首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
Latest FAO figures indicate that an estimated 925 million people are undernourished in 2010, representing almost 16% of the population in developing countries. Looking to the future, there are also major challenges ahead from the rapidly changing socio-economic environment (increasing world population and urbanisation, and dietary changes) and climate change.Promoting agriculture in developing countries is the key to achieving food security, and it is essential to act in four ways: to increase investment in agriculture, broaden access to food, improve governance of global trade, and increase productivity while conserving natural resources. To enable the fourth action, the suite of technological options for farmers should be as broad as possible, including agricultural biotechnologies. Agricultural biotechnologies represent a broad range of technologies used in food and agriculture for the genetic improvement of plant varieties and animal populations, characterisation and conservation of genetic resources, diagnosis of plant or animal diseases and other purposes. Discussions about agricultural biotechnology have been dominated by the continuing controversy surrounding genetic modification and its resulting products, genetically modified organisms (GMOs). The polarised debate has led to non-GMO biotechnologies being overshadowed, often hindering their development and application.Extensive documentation from the FAO international technical conference on Agricultural Biotechnologies in Developing Countries (ABDC-10), that took place in Guadalajara, Mexico, on 1–4 March 2010, gave a very good overview of the many ways that different agricultural biotechnologies are being used to increase productivity and conserve natural resources in the crop, livestock, fishery, forestry and agro-industry sectors in developing countries. The conference brought together about 300 policy-makers, scientists and representatives of intergovernmental and international non-governmental organisations, including delegations from 42 FAO Member States. At the end of ABDC-10, the Member States reached a number of key conclusions, agreeing, inter alia, that FAO and other relevant international organisations and donors should significantly increase their efforts to support the strengthening of national capacities in the development and appropriate use of pro-poor agricultural biotechnologies.  相似文献   

2.
Our paper is an empirical study on the comparison between the conventional energy- growth nexus and the energy-ISEW (Index for Sustainable Economic Welfare) growth nexus. We use a sample of American countries in a multivariate panel framework for a data span from 1990 to 2013, with variables such as labor, capital, carbon emissions, energy use, renewable energy, rents and trade. Results from this paper are critical for governments and institutional investors who are nowadays concerned with sustainable economic growth and welfare and not only the short-sighted GDP growth. An additional contribution of this paper is the calculation of the ISEW index for American countries, based on data availability.  相似文献   

3.
Constructed wetlands are among the recently proven efficient technologies for wastewater treatment. Compared to conventional treatment systems, constructed wetlands are low cost, are easily operated and maintained, and have a strong potential for application in developing countries, particularly by small rural communities. However, these systems have not found widespread use, due to lack of awareness, and local expertise in developing the technology on a local basis. This paper summarizes information on current methods used for wastewater treatment in developing countries, and briefly gives basic information on wetlands. The paper further examines the potential of constructed wetlands for wastewater treatment and reuse in developing countries by looking at the results of current research initiatives towards implementation of the technology in these countries. Future considerations in choosing constructed wetlands as wastewater treating systems in developing countries are highlighted.  相似文献   

4.
All technological developments are aimed at improving the quality of life of a community of people. Biotechnology is a technology which allows the exploitation of microorganisms, plants and animal cells to take place within an economic framework. Developing countries are looking for programmes achieving sustainable, economical growth conducive to a higher per capita income of the community. Any joint venture which promises social advances and economic benefits will have to be rural-based. This presentation discusses the need for a change in fermentation industry attitudes to allow joint venture capital investment in clean technologies together with the problems developing countries face for the implementation of such technologies.The author is with MIRCEN-Biotechnology Brisbane and the Pacific Regional Network, Department of Microbiology, University of Queensland, St. Lucia 4072, Australia  相似文献   

5.
The use of enzymes has the potential to increase productivity, efficiency and quality output in agro-industrial processing operations in many developing countries. Enzyme-catalysed processes generally have requirements for a simple manufacturing base, low capital investment and consume relatively small amounts of energy, when compared with other methods of food processing.This review presents an inventory of current and potential areas in which the use of enzymes may expand and diversify markets for agricultural products, facilitate agro-industrial development, improve nutrition, and reduce toxicity in foods produced and consumed in developing countries.  相似文献   

6.
This study investigates the dynamic linkages between biofuels production and sustainable indicators in the panel of 17 developed and developing countries, over the period of 2000–2012. The study emphasized the role of biofuels production in the sustainable development of the region. For this purpose, the study utilized four main sustainable indicators including carbon dioxide emissions, energy intensity, renewable energy generation, and total population that have a significant impact on the biofuels production. The study used dynamic heterogeneous panel econometric technique – Generalized Method of Moments and found that carbon dioxide emissions increase along with the increase in biofuels production. Therefore, the caution should be applied when burning the biofuels during the production process. In addition, renewable electricity generation also increases the biofuels production in the region. The results of robust least square regression confirmed that all of the sustainable indicators have a significant association with the biofuels production, as total primary energy consumption increases the biofuels production, while total population significantly decreases the biofuels production in the region. The results derived to the conclusion that for sustainable development in the region, the policymakers should have to formulate carbon free policies that coupled with the renewable energy sources for emphasizing the life cycle of bioenergy during the production process.  相似文献   

7.
Artificial Intelligence (AI) techniques have been implemented in the field of Medical Imaging for more than forty years. Medical Physicists, Clinicians and Computer Scientists have been collaborating since the beginning to realize software solutions to enhance the informative content of medical images, including AI-based support systems for image interpretation. Despite the recent massive progress in this field due to the current emphasis on Radiomics, Machine Learning and Deep Learning, there are still some barriers to overcome before these tools are fully integrated into the clinical workflows to finally enable a precision medicine approach to patients’ care. Nowadays, as Medical Imaging has entered the Big Data era, innovative solutions to efficiently deal with huge amounts of data and to exploit large and distributed computing resources are urgently needed. In the framework of a collaboration agreement between the Italian Association of Medical Physicists (AIFM) and the National Institute for Nuclear Physics (INFN), we propose a model of an intensive computing infrastructure, especially suited for training AI models, equipped with secure storage systems, compliant with data protection regulation, which will accelerate the development and extensive validation of AI-based solutions in the Medical Imaging field of research. This solution can be developed and made operational by Physicists and Computer Scientists working on complementary fields of research in Physics, such as High Energy Physics and Medical Physics, who have all the necessary skills to tailor the AI-technology to the needs of the Medical Imaging community and to shorten the pathway towards the clinical applicability of AI-based decision support systems.  相似文献   

8.
R. J. Thomas 《Plant and Soil》1995,174(1-2):103-118
Forage legumes have long been lauded for their ability to fix atmospheric nitrogen and contribute to the sustainability of agricultural production systems. However despite the benefits they bring in terms of increased herbage and animal production they are not widely used in temperate or tropical regions. In this review the amounts of biological nitrogen fixation (BNF) needed to sustain the soil-plant-animal system are discussed and related to the amounts fixed in tropical pastures. The data suggest that tropical forage legumes have the capacity to meet the requirements to balance the N cycle of grazed pastures. The actual amounts required will depend on the rate of pasture utilization and the efficiency of recycling via litter, excreta and internal remobilization. The efficiency of nitrogen fixation (% of legume N derived from fixation) is usually high in tropical pastures (>80%) and is unlikely to be affected by inorganic soil N in the absence of N fertilizer. Thus an estimate of the amoutns of N fixed could be obtained from simple estimates of legume biomass provided tissue levels of other nutrients such as phosphorus and potassium are adequate. Key factors for the achievement of sustainable grass/legume pastures include the selection of appropriate germplasm adapted to the particular environment and the judicious use of fertilizers such as phosphorus, potassium, calcium, magnesium and sulphur on acid infertile soils typical of the sub-humid and humid tropics. The main constraints to the widespread adoption of forage legumes include a lack of legume persistence, the presence of anti-quality factors such as tannins, variable Bradyrhizobium requirements and lack of acceptability by farmers. Strategies for the alleviation of these constrainst are discussed. Forage legumes can be used to recuperate degraded soils via their ability to improve the physical, chemical and biological properties of soils and these benefits could be of particular use for small-scale resource-poor farmers. The incorporation of forage legumes into agropastoral systems is discussed as an environmentally and economically attractive means to encourage the widespread adoption of legumes in the humid tropics.  相似文献   

9.
BacKGROUND AND AIMS: The great potential of using nanodevices as delivery systems to specific targets in living organisms was first explored for medical uses. In plants, the same principles can be applied for a broad range of uses, in particular to tackle infections. Nanoparticles tagged to agrochemicals or other substances could reduce the damage to other plant tissues and the amount of chemicals released into the environment. To explore the benefits of applying nanotechnology to agriculture, the first stage is to work out the correct penetration and transport of the nanoparticles into plants. This research is aimed (a) to put forward a number of tools for the detection and analysis of core-shell magnetic nanoparticles introduced into plants and (b) to assess the use of such magnetic nanoparticles for their concentration in selected plant tissues by magnetic field gradients. METHODS: Cucurbita pepo plants were cultivated in vitro and treated with carbon-coated Fe nanoparticles. Different microscopy techniques were used for the detection and analysis of these magnetic nanoparticles, ranging from conventional light microscopy to confocal and electron microscopy. KEY RESULTS: Penetration and translocation of magnetic nanoparticles in whole living plants and into plant cells were determined. The magnetic character allowed nanoparticles to be positioned in the desired plant tissue by applying a magnetic field gradient there; also the graphitic shell made good visualization possible using different microscopy techniques. CONCLUSIONS: The results open a wide range of possibilities for using magnetic nanoparticles in general plant research and agronomy. The nanoparticles can be charged with different substances, introduced within the plants and, if necessary, concentrated into localized areas by using magnets. Also simple or more complex microscopical techniques can be used in localization studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号