fresh water, with short-lived responses to phosphate enrichment. There was no specific point along the salinity gradient where there was a shift from phosphorus- to nitrogen-limited phytoplankton accumulation; rather, the relative importance of nitrogen and phosphorus changed along the salinity gradient in the estuary and with season of the year. There was no response to nutrient additions during the colder months, suggesting that some seasonally-varying factor, such as light, temperature or a physiological mechanism, restricted phytoplankton accumulation during months other than May-Aug. There was only slight evidence of a seasonal shift between nitrogen- and phosphorus-limitation of chlorophyll accumulation. Phytoplankton populations in nutrient-rich estuaries with short flushing times grow fast, but at the same time the cells may be advected out of the estuaries while still rapidly dividing, thereby providing an important subsidy to production in nearby deeper waters. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
Eutrophication is arguably the biggest pollution problem facing estuaries globally, with extensive consequences including anoxic and hypoxic waters, reduced fishery harvests, toxic algal blooms, and loss of biotic diversity. However, estuaries vary greatly in their susceptibility to eutrophication. The Hudson River estuary receives very high levels of nutrient inputs yet in the past has shown relatively low rates of phytoplankton productivity and is generally considered to be only moderately susceptible to eutrophication. Here, we show that eutrophication and primary production in the Hudson estuary can increase dramatically in response to climatic variation and lowered freshwater discharge from the watershed. During dry summer periods in 1995 and 1997, rates of primary production were substantially higher than those measured during the 1970s, when freshwater discharge tended to be high. In the Hudson, low freshwater discharge increases waterresidence times and stratification and deepens the photic zone, all of which (alone or in combination) could lead to the observed increase in primary production. Our data, along with the prediction of most climate change models that freshwater discharge will be lower in the future during the summer in the northeastern US, suggest that the Hudson will become more susceptible to eutrophication. Eutrophication in an estuary is a complex process, and climate change is likely to affect each estuary differently due to interactions with nutrient loadings and physical circulation. Hence, it is essential to consider the effects of climate change in the context of individual estuarine functioning to successfully manage eutrophication in the future. Received 22 December 1999; accepted 28 December 1999.  相似文献   

6.
Because estuaries are dynamic on many temporal scales, it is difficult to differentiate long-term shifts from those resulting from erratic pulse events like severe storms. Diatoms are abundant and diverse in estuaries, and may characterize these dynamics across relevant time scales. The climate of south Florida is subtropical, with dry winters and wet summers that may also harbor tropical storms and cyclones. We investigated whether these repeated seasonal drivers of change in estuaries differ from the influence of tropical cyclones on planktonic and benthic diatom assemblages. Diatom assemblages and environmental parameters were measured in the Charlotte Harbor watershed of southwest Florida to identify differences between the wet and dry seasons and changes that occurred following Tropical Storm Debby in 2012. Indicator taxa that were significantly affiliated with each season and post-storm conditions were identified. Diatom assemblages across the watershed were similar in wet and dry seasons, but differences increased following the tropical storm. The reduction in community dispersion following the storm was pronounced in each of the major drainages of the estuary. There were spatially-distinct responses of diatoms to environmental changes driven by the storm. These results suggest that past storm activity could be detected using diatoms preserved in estuarine sediments using both single indicator-species as well as community approaches.  相似文献   

7.
Tagus estuary is one of the largest estuaries of Western Europe. With the aim of unravelling the drivers of primary production in this shallow and turbid nutrient replete estuary, we tested the hypothesis that light availability is a major factor controlling phytoplankton production. Environmental parameters, phytoplankton biomass, community composition, and photosynthetic parameters were monitored at two sites in the estuary during a complete annual cycle. Despite the fact that nutrient concentrations were always above growth-limiting values, Chl a concentrations were relatively low throughout the study period. High water column turbidity, due to riverine inputs, promoted a rapid attenuation of light and created a compressed profile with optimal photosynthetic conditions. Therefore, the phytoplankton community, dominated by small cells, such as diatoms and cryptophycean flagellates, displayed highly photosynthetic efficiency and low light-saturated photosynthetic rates as a photo-acclimation response to low light conditions year-round. Primary production rate was unimodal, peaking in the summer months. In such estuarine system, gross primary production could thus be predicted by an existing robust empirical model based on pigment standing crop (Chl a), surface irradiance (E 0) and optical depth (Z eup). Compared to other shallow estuaries, the Tagus can be classified as a low- to moderately productive estuary, being the turbidity-induced low light conditions the principal factor limiting phytoplankton growth.  相似文献   

8.
Low dissolved oxygen (DO) is a common feature of many estuarine and shallow-water environments, and is often attributed to anthropogenic nutrient enrichment from terrestrial-fluvial pathways. However, recent events in the U.S. Pacific Northwest have highlighted that wind-forced upwelling can cause naturally occurring low DO water to move onto the continental shelf, leading to mortalities of benthic fish and invertebrates. Coastal estuaries in the Pacific Northwest are strongly linked to ocean forcings, and here we report observations on the spatial and temporal patterns of oxygen concentration in the Columbia River estuary. Hydrographic measurements were made from transect (spatial survey) or anchor station (temporal survey) deployments over a variety of wind stresses and tidal states during the upwelling seasons of 2006 through 2008. During this period, biologically stressful levels of dissolved oxygen were observed to enter the Columbia River estuary from oceanic sources, with minimum values close to the hypoxic threshold of 2.0 mg L(-1). Riverine water was consistently normoxic. Upwelling wind stress controlled the timing and magnitude of low DO events, while tidal-modulated estuarine circulation patterns influenced the spatial extent and duration of exposure to low DO water. Strong upwelling during neap tides produced the largest impact on the estuary. The observed oxygen concentrations likely had deleterious behavioral and physiological consequences for migrating juvenile salmon and benthic crabs. Based on a wind-forced supply mechanism, low DO events are probably common to the Columbia River and other regional estuaries and if conditions on the shelf deteriorate further, as observations and models predict, Pacific Northwest estuarine habitats could experience a decrease in environmental quality.  相似文献   

9.
A comparative analysis of fish estuary association guilds was undertaken on some 190 South African estuaries. This pioneering study spanned three zoogeographic regions and included three broad estuarine types. The guild compositions of the estuaries were compared based on an importance value, incorporating taxonomic composition, numerical abundance and relative biomass. Multivariate analyses included both inter‐regional (zoogeographic) and intra‐regional (estuarine typology) comparisons. The major estuary‐associated guilds (estuarine species and marine migrant species) were important in all estuary types within all biogeographic regions. Significant differences both between regions and between estuary types within regions, however, were recorded. Cool–temperate estuaries were generally dominated by migratory species (estuarine migrants and marine migrant opportunists) while the importance of species dependent on estuaries (estuarine residents and estuarine‐dependent marine migrants) was higher in warm–temperate and subtropical regions. The significance of estuarine nursery areas, particularly in regions where estuaries are few in number, is highlighted. In terms of typology, migratory species assumed a greater importance in predominantly open systems, while freshwater and estuarine‐resident species were more important in predominantly closed systems. Predominantly closed estuaries, however, were also important for marine migrant species, which further highlights the significance of these systems as nursery areas for fishes.  相似文献   

10.
Nearly two decades of seasonal dissolved inorganic nutrient-salinity distributions in northern San Francisco Bay estuary (1960–1980) illustrate interannual variations in effects of river flow (a nutrient source) and phytoplankton productivity (a nutrient sink). During winter, nutrient sources dominate the nutrient-salinity distribution patterns (nutrients are at or exceed conservative mixing concentrations). During summer, however, the sources and sinks are in close competition. In summers of wet years, the effects of increased river flow often dominate the nutrient distributions (nutrients are at or less than conservative mixing concentrations), whereas in summers of dry years, phytoplankton productivity dominates (the very dry years 1976–1977 were an exception for reasons not yet clearly known). Such source/sink effects also vary with chemical species. During summer the control of phytoplankton on nutrient distributions is apparently strongest for ammonium, less so for nitrate and silica, and is the least for phosphate. Furthermore, the strength of the silica sink (diatom productivity) is at a maximum at intermediate river flows. This relation, which is in agreement with other studies based on phytoplankton abundance and enumeration, is significant to the extent that diatoms are an important food source for herbivores.The balance or lack of balance between nutrient sources and sinks varies from one estuary to another just as it can from one year to another within the same estuary. At one extreme, in some estuaries river flow dominates the estuarine dissolved inorganic nutrient distributions throughout most of the year. At the other extreme, phytoplankton productivity dominates. In northern San Francisco Bay, for example, the phytoplankton nutrient sink is not as strong as in less turbid estuaries. In this estuary, however, river effects, which produce or are associated with near-conservative nutrient distributions, are strong even at flows less than mean-annual flow. Thus, northern San Francisco Bay appears to be an estuary in between the two extremes and is shifted closer to one extreme or the other depending on interannual variations in river flow.  相似文献   

11.
The Delaware Bay is characterized as having greater nutrient and turbidity levels than the Chesapeake Bay. In reference to these differences, a one year study was conducted to identify any similarities and differences in the phytoplankton populations in these estuaries. The results indicated patterns of similarity in the diatom composition, with the total phytoplankton assemblage forming two site groups along a salinity gradient in each bay. These site groups were associated with stations located in the tidal fresh-oligohaline and meso-polyhaline regions of both estuaries. The seasonal concentrations of diatoms and total phytoplankton in both of these regions were higher in the Chesapeake Bay.Subtle differences between the two estuaries include a more diversified and abundant assemblage of neritic phytoplankters (including dinoflagellates) are present in the lower Chesapeake Bay. In contrast, a diatom dominated community is more characteristic of Delaware Bay. It is suggested the entry of neritic species into lower regions of the estuaries was enhanced by the reduced amount of rainfall and flow rates that occurred during the study period. The greater success of neritic species in the Chesapeake Bay is attributed to the lower turbidity of that estuary compared to Delaware Bay.  相似文献   

12.
Although nutrient enrichment of estuarine and coastal waters is considered a key factor for the development of green tides, the extent, distribution, and species composition of blooms vary among systems of similar nutrient loading, which compromises our ability to predict these events based on information about nutrient status alone. Additional factors may play a role in the control and development of macroalgal blooms. The identification of relevant scales of variation is a necessary prerequisite before explanatory models can be proposed and tested. In this study spatial and temporal patterns of biomass distribution were assessed for two Ulva morphologies in two Irish estuaries heavily affected by green tides (wet biomass >1 kg m−2 during the peak bloom). Moreover, using genetic markers, the species composition of these green tides was assessed. Results revealed that these blooms were multi-specific, with Ulva prolifera, U. compressa and U.rigida the most frequent species. The species U. prolifera and U. compressa usually showed a tubular morphology, while U. rigida was mainly laminar. A seasonal succession common to both estuaries was also identified, with the bloom dominated by tubular species during spring and early summer, and co-dominated by tubular and laminar morphologies during late summer and autumn. Moreover, tubular and laminar morphologies exhibited different distribution patterns, with tubular morphologies varying at bigger spatial scales and higher biomass than the laminar. As tubular and laminar morphologies exhibited different distribution patterns, varying tubular morphologies along bigger spatial scales with higher biomass levels than the laminar. Considering that tubular morphologies were usually anchored to the sediment, while laminar Ulva were usually observed free-floating, these differences could explain a differential influence by water motion. An important annual and decadal variability in biomass levels of Ulva was observed, in the case of the Tolka estuary a noticeable increase over the last two decades. These findings should be considered for the development of management and monitoring strategies since the different habitat of laminar and tubular morphologies (anchored vs. free-floating) may play an important role in the balance of nutrients and biomass in the estuary, or determine the response to pollutant exposure. Furthermore, the presence of different species with different ecological requirements could favour the duration and extension of the bloom though temporal and spatial successions.  相似文献   

13.
The rates of temporal and spatial species turnover have been compared in different organisms and scales, revealing that both are not independent but, rather, associated. However, the knowledge is limited for the association between spatial turnover and temporal turnover. Here, we performed two investigations of the phytoplankton composition in the lakes of the Yangtze River catchment in China in the spring and summer of 2012, which covered regional spatial scale and two‐season temporal scale. We analysed the association between temporal and spatial species turnover in phytoplankton. The results showed that 1) the two‐season temporal turnover of phytoplankton varied based on the mean values and the coefficient of variance of environmental variables, and pH was the most important variable negatively affecting the temporal turnover; 2) the spatial beta diversity of phytoplankton in summer was higher than that in spring, and the distance decay pattern was significant in summer, but not in spring; 3) the variation in spatial turnover in spring and summer was attributed to the primary environmental variables (nitrogen, phosphorus and underwater available light) and broader‐scale spatial variables; 4) the proportion of jointly explained variation of spatial Bray–Curtis dissimilarity by the environment and space increased from ~38% (spring) to ~55% (summer), which was mainly due to the variation in spatially structured environmental variables during the two‐season temporal turnover, such as pH and ion concentrations; 5) the community compositions in summer were more similar between the lakes with similar two‐season temporal turnover. These results indicate that the spatial turnover of phytoplankton composition in summer was partially predetermined by the variation in environmental variables and phytoplankton composition during the process of two‐season temporal turnover, and highlight the understanding of temporal variations in spatial beta diversity as well as the underlying assembly mechanisms in phytoplankton.  相似文献   

14.
The abundance and spatial distribution of copepod species werecompared in the euhaline region of the polluted estuary of Bilbao[mean biological oxygen demand (BOD): 49748.05 kg day–1in 1996] and the unperturbed estuary of Urdaibai. Sampling wasperformed at fixed salinity sites, where data of temperature,dissolved oxygen saturation, particulate organic matter, Secchidisk depth and chlorophyll were also obtained. Differences betweenthe estuaries and within the estuaries for environmental variablesand copepod abundances were tested statistically. The dominantspecies Acartia clausi and Paracalanus parvus differed significantlyin abundance between estuaries, and most of neritic speciesdiminished more drastically with decreasing salinity in Bilbaoby the effect of pollution. The different responses observedamong species in relation to pollution and water desalinationare discussed. The lack of the brackish-water species in Bilbaoindicated that water quality worsening upward the estuary ofBilbao not only limited the penetration of neritic species butalso prevented the development of autochthonous estuarine species.At the outer euhaline region of Bilbao, however, pollution wasfound to be low enough to enhance the development of tolerantneritic species that are favoured under moderate pollution conditions.Results indicate that comparisons of copepod abundances anddistributions with salinity in estuaries may be a useful toolto evaluate the health of the different estuarine pelagic habitats.  相似文献   

15.
Information on movement patterns of marine fishes between estuarine populations and stocks at sea is fundamental to understanding their population dynamics, life history tactics and behavior. Furthermore, understanding estuarine habitat use by marine fishes is crucial for their effective conservation and integrated estuarine management. Although large numbers of young marine fish make use of temperate estuaries in highly predictable abundance patterns, very little is known about how estuarine populations interact with the populations at sea. Recruitment of sand goby Pomatoschistus minutus (Pallas, 1770) into the low salinity zone of the Scheldt estuary (Belgium) was reconstructed over an entire year by means of an isotopic clock. These results were combined with a growth model to yield age and length at immigration. Sand gobies entered the upper Scheldt estuary almost continuously from May onwards, except in July when they appeared to avoid the estuary due to warm summer temperatures. About 70% of the fish caught in the upper estuary resided there for less than 1 month, which indicates a strong temporal overlap of immigration and emigration. This complex migration pattern suggests that estuarine residence is caused by trade-offs made at the individual level, whereby migration is probably triggered by temperature. The high turnover of individuals in the estuarine population leads us to question the functional role of the estuary for marine fishes. Sand gobies entering the upper estuary had a wide range of ages and body sizes, although they were at least 2 months old and had a minimum standard length of approximately 20 mm. This study shows that the use of an isotopic clock strongly complements catch data and is useful to describe the connectivity between populations.  相似文献   

16.
Freshwater discharge from rivers is a powerful forcing agent in coastal ecosystems. It not only generates strong ecological effects in estuaries, but also drives the dynamics of nearshore marine waters where prominent river plumes form biogeochemical hot spots in coastal seas worldwide. Large plumes from major rivers exert important controls on pelagic processes. The majority of estuaries are smaller, however, and the importance of the smaller plumes they generate is unknown. We measured the degree of coupling between freshwater flow and inshore zooplankton in such a plume from a subtropical estuary on the east coast of Australia. Flow regimes encompassed long periods of low freshwater input, punctuated by pulsed freshets that initiated the formation of buoyant, lower‐salinity plumes in the nearshore marine zone. Plumes stimulated phytoplankton biomass in the receiving waters, and ultimately changes in zooplankton assemblages. Zooplankton responded strongly to river discharge: (1) in the absence of substantial freshwater flows and plumes, zooplankton was broadly similar in density and biomass across the estuarine‐marine gradient; (2) freshets that generated significant plumes strongly modified hydrological conditions and lowered zooplankton in the estuarine and nearshore waters, and (3) after the initial freshet, zooplankton in the residual plume was at a higher density in nearshore than shelf waters. We demonstrate that coupling between riverine and coastal pelagic systems operates in small plumes, but that there is substantial temporal variance linked to fluctuations in freshwater delivery. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
The boundary between freshwater and estuarine ecosystems at the extreme head of estuaries has received little attention from benthic ecologists. This short communication addresses this research caveat, presenting preliminary data on the spatial and temporal (seasonal) variation in the composition of benthic macroinvertebrate communities across the transition zone at the head of a small British estuary. Cluster analysis and multidimensional scaling ordination demonstrated that a distinct community occurred at a point just preceding the recognised transition between fresh and brackish waters (salinity <0.2PSU). This transition community contained a mixture of freshwater and estuarine taxa and, despite seasonal migrations at the head of the estuary, community structure remained significantly distinct from that at adjacent sites throughout the year. These preliminary data suggest that the community dynamics across the transition zone show complex patterns and may offer an important research opportunity in aquatic ecology.  相似文献   

18.
The performance of a species can be significantly altered by subtle changes in the physical environmental. The intertidal barnacle Balanus glandula is predominantly an open coast species in the Northeast Pacific. However, B. glandula commonly inhabits estuaries where environmental conditions such as salinity and temperature drastically differ from the open coast. We used survivorship and growth rates as a measure of performance in recently metamorphosed laboratory reared juvenile B. glandula outplanted along an environmental gradient at the mouth, mid-estuarine, and riverine end of the South Slough Estuary, Oregon, USA. Juvenile performance was highly variable over spatial and temporal scales and dependent upon existing environmental conditions. Surprisingly, along this estuarine gradient, juveniles performed better at a mid-estuarine location than at the mouth of the estuary. Typically, the riverine end of the estuary was the least suitable habitat along the estuarine gradient due to high juvenile mortality and a low growth rate. Although seasonally variable, survivorship and growth decreased with height along a vertical intertidal gradient as well. In a reciprocal transplant experiment, populations from both ends of the estuarine gradient displayed similar survivorship and growth rates. Our results demonstrate that the interactions of environmental conditions that vary temporally and spatially along a gradient strongly affect the success of an individual surviving and prospering during the early juvenile period.  相似文献   

19.
Phytoplankton community pigment composition and water quality were measured seasonally along salinity gradients in two minimally urbanized salt marsh estuaries in South Carolina in order to examine their spatial and temporal distributions. The North Inlet estuary has a relatively small watershed with minimal fresh water input, while the Ashepoo, Combahee, and Edisto (ACE) Basin is characterized by a relatively greater influence of riverine drainage. Sampling stations were located in regions of the estuaries experiencing frequent diurnal tidal mixing and had similar salinity and temperature regimens. Phytoplankton community pigment composition was assessed by using high-performance liquid chromatography (HPLC) and multivariate statistical analyses. Shannon diversity index, principal-component, and cluster analyses revealed that phytoplankton community pigments in both estuaries were seasonally variable, with similar diversities but different compositions. The temporal pigment patterns indicated that there was a relatively weak correlation between the pigments in ACE Basin and the relative persistence of photopigment groups in North Inlet. The differences were presumably a consequence of the unpredictability and relatively greater influence of river discharge in the ACE Basin, in contrast to the greater environmental predictability of the more tidally influenced North Inlet. Furthermore, the timing, magnitude, and pigment composition of the annual phytoplankton bloom were different in the two estuaries. The bloom properties in North Inlet reflected the predominance of autochthonous ecological control (e.g., regenerated nutrients, grazing), and those in ACE Basin suggested that there was greater influence of allochthonous environmental factors (e.g., nutrient loading, changes in turbidity). These interestuarine differences in phytoplankton community structure and control provide insight into the organization of phytoplankton in estuaries.  相似文献   

20.
Phytoplankton community pigment composition and water quality were measured seasonally along salinity gradients in two minimally urbanized salt marsh estuaries in South Carolina in order to examine their spatial and temporal distributions. The North Inlet estuary has a relatively small watershed with minimal fresh water input, while the Ashepoo, Combahee, and Edisto (ACE) Basin is characterized by a relatively greater influence of riverine drainage. Sampling stations were located in regions of the estuaries experiencing frequent diurnal tidal mixing and had similar salinity and temperature regimens. Phytoplankton community pigment composition was assessed by using high-performance liquid chromatography (HPLC) and multivariate statistical analyses. Shannon diversity index, principal-component, and cluster analyses revealed that phytoplankton community pigments in both estuaries were seasonally variable, with similar diversities but different compositions. The temporal pigment patterns indicated that there was a relatively weak correlation between the pigments in ACE Basin and the relative persistence of photopigment groups in North Inlet. The differences were presumably a consequence of the unpredictability and relatively greater influence of river discharge in the ACE Basin, in contrast to the greater environmental predictability of the more tidally influenced North Inlet. Furthermore, the timing, magnitude, and pigment composition of the annual phytoplankton bloom were different in the two estuaries. The bloom properties in North Inlet reflected the predominance of autochthonous ecological control (e.g., regenerated nutrients, grazing), and those in ACE Basin suggested that there was greater influence of allochthonous environmental factors (e.g., nutrient loading, changes in turbidity). These interestuarine differences in phytoplankton community structure and control provide insight into the organization of phytoplankton in estuaries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号