首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The responses of nutrient concentrations, plankton, macrophytes and macrozoobenthos to a reduction in external nutrient loading and to contemporary climatic change were studied in the shallow, moderately flushed Lake Müggelsee (Berlin, Germany). Weekly to biweekly data from 1979 to 2003 were compared with less frequently collected historical data. 2. A reduction of more than 50% in both total phosphorus (TP) and total nitrogen (TN) loading from the hypertrophic (1979–90) to the eutrophic period (1997–2003) was followed by an immediate decline in TN concentrations in the lake. TP concentrations only declined during winter and spring. During summer, phosphorus (P) release from the sediments was favoured by a drastic reduction in nitrate import. Therefore, Müggelsee acted as a net P source for 6 years after the external load reduction despite a mean water retention time of only 0.1–0.16 years. 3. Because of the likely limitation by P in spring and nitrogen (N) in summer, phytoplankton biovolume declined immediately after nutrient loading was reduced. The formerly dominant cyanobacteria (Oscillatoriales) Limnothrix redekei and Planktothrix agardhii disappeared, but the mean biovolume of the N2‐fixing species Aphanizomenon flosaquae remained constant. 4. The abundance of Daphnia spp. in summer decreased by half, while that of cyclopoid copepod species increased. Abundances of benthic macroinvertebrates (mainly chironomids) decreased by about 80%. A resource control of both phytoplankton and zooplankton is indicated by significant positive correlations between nutrient concentrations and phytoplankton biovolume and between phytoplankton and zooplankton biomass. 5. Water transparency in spring increased after nutrient reduction and resulted in re‐colonisation of the lake by Potamogeton pectinatus. However, this process was severely hampered by periphyton shading and grazing by waterfowl and fish. 6. Water temperatures in Müggelsee have increased in winter, early spring and summer since 1979. The earlier development of the phytoplankton spring bloom was associated with shorter periods with ice cover, while direct temperature effects were responsible for the earlier development of the daphnid maximum in spring.  相似文献   

2.
Sabine Hilt 《Hydrobiologia》2006,564(1):95-99
In shallow lakes, submerged macrophytes contribute to the stabilization of the clear water state. If lost, a number of mechanisms prevent re-colonization. Lake Müggelsee (730 ha) lost its submerged vegetation due to increasing eutrophication and switched to phytoplankton dominance in 1970. After the reduction of nutrient loading in 1990, Potamogeton pectinatus L. started re-colonizing the lake. During the following years, it spread at a mean rate of 2.5 ha per year to all available areas <80 cm depth. Between 1993 and 1999, decreasing maximum biomass indicated hampered growth. Exclosure experiments revealed that herbivory reduced the aboveground biomass by more than 90%. Both waterfowl and fish were found to contribute to the grazing pressure despite a low abundance of the known herbivorous fish species and waterfowl in spring and summer. Protection of stands against grazing resulted in higher biomass of shoots, whereas shoot and tuber density did not change. Both shading by phytoplankton and periphyton, as well as grazing pressure, prevented the submerged vegetation of Lake Müggelsee from developing back to a dense zone that contributed to the reduction of turbidity.  相似文献   

3.
Long‐term data on water temperature, phytoplankton biovolume, Bosmina and Daphnia abundance and the timing of the clear‐water phase were compared and analysed with respect to the influence of the North Atlantic Oscillation (NAO) in two strongly contrasting lakes in central Europe. In small, shallow, hypertrophic Müggelsee, spring water temperatures and Daphnia abundance both increased more rapidly than in large, deep, meso/oligotrophic Lake Constance. Because of this, the clear‐water phase commenced approximately three weeks earlier in Müggelsee than in Lake Constance. In Müggelsee, the phytoplankton biovolume during late winter/early spring was related to the NAO index. In Lake Constance, where phytoplankton growth was inhibited by intense downward mixing during all years studied, this was not the case. However, in both lakes, interannual variability in water temperature, in Daphnia spring population dynamics and in the timing of the clear‐water phase, were all related to the interannual variability of the NAO index. The Daphnia spring population dynamics and the timing of the clear‐water phase appear to be synchronized by the NAO despite large differences between the lakes in morphometry, trophic status and flushing and mixis regimes, and despite the great distance between the lakes (~700 km). This suggests that a great variety of lakes in central Europe may possibly have exhibited similar interannual variability during the last 20 years.  相似文献   

4.
We performed high-resolution temperature measurements under ice cover in Lake Müggelsee, Germany, during the winter of 2005–2006. Intense seiche-like temperature oscillations developing after the ice-on have been encountered in a thin water layer above the sediments. The oscillations were initiated immediately after lake freezing by the release of the potential energy of the thermocline slope and existed for several weeks without appreciable external forcing. The oscillations were associated with a basin-scale internal waves existing in the lower stratified part of the water column. The weakness of the density stratification under ice ensured the long wave periods, exceeding the period of geostrophic inertial oscillations at the lake’s latitude. As a result, two frequency peaks were present in the oscillations corresponding to two rotational waves, one of Kelvin-wave type and another of Poincaré type wave. The rotational character provided long dissipation times of the waves and allowed the oscillations to persist in lake several weeks. Temperature measurements in the upper several centimeters of the sediment demonstrated that oscillations of the near-bottom temperature produced vertical density instability and pore-water convection in the upper sediments.  相似文献   

5.
The effects of the recent warming trend in many northern temperate lakes on the species composition of spring phytoplankton remain poorly understood, especially because a recent change in nutrients has complicated efforts, and previous studies have defined spring according to the calendar. We analysed data from 1979 to 2004 from Lake Müggelsee (Berlin, Germany), using physical and biological parameters to define the spring period. We show that a change in timing of spring plankton events in warm years led to the paradox of lower mean water temperatures during the growth period, favouring cold-adapted diatoms over cyanobacteria, and within the diatoms, some cold-adapted centric forms over pennate forms. Under high P : Si ratios, the increased time between phytoplankton and cladoceran peaks opened a loophole for filamentous cyanobacteria (Oscillatoriales) in warm years to establish dominance after the diatoms, which are silicate limited. Therefore, the warming trend promotes filamentous cyanobacteria, a well-known nuisance in eutrophic lakes, and surprisingly, cold-adapted diatoms.  相似文献   

6.
Understanding how changing climate, nutrient regimes, and invasive species shift food web structure is critically important in ecology. Most analytical approaches, however, assume static species interactions and environmental effects across time. Therefore, we applied multivariate autoregressive (MAR) models in a moving window context to test for shifting plankton community interactions and effects of environmental variables on plankton abundance in Lake Washington, U.S.A. from 1962–1994, following reduced nutrient loading in the 1960s and the rise of Daphnia in the 1970s. The moving-window MAR (mwMAR) approach showed shifts in the strengths of interactions between Daphnia, a dominant grazer, and other plankton taxa between a high nutrient, Oscillatoria-dominated regime and a low nutrient, Daphnia-dominated regime. The approach also highlighted the inhibiting influence of the cyanobacterium Oscillatoria on other plankton taxa in the community. Overall community stability was lowest during the period of elevated nutrient loading and Oscillatoria dominance. Despite recent warming of the lake, we found no evidence that anomalous temperatures impacted plankton abundance. Our results suggest mwMAR modeling is a useful approach that can be applied across diverse ecosystems, when questions involve shifting relationships within food webs, and among species and abiotic drivers.  相似文献   

7.
杨潇  马吉顺  张欢  周琼 《水生生物学报》2021,45(5):1093-1103
为阐明鄱阳湖不同水文期浮游生物群落结构特征及其影响因素,研究于2017年8月(丰水期)和12月(枯水期)在鄱阳湖湖区典型水域设置5个采样点进行浮游生物采样调查。研究期间共鉴定浮游植物8门75属186种,丰水期与枯水期均以硅藻门和绿藻门为主。共鉴定浮游动物4类76种,丰水期与枯水期均以原生动物和轮虫为主。方差分析显示:浮游植物密度与生物量在不同水文期之间的差异均为极显著(P<0.01),浮游动物丰水期密度高于枯水期,但无显著差异(P>0.05),浮游动物生物量(P<0.05)在不同水文期差异显著。冗余分析(RDA)显示:丰水期透明度和浮游生物呈显著负相关关系,电导率和浮游生物呈显著正相关。透明度、电导率与营养盐是影响丰水期浮游生物群落结构的主要环境因素,枯水期水温和溶解氧是驱动鄱阳湖浮游生物群落生态分布的主要环境因素。基于Shannon-Wiener(H′)、Margalef(d)和Pielou(J)等生物多样性指数的水质评价结果表明:鄱阳湖研究区域水质状态处于寡污-中污之间。研究揭示了2个水文期对通江湖泊浮游生物的影响:季节变化不改变湖泊浮游生物的物种组成及优势种,但...  相似文献   

8.
1. Changes in plankton species diversity and community structure as a result of global warming are of growing concern in ecological studies, as these properties contribute substantially to key ecosystem processes. 2. We analysed the effect of short‐term temperature rise and changes in the thermal regime during summer on plankton diversity of the eutrophic and polymictic Müggelsee in Germany, from 26 years of summer records (1982–2007). We tested for changes in community properties, such as species richness, evenness and population size of phyto‐ and zooplankton, during alternating periods of thermal stratification and mixing, which were between 2 and 8 weeks long. Moreover, we tested for overall long‐term temporal trends in annual averages of the community properties during stratified and mixed events. 3. We found that the overall number of stratification events increased significantly across the study period. When the lake was stratified, consistently higher surface water temperatures and lower epilimnetic nutrient concentrations were found. As the length of thermal stratification increased, the phytoplankton shifted towards a higher proportion of buoyant cyanobacteria capable of N‐fixation (Aphanizomenon, Anabaena). Diatoms were at a disadvantage because of high temperature, exceeding their upper lethal limit and sedimentation losses. Zooplankton species with high thermal tolerances (i.e. Thermocyclops oithonoides, Thermocyclops crassus) and/or those that grow quickly at high temperatures (i.e. rotifers) became more common. 4. During periods of continuous mixing, the community remained largely unchanged, except for some minor increase in the biomass of diatoms. 5. While a noticeable shift towards N‐fixing cyanobacteria was observed with increasing length of stratified events, and rotifers and copepods became the main predators, there were minimal changes in diversity, except for an increase in cyclopoid copepods and a decrease in diatom diversity. As for cyanobacteria, the net short‐term effect on their diversity was neutral as a result of species replacements. In the long term, however, the diversity of cyanobacteria and cladocerans declined while that of rotifers increased. 6. Overall, our study presents a cautionary example of how we might fail to foresee the impact of climate‐induced changes on ecosystem processes if we restrict our studies to seasonal or yearly temporal scales, thus neglecting the impact of substantial changes operating at smaller temporal scales.  相似文献   

9.
Plant-pollinator interaction networks may be more informative than the diversity of species in the evaluation of the effects of environmental change. Considering that networks vary with the integrity of ecosystems, their changes may help to predict the consequences of anthropogenic impacts on biodiversity and ecological processes. This characteristic highlights its use as environmental quality indicator. However, to employ interaction networks as ecological indicators it is necessary to identify the most sensitive metrics and understand how and why they vary with environmental changes. This review aimed to identify, in empirical studies, which network metrics have been evidenced as being more sensitive to changes in environmental quality. We analyzed published empirical studies, that applied the network approach on environmental quality gradients. In addition to the network metric behavior, we studied the interactions between them and possible causes of their variation. The available empirical data indicated that degree, nestedness and connectance did not have a simple, linear or unidirectional response to habitat degradation. Conversely, the metrics interaction asymmetry, d' (reciprocal specialization index of the species) showed the most consistent responses to environmental change. The role of the species changed, ranging between generalists and specialists under different conditions. In addition, specialist species with morphological and behavioral constraints were lost in worse environmental quality situations. The identity of interacting species and their role in the network, with a further specification of groups and interactions most affected, are the properties with greater potential to indicate changes in environmental quality. Most of the available studies focused on metrics at the network level, but several studies and this review indicate that the patterns at the network level can be better understood in the light of metrics analyzed at the species level. Our results provide information that enrich the network analysis, highlighting the need to consider important features that are often neglected. Discussions and information compiled here are important for deciding how to look at empirical data and what to look for, as well as to indicate some caveats when interpreting data on plant-pollinator interactions with a complex network approach. Network metrics can be good indicators of environmental quality if the underlying ecological causes of the numerical changes are carefully analyzed.  相似文献   

10.
11.
Aulacoseira skvortzowii sp. nov. is a diatom taxon present in modern plankton assemblages and sedimentary deposits from Lake Baikal, Russia. It has been previously reported as A. islandica (O. Müll.) Simonsen, A. islandica ssp. helvetica (O. Müll.) Simonsen, a sporangial frustule of A. baicalensis (K. Meyer) Simonsen, and Aulacoseira “spore”. However, its microstructure, ecology, and ability to form true resting spores provide ample criteria to describe this diatom as Aulacoseira skvortzowii sp. nov.  相似文献   

12.
生态群落中不同物种间发生多样化的相互作用, 形成了复杂的种间互作网络。复杂生态网络的结构如何影响群落的生态系统功能及稳定性是群落生态学的核心问题之一。种间互作直接影响到物质和能量在生态系统不同组分之间的流动和循环以及群落构建过程, 使得网络结构与生态系统功能和群落稳定性密切相关。在群落及生态系统水平上开展种间互作网络研究将为群落的构建机制、生物多样性维持、生态系统稳定性、物种协同进化和性状分化等领域提供新的视野。当前生物多样性及生态系统功能受到全球变化的极大影响, 研究种间互作网络的拓扑结构、构建机制、稳定性和生态功能也可为生物多样性的保护和管理提供依据。该文从网络结构、构建机制、网络结构和稳定性关系、种间互作对生态系统功能的影响等4个方面综述当前种间网络研究进展, 并提出在今后的研究中利用机器学习和多层网络等来探究环境变化对种间互作网络结构和功能的影响, 并实现理论和实证研究的有效整合。  相似文献   

13.
Protein networks, describing physical interactions as well as functional associations between proteins, have been unravelled for many organisms in the recent past. Databases such as the STRING provide excellent resources for the analysis of such networks. In this contribution, we revisit the organisation of protein networks, particularly the centrality–lethality hypothesis, which hypothesises that nodes with higher centrality in a network are more likely to produce lethal phenotypes on removal, compared to nodes with lower centrality. We consider the protein networks of a diverse set of 20 organisms, with essentiality information available in the Database of Essential Genes and assess the relationship between centrality measures and lethality. For each of these organisms, we obtained networks of high-confidence interactions from the STRING database, and computed network parameters such as degree, betweenness centrality, closeness centrality and pairwise disconnectivity indices. We observe that the networks considered here are predominantly disassortative. Further, we observe that essential nodes in a network have a significantly higher average degree and betweenness centrality, compared to the network average. Most previous studies have evaluated the centrality–lethality hypothesis for Saccharomyces cerevisiae and Escherichia coli; we here observe that the centrality–lethality hypothesis hold goods for a large number of organisms, with certain limitations. Betweenness centrality may also be a useful measure to identify essential nodes, but measures like closeness centrality and pairwise disconnectivity are not significantly higher for essential nodes.  相似文献   

14.
Studies of complex networks show that nodes with high centrality scores are important to network structure and stability. Following this rationale, centrality measures can be used to (i) identify keystone species in ecological networks, a major issue in community ecology, and (ii) differentiate the keystone species concept, e.g. species may play a key role in a network for different topological reasons. In 34 pollination communities we examine the relationship between the generalization level of species (ND) and two complementary centrality indices: closeness (CC) and betweenness centrality (BC). CC measures the proximity of a species to all other species in the community, while BC describes the importance of a species as a connector. Most networks had a linear NDCC relationship with a minimum CC value of 0.41. Hence, species were close to each and will be likely to be rapidly affected by disturbances. Contrarily, in most networks, the NDBC relationships were power-law distributed with exponents larger than one. Only 59% of the species were connectors (BC > 0). In particular, there was a connector threshold value of ND = 0.46. Species above this threshold represent ~40%, almost all of which were connectors. These results indicate that in pollination systems the most generalized species are usually network keystone species, playing at least two roles: (i) interact closely with most other species (high CC) and (ii) connect otherwise unconnected subnetworks (high BC). We discuss the implications of centrality measures to community-based conservation ecology.  相似文献   

15.
Mutualisms often form networks of interacting species, characterized by the existence of a central core of species that potentially drive the ecology and the evolution of the whole community. Centrality measures allow quantification of how central or peripheral a species is within a network, thus informing about the role of each species in network organization, dynamics, and stability. In the present study we addressed the question whether the structural position of species in the network (i.e. their topological importance) relates to their ecological traits. We studied interactions between cleaner and client reef fishes to identify central and peripheral species within a mutualistic network, and investigated five ecological correlates. We used three measures to estimate the level of centrality of a species for distinct structural patterns, such as the number of interactions and the structural proximity to other species. Through the use of a principal component analysis (PCA) we observed that the centrality measures were highly correlated (92.5%) in the studied network, which indicates that the same species plays a similar role for the different structural patterns. Three cleaner and ten client species had positive values of centrality, which suggests that these species are modulating ecological and evolutionary dynamics within the network. Higher centralities were related to higher abundances and feeding habits for client fishes, but not for cleaners. The high correlation between centrality measures in the present study is likely related to the nested structure of the cleaning network. The cleaner species’ set, by having central species that are not necessarily the most abundant ones, bears potentially more vulnerable points for network cohesiveness. Additionally, the present study generalizes previous findings for plant–animal mutualisms, as it shows that the structure of marine mutualisms is also related to a complex interplay between abundance and niche‐related features.  相似文献   

16.
Climate change and its role in altering biological interactions and the likelihood of invasion by introduced species in marine systems have received increased attention in recent years. It is difficult to forecast how climate change will influence community function or the probability of invasion as it alters multiple marine environmental parameters including rising water temperature, lower salinity and pH. In the present study, we correlate changes in environmental parameters to shifts in species composition in a subtidal community in Newcastle, NH through comparison of two, 3‐year periods separated by 23 years (1979–1981 and 2003–2005). We observed concurrent shifts in climate related factors and in groups of organisms that dominate the marine community when comparing 1979–1981 to 2003–2005. The 1979–1981 community was dominated by perennial species (mussels and barnacles). In contrast, the 2003–2005 community was dominated by annual native and invasive tunicates (sea‐squirts). We also observed a shift in the environmental factors that characterized both communities. Dissolved inorganic nitrogen and phosphate characterized the 1979–1981 community while sea surface temperature, pH, and chlorophyll a characterized the 2003–2005 community. Elongated warmer water temperatures, through the fall and early winter months of the 2000s, extended the growing season of native organisms and facilitated local dominance of invasive species. Additionally, beta‐diversity was greater between 2003–2005 than 1979–1981 and driven by larger numbers of annual species whose life‐history characteristics (e.g., timing and magnitude of recruitment, growth and mortality) are driven by environmental parameters, particularly temperature.  相似文献   

17.
The community of host species that a parasite infects is often explained by functional traits and phylogeny, predicting that closely related hosts or those with particular traits share more parasites with other hosts. Previous research has examined parasite community similarity by regressing pairwise parasite community dissimilarity between two host species against host phylogenetic distance. However, pairwise approaches cannot target specific host species responsible for disproportionate levels of parasite sharing. To better identify why some host species contribute differentially to parasite diversity patterns, we represent parasite sharing using ecological networks consisting of host species connected by instances of shared parasitism. These networks can help identify host species and traits associated with high levels of parasite sharing that may subsequently identify important hosts for parasite maintenance and transmission within communities. We used global‐scale parasite sharing networks of ungulates, carnivores, and primates to determine if host importance – encapsulated by the network measures degree, closeness, betweenness, and eigenvector centrality – was predictable based on host traits. Our findings suggest that host centrality in parasite sharing networks is a function of host population density and range size, with range size reflecting both species geographic range and the home range of those species. In the full network, host taxonomic family became an important predictor of centrality, suggesting a role for evolutionary relationships between host and parasite species. More broadly, these findings show that trait data predict key properties of ecological networks, thus highlighting a role for species traits in understanding network assembly, stability, and structure.  相似文献   

18.
Wilhelm S  Adrian R 《Oecologia》2007,151(1):104-114
Müggelsee, a shallow eutrophic lake (Berlin, Germany), has been subject to global warming and concurrent reductions of anthropogenic nutrient loading during the past decades. Here, we focus on the recent increase in abundance of Dreissena polymorpha larvae. We aimed at ascertaining whether the change in abundance of larvae was driven by changes in climate, especially by climate warming, and/or by the concurrent changes in trophic state of the lake. Both the numbers of small, newly developed larvae and their lengths have increased in recent years, suggesting that conditions for overall reproductive success have improved. The timing of the increase in abundance of larvae was matched by changes in nutrient loading and phytoplankton biomass, induced by a reduced inflow of nutrients into the lake. Besides a correlation between the first appearance of larvae each year and the timing of the requisite temperature for first spawning (12°C), no relationship between changes in water temperature and abundance, length and survival rates of larvae was found. However, a sudden drop in abundance of larvae in 2003 may be primarily attributed to low dissolved oxygen conditions during an unusually long period of stratification, induced by anomalous meteorological conditions. The increase in length and survival rates of larvae was most likely due to changes in food composition, which followed the decrease in nutrient availability, and to changes in the occurrence of planktivorous fish. The results suggest that the first appearance of larvae per year and the decline in abundance of larvae in 2003 were driven by climatic influences, while the overall increase in abundance and length of D. polymorpha larvae in Müggelsee was more likely caused by changes in the trophic state of the lake rather than by climate warming. Priority programme of the German Research Foundation—contribution 8.  相似文献   

19.
Understanding how ecological networks are organised over the course of an organism's lifetime is crucial for predicting the dynamics of interacting populations and communities across temporal scales. However, most studies so far considered only one life history stage at a time, such as adult, when studying networks of interacting species. Therefore, knowledge about how multiple life history stages affect the development and stability of plant–plant association networks is lacking. We measured the understory adult plant community and the soil seed bank across a plant age gradient of the nurse shrub Retama sphaerocarpa in an arid ecosystem in Spain. Using a multilayer network approach, we built adult understory–nurse and seed bank–nurse networks and analysed how network nestedness, species’ role, and species specificity varied between them and with nurse plant age. We found that seed bank and adult understory networks changed depending on nurse plant age in two different ways. With increasing nurse plant age, adult understory networks became significantly more nested than seed bank networks. The nested architecture of seed bank networks was therefore a poor predictor of adult understory network nestedness. The contribution and specificity of species to network nestedness increased with increasing nurse plant age more in the adult understory than in seed bank networks, despite high species turnover. Our data show that life history and ontogeny affect the development of plant–plant association networks. Niche construction and environmental filtering along nurse ontogeny seem pivotal mechanisms structuring adult understory networks while the assembly of seed bank networks seems rather stochastic. We highlight the importance of mature plant communities for maintaining rare species populations and supporting the stability of ecological communities through time.  相似文献   

20.

The freshwater ultraoligotrophic Lake Labynkyr is located near the Pole of Cold in the northern hemisphere (Yakutia, Russia). The lake is covered by ice during 240 days a year. We undertook several expeditions to the lake during the ice and open water periods for sampling ice fouling, plankton and periphyton that were then analyzed by means of scanning electron microscopy. As a result, we identified a high biodiversity of diatoms—123 species and intraspecific taxa from 53 genera, among them 3 species were new for Russia and 26 taxa were new for the algal flora of Yakutia. The oligo- and xenosaprobionts and their variations dominate—71 taxa. 18 Species were evaluated as tolerant to cold oligotrophic waters, 12 occurred on the ice bottom, and 62 in the water column under ice (0–25 m). 104 taxa were found during the open water period, 70 taxa were identified in the periphyton. We showed the diatom flora of Lake Labynkyr to be unique compared with other lakes of Yakutia and to share taxa with the diatom flora of Lake Baikal. The diatoms being indicators of the global climate changes and ecological status of lakes, our data can be used as an evidence of such changes as well as to be useful studies of biogeography and history of formation of flora in Arctic and Subarctic waters.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号