首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Before the industrial revolution, the global economy was largely based on living carbon from plants. Now the economy is mainly dependent on fossil fuels (dead carbon). Biomass is the only sustainable bioresource that can provide sufficient transportation fuels and renewable materials at the same time. Cellulosic ethanol production from less costly and most abundant lignocellulose is confronted with three main obstacles: (1) high processing costs ($/gallon of ethanol), (2) huge capital investment ($∼4–10/gallon of annual ethanol production capacity), and (3) a narrow margin between feedstock and product prices. Both lignocellulose fractionation technology and effective co-utilization of acetic acid, lignin and hemicellulose will be vital to the realization of profitable lignocellulose biorefineries, since co-product revenues would increase the margin up to 6.2-fold, where all purified lignocellulose co-components have higher selling prices (>∼1.0/kg) than ethanol (∼0.5/kg of ethanol). Isolation of large amounts of lignocellulose components through lignocellulose fractionation would stimulate R&D in lignin and hemicellulose applications, as well as promote new markets for lignin- and hemicellulose-derivative products. Lignocellulose resource would be sufficient to replace significant fractionations (e.g., 30%) of transportation fuels through liquid biofuels, internal combustion engines in the short term, and would provide 100% transportation fuels by sugar–hydrogen–fuel cell systems in the long term. JIMB-2008: BioEnergy—Special issue.  相似文献   

2.
Mineralization of uniformly radiolabeled [14C]lignocellulose and specifically radiolabeled [14C-lignin]lignocellulose from the freshwater sedgeCarex walteriana by five aero-aquatic fungi was investigated. The extent of mineralization varied among the five species from 2.2 to 4.2% for the lignin component and from 3.3 to 20.6% for the polysaccharide component. The extent of mineralization of both lignin and polysaccharide moieties by a mixed culture of the five fungi were generally markedly lower than by pure cultures, possibly due to the production of antimicrobial compounds.Spirosphaera foriformis, the most active strain in lignin as well as in polysaccharide mineralization, degraded ferulic acid faster than p-coumaric acid. Decomposition ofCarex walteriana lignocellulose by this strain resulted in decreased cinnamyl/vanillyl (C/V) and syringyl/vanillyl (S/V) ratios. Offprint requests to: M. Bergbauer.  相似文献   

3.
Effectively releasing the locked polysaccharides from recalcitrant lignocellulose to fermentable sugars is among the greatest technical and economic barriers to the realization of lignocellulose biorefineries because leading lignocellulose pre-treatment technologies suffer from low sugar yields, and/or severe reaction conditions, and/or high cellulase use, narrow substrate applicability, and high capital investment, etc. A new lignocellulose pre-treatment featuring modest reaction conditions (50 degrees C and atmospheric pressure) was demonstrated to fractionate lignocellulose to amorphous cellulose, hemicellulose, lignin, and acetic acid by using a non-volatile cellulose solvent (concentrated phosphoric acid), a highly volatile organic solvent (acetone), and water. The highest sugar yields after enzymatic hydrolysis were attributed to no sugar degradation during the fractionation and the highest enzymatic cellulose digestibility ( approximately 97% in 24 h) during the hydrolysis step at the enzyme loading of 15 filter paper units of cellulase and 60 IU of beta-glucosidase per gram of glucan. Isolation of high-value lignocellulose components (lignin, acetic acid, and hemicellulose) would greatly increase potential revenues of a lignocellulose biorefinery.  相似文献   

4.
Summary The wood-decay fungi Coriolus versicolor, a white-rot fungus, and Poria placenta, a brown-rot fungus, were grown on an extractive-free lignocellulose prepared from quackgrass (Agropyron repens). Their abilities to decompose this lignocellulose were compared to their abilities to decompose softwood (Picea pungens) and hardwood (Acer rubrum) lignocelluloses. The two fungi were grown on malt-extract dampened lignocelluloses at 28°C for up to 12 weeks. Replicate cultures were periodically harvested and lignocellulose decomposition was followed by monitoring substrate weight loss, lignin loss, and carbohydrate loss. Coriolus versicolor decomposed the lignin and carbohydrate components of the grass lignocellulose as efficiently as the softwood and hardwood lignocelluloses. Poria placenta, however, was not an efficient degrader of either lignin or carbohydrate in the grass lignocellulose. Poria placenta readily decomposed carbohydrate components of the softwood lignocellulose but not the hardwood lignocellulose.Paper number 81520 of the Idaho Agricultural Experiment Station  相似文献   

5.
The combination of an agarose gel (Bio-Gel A) and a dioxane–water (1:1) solvent system allowed the fractionation, on a preparative scale, of a very polydisperse, non-derivatized lignin preparation (enzymatically liberated lignin prepared from sweetgum sapwood with Lenzites trabea). Three fractions differing markedly in molecular weight were obtained. A gel of crosslinked alkylated dextran (Sephadex LH-20) with the same solvent system allowed division of the lowest molecular weight fraction into two fractions. These materials were characterized by measurements of intrinsic viscosity and number-average molecular weights in dimethylformamide and dioxane–water. It was established that the two highest molecular weight fractions were associated in an average trimeric form in dioxane-water (1:1) as compared to the form (considered to be molecular) that occurred in dimethylformamide. Molecular size distributions and eluant volumes of the fractions were determined with a Sephadex G-100–formamide system, the latter being one of the most powerful nonaqueous solvents for lignin. Adsorption effects were known to be absent in this case, and the lignin molecules were considered to be unassociated in formamide. The four fractions were distinguishable with the formamide–G-100 system, thus indicating that the original fractionation was based on molecular size. The enzymatically liberated lignin contained molecules that comprised a continuum of molecular weights from approximately monomeric to molecules that were at the limit of the solvating power of dioxane–water (1:1) and dimethylformamide. Limited physicochemical data were consistent with a compact, approximately spherically symmetric shape of the lignin in solution.  相似文献   

6.
Summary Thermomonospora mesophila degraded [14C]lignin-labelled wheat lignocellulose to yield high molecular weight water-soluble products and a small amount of 14CO2. Solubilisation of [14C]lignin was found to be extracellular and inducible by growth on lignocellulose (straw) and hemicellulose (xylan), but was not correlated with xylanase or cellulase production.The acid-precipitable product of straw degradation by T. mesophila was found to be a complex of lignin, pentose-rich carbohydrate and protein with some similarity to humic acids. Solid-state 13C-NMR spectra of the dried product were generally similar to those of chemically extracted milled straw lignin but showed an increased content of carbonyl groups.The relationship between degradation and solubilisation of lignin is discussed and a role suggested for actinomycetes in humification and the exploitation of lignocellulose bioconversion.  相似文献   

7.
Organosolv pretreatment of lignocellulose pertains to a biomass fractionation process to obtain cellulosic pulp, high-purity lignin, and hemicellulosic syrup. In the present work, sugarcane bagasse was delignified by aqueous acetic acid (AcH) under atmospheric pressure with addition of sulfuric acid (SA) as a catalyst. Based on the multilayered structure of plant cell wall and the inhibitive effect of dissolved lignin on delignification rate, a novel pseudo-homogeneous kinetic model was proposed by introducing the concept of “potential degree of delignification (d D)” into the model. It was found that delignification rate was a first-order reaction with respect to SA concentration, while AcH concentration showed a high reaction order to delignification rate. The activation energy for delignification was determined to be 64.41 kJ/mol. The relationships of kinetic constants and d D with reaction temperature, AcH, and SA concentrations were determined according to experimental data. Mechanism analysis indicated that cleavage of α-aryl ethers bonds were mainly responsible for the formation of lignin fragments. AcH concentration affected the solubility parameter (δ value) of AcH solution and the ability to form hydrogen bonds with lignin fragments. Therefore, the driving force for solubilizing lignin fragments increased with AcH concentration, and thus AcH concentration had a very significant influence on delignification rate.  相似文献   

8.
Lignin consumption and synthesis of lignolytic enzymes by the fungus Panus (Lentinus) tigrinuscultivated on solid phase (modified and unmodified birch and pine sawdusts) were studied. The fungus grew better on and consumed more readily the birch lignin than the pine wood. Peroxidase activity was higher in the case of pine sawdust; laccase and lignolytic activities, in the case of birth sawdust. Treatment with ammonia or sulfuric acid decreased lignin consumption by this fungus cultivated on either medium. Modification of sawdust by ultrasound increased lignin consumption and may be recommended for accelerating biodegradation of lignocellulose substrates.  相似文献   

9.
Summary The relationships between growth, medium pH, assimilation of glucose and amino acids, presence or absence of lignocellulose in the medium, lignin solubilization, and the appearance of extracellular peroxidase activity were compared for two lignin-solubilizing actinomycetes, Streptomyces chromofuscus A2 and S. viridosporus T7A. In a mineral salt medium containing yeast extract and three amino acids S. chromofuscus A2 grew faster than S. viridosporus T7A. When d-glucose was added to this medium, it was used in preference to the amino acids, the assimilation of which was delayed. Extracellular peroxidase activity peaked during the stationary phase, and glucose supplementation delayed peroxidase production. The eventual peak in peroxidase activity was higher in glucose-containing medium than in medium without glucose. Supplementation of the medium with lignocellulose did not affect either the level or time of appearance of extracellular peroxidase. However, lignin solubilization in lignocellulose-supplemented medium correlated positively with peroxidase activity: both increased after the cells entered the stationary phase. Supplementation of lignocellulose-containing medium with glucose delayed peroxidase production and lignin solubilization until the glucose had been assimilated. With S. viridosporus T7A, addition of d-glucose to the standard medium affected amino acid assimilation differently from S. chromofuscus A2. Glucose was consumed concomitantly with the amino acids. In the medium supplemented with lignocellulose, peroxidase activity and lignin solubilization correlated as they did for S. chromofuscus A2. A correlation of unknown significance was observed between the peroxidase activities of both strains and increasing medium pH. S. chromofuscus A2 produced more peroxidase and solubilized more lignin from lignocellulose than did S. viridosporus T7A. Overall, these findings show that extracellular peroxidases of both Streptomyces ssp. appear extracellularly primarily after cells cease growing and nutrients have been depleted from the medium. Also, increasing extracellular peroxidase activity and rates of lignin solubilization in both organisms are correlated and subject to glucose repression. These results point to the involvement of stationary-phase active peroxidases in the Streptomyces-catalyzed solubilization of lignin.Paper No. 90518 of the Idaho Agricultural Experiment Station Offprint requests to: D. L. Crawford  相似文献   

10.
The burgeoning cellulosic ethanol industry necessitates advancements in enzymatic saccharification, effective pretreatments for lignin removal, and the cultivation of crops more amenable to saccharification. Studies have demonstrated that natural inhibitors of lignin biosynthesis can enhance the saccharification of lignocellulose, even in tissues generated several months post-treatment. In this study, we applied daidzin (a competitive inhibitor of coniferaldehyde dehydrogenase), piperonylic acid (a quasi-irreversible inhibitor of cinnamate 4-hydroxylase), and methylenedioxy cinnamic acid (a competitive inhibitor of 4-coenzyme A ligase) to 60-day-old crops of two conventional Brazilian sugarcane cultivars and two energy cane clones, bred specifically for enhanced biomass production. The resultant biomasses were evaluated for lignin content and enzymatic saccharification efficiency without additional lignin-removal pretreatments. The treatments amplified the production of fermentable sugars in both the sugarcane cultivars and energy cane clones. The most successful results softened the most recalcitrant lignocellulose to the level of the least recalcitrant of the biomasses tested. Interestingly, the softest material became even more susceptible to saccharification.  相似文献   

11.
The paper is focused on the analysis of the behaviour of biocomposites (biodegradable composites) which are reinforced with different fillers fractions, with varying lignin contents. These materials have been carried-out by extrusion and injection moulding. The matrix, an aromatic copolyester (polybutylene adipate-co-terephthalate), is biodegradable. The lignocellulose fillers are a by-product of an industrial fractionation process of wheat straw. From the raw agro-material and by lignin extractions, various fillers fractions have been obtained by varying the fractionation conditions, both on the liquid media (aqueous or organic) and on the temperature. The fillers lignin contents vary from 30 to 14 wt% with a resultant increase of the cellulose content. We have analysed the impact of the different extraction conditions on the fillers surface and size distribution, and also on the final thermal and mechanical properties of the biocomposites. These materials present significant differences of behaviour which can fulfil some requirements for applications, such as non-food packaging or other short-lived applications (agriculture, sport …) where long-lasting polymers are not entirely adequate.  相似文献   

12.
Two wood-dwelling ascomycetes, Xylaria hypoxylon and Xylaria polymorpha, were isolated from rotting beech wood. Lignin degradation was studied following the mineralization of a synthetic -labelled lignin in solid and liquid media. Approximately 9% of the synthetic lignin was mineralized by X. polymorpha during the growth on beech wood meal, and the major fraction (65.5%) was polymerized into water- and dioxan-insoluble material. Both fungi produced laccase (up to 1,200 U l−1) in an agitated complex medium based on tomato juice; peroxidase activity (<80 U l−1) was only detected for X. polymorpha in soybean meal suspension. The enzymatic attack of X. polymorpha on beech wood resulted in the formation of three fractions of water-soluble lignocellulose fragments with molecular masses of 200, 30 (major fraction) and 3 kDa, as demonstrated by high-performance size exclusion chromatography. This fragment pattern differs considerably from that of the white-rot fungus Bjerkandera adusta, which preferentially released smaller lignocellulose fragments (0.8 kDa). The finding that X. polymorpha produced large lignocellulose fragments, along with the fact that high levels of hydrolytic enzymes (esterase 630 U l−1, xylanase 120 U l−1) were detected, indicates the cleavage of bonds between the lignin and hemicellulose moieties.  相似文献   

13.
There were 1765 contacts identified between DNA nucleobases or deoxyribose and cyclic (W, H, F, Y) or acyclic (R, E, D) amino acids in 672 X-ray structures of DNA–protein complexes. In this first study to compare π-interactions between the cyclic and acyclic amino acids, visual inspection was used to categorize amino acid interactions as nucleobase ππ (according to biological edge) or deoxyribose sugar–π (according to sugar edge). Overall, 54% of contacts are nucleobase ππ interactions, which involve all amino acids, but are more common for Y, F, and R, and involve all DNA nucleobases with similar frequencies. Among binding arrangements, cyclic amino acids prefer more planar (stacked) π-systems than the acyclic counterparts. Although sugar–π interactions were only previously identified with the cyclic amino acids and were found to be less common (38%) than nucleobase–cyclic amino acid contacts, sugar–π interactions are more common than nucleobase ππ contacts for the acyclic series (61% of contacts). Similar to DNA–protein ππ interactions, sugar–π contacts most frequently involve Y and R, although all amino acids adopt many binding orientations relative to deoxyribose. These DNA–protein π-interactions stabilize biological systems, by up to approximately ?40 kJ mol?1 for neutral nucleobase or sugar–amino acid interactions, but up to approximately ?95 kJ mol?1 for positively or negatively charged contacts. The high frequency and strength, despite variation in structure and composition, of these π-interactions point to an important function in biological systems.  相似文献   

14.
15.
Various ionic liquids have been identified as effective pretreatment solvents that can enhance the cellulose digestibility of lignocellulose by removing lignin, one of the main factors contributing to the recalcitrant nature of lignocellulose. 1-Butyl-3-methylimidazolium methylsulfate ([BMiM]MeSO(4)) is a potential delignification reagent, hence its application as a pretreatment solvent for sugarcane bagasse (SB) was investigated. The study also evaluated the benefit of an acid catalyst (i.e., H(2) SO(4)) and the effect of pretreatment conditions, which varied within a time and temperature range of 0-240 min and 50-150°C, respectively. The use of an acid catalyst contributed to a more digestible solid and a higher degree of delignification. However, the [BMiM]MeSO(4)-H(2) SO(4) combination failed to produce a fully digestible solid, as a maximum cellulose digestibility of 77% (w/w) was obtained at the optimum pretreatment condition of 125°C for 120 min. Furthermore, up to half of the lignin content could be extracted during pretreatment, while simultaneously extensive, sometimes complete, removal of xylan, the presence of which, also hampers cellulose digestibility. Hence, [BMiM]MeSO(4) has been identified an effective pretreatment solvent for SB as the application thereof both significantly improved digestibility, and simultaneously removed two of the main factors contributing to the recalcitrant nature of lignocellulose. As xylan and lignin have potential value as precursor chemicals, the existing process may in future be extended toward substrate fractionation, a biorefinery concept where value is added to all feedstock constituents.  相似文献   

16.
p‐Coumaroyl ester 3‐hydroxylase (C3′H) is a key enzyme involved in the biosynthesis of lignin, a phenylpropanoid polymer that is the major constituent of secondary cell walls in vascular plants. Although the crucial role of C3′H in lignification and its manipulation to upgrade lignocellulose have been investigated in eudicots, limited information is available in monocotyledonous grass species, despite their potential as biomass feedstocks. Here we address the pronounced impacts of C3H deficiency on the structure and properties of grass cell walls. C3H‐knockdown lines generated via RNA interference (RNAi)‐mediated gene silencing, with about 0.5% of the residual expression levels, reached maturity and set seeds. In contrast, C3H‐knockout rice mutants generated via CRISPR/Cas9‐mediated mutagenesis were severely dwarfed and sterile. Cell wall analysis of the mature C3H‐knockdown RNAi lines revealed that their lignins were largely enriched in p‐hydroxyphenyl (H) units while being substantially reduced in the normally dominant guaiacyl (G) and syringyl (S) units. Interestingly, however, the enrichment of H units was limited to within the non‐acylated lignin units, with grass‐specific γ‐p‐coumaroylated lignin units remaining apparently unchanged. Suppression of C3H also resulted in relative augmentation in tricin residues in lignin as well as a substantial reduction in wall cross‐linking ferulates. Collectively, our data demonstrate that C3H expression is an important determinant not only of lignin content and composition but also of the degree of cell wall cross‐linking. We also demonstrated that C3H‐suppressed rice displays enhanced biomass saccharification.  相似文献   

17.
Lignocellulose degradation by Streptomyces viridosporus results in the oxidative depolymerization of lignin and the production of a water-soluble lignin polymer, acid-precipitable polymeric lignin (APPL). The effects of the culture pH on lignin and cellulose metabolism and APPL production by S. viridosporus are reported. Dry, ground, hot-water-extracted corn (Zea mays) lignocellulose was autoclaved in 1-liter reagent bottles (5 g per bottle) and inoculated with 50-ml volumes of S. viridosporus cells suspended in buffers of specific pH (pH 6.0 to 9.2 at 0.4 pH unit intervals). Four replicates of inoculated cultures and of uninoculated controls at each pH were incubated as solid-state fermentations at 37°C. After 6 weeks of incubation the percent loss of lignocellulose, lignin, and carbohydrate and the amount of APPL produced were determined for each replicate. Optimal lignocellulose degradation, as shown by substrate weight loss, was observed in the pH range of 8.4 to 8.8. Only minor differences were seen in the Klason lignin, carbohydrate, protein, and ash contents of the APPLS produced by cultures at each pH. The effects of pH on the degradation of a spruce (Picea pungens) [14C-lignin]lignocellulose and a Douglas fir (Pseudotsuga menziesii) [14C-glucan]-lignocellulose were also determined at pH values between 6.5 and 9.5 (0.5 pH unit intervals). The incubations were carried out for 3 weeks at 37°C with bubbler-tube cultures. The percentage of initial 14C recovered as 14CO2, 14C-labeled water-soluble products, and [14C]APPL was then determined. The mineralization of lignin and cellulose to CO2 was optimal at pHs 6.5 and 7.0, respectively. However, the optimum for lignin and cellulose solubilization was pH 8.5, which correlated with the pH 8.5 optimum for APPL production. Overall, the data show that, whereas lignin mineralization is optimal at neutral to slightly acidic pHs, lignocellulose degradation with lignin solubilization and APPL production is promoted by alkaline pHs. These findings indicate that lignin-solubilizing actinomycetes may play an important role in the metabolism of lignin in neutral to alkaline soils in which ligninolytic fungi are not highly competitive.  相似文献   

18.
Clostridium thermocellum is a candidate bacterium for lignocellulose utilization due to its efficient lignocellulose solubilization ability. It has been reported that C. thermocellum efficiently degrades purified cellulose substrates, but cannot completely degrade milled lignocellulose powders. Evaluation of cellulose and hemicellulose contents in a lignocellulose residue after the cultivation of C. thermocellum indicated that C. thermocellum degraded cellulose and hemicellulose equally. Microscopic observations demonstrated that C. thermocellum significantly degraded small-sized lignocellulose particles, but it only partially degraded the larger sized particles. The lignin content of the large-sized particles was higher than that of the small particles. The remained large-sized particles included vascular tissues. These results suggest that the lignified structures such as vascular tissues in milled lignocellulose were less susceptible to bacterial lignocellulose solubilization.  相似文献   

19.
In this study, we employed stepwise dilute sulfuric acid-catalyzed hydrothermal pretreatment and alkaline fractionation to enhance digestion of triploid poplar for bioconversion. Samples of triploid poplar were subjected to a pretreatment with 0.5% sulfuric acid at different temperatures and then to fractionation with 70% aqueous ethanol solution containing 1.5% NaOH. The results indicated that the stepwise pretreatment process degraded hemicelluloses, incurring slightly increase in crystallinity of cellulosic residues. Lignin was concentrated during acidic pretreatment and negatively affected the interaction between enzyme and cellulose. As the pretreatment temperature increased to 200 °C, the cellulose was degraded and exhibited lower crystallinity. The removal of polysaccharides and lignin resulted in mass loss and considerable feedstock recoveries were achieved at the temperatures below 130 °C. The results obtained from enzymatic hydrolysis suggested that the stepwise pretreatment enhanced the digestibility of the cellulosic residues. The optimum pretreatment temperature was observed at 120 °C. In this case 60.3% lignocellulose was recovered and achieved 69.4% of cellulose-to-glucose in enzyme-mediate conversion.  相似文献   

20.
Summary Two mutant strains of the lignin degrading bacterium Streptomyces viridosporus strain T7A with enhanced abilities to produce a soluble lignin degradation intermediate, acid-precipitable polymeric lignin (APPL) and several mutants derepressed for cellulase production were compared with the wild type to examine the roles of cellulase and selected other extracellular enzymes in lignin solubilization by S. viridosporus. The two APPL-overproducing mutants, T-81 and T-138, had higher cellulase activities than the wild type. Mutants specifically derepressed for cellulase were also isolated and were found to produce more APPL than the wild type. The results are indicative of some involvement of cellulase in the lignin solubilization process. The lignin solubilized from corn (Zea mays) lignocellulose by the mutants was slightly different chemically as compared to wild type solubilized lignin in that it had a higher coumaric acid ester content. The production of extracellular coumarate ester esterase, aromatic aldehyde oxidase, and xylanase was also examined in the mutants. Xylanase and aromatic aldehyde oxidase production did not differ significantly between the mutants and the wild type. Mutant T-81 was found to have a slightly lower activity for esterase as compared with the wild type. It was concluded that xylanase, oxidase and esterase are not the enzymes directly responsible for enhanced lignin solubilization. The results, however, do implicate cellulase in the process.Paper number 86 511 of the Idaho Agricultural Experiment Station  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号