首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The results of studies of genetic regulation of the early leaf morphogenesis, demarcation of the future primordium and transition of cells to determination, have been reviewed. The genetic systems of control of these developmental stages were shown to be conservative and hypotheses of possible mechanisms underlying the evolution of leaf morphology on their basis have been considered.  相似文献   

2.
The few existing analyses of broad-scale variation in plant–herbivore interactions are largely exploratory and not based on hypotheses on the effect of varying environmental conditions on the patterns of herbivore damage. However, there are two established hypotheses that relate herbivore damage and environmental stress mostly tested at the within-population level: the Plant Stress Hypothesis (PSH) and the Plant Vigor Hypothesis (PVH). To examine if support for the PSH holds true at broader scales, we tested it at the micro- (among individuals), meso- (between habitats) and macroscale (between geographical regions, Iberia and Macaronesia). We measured plant stress and leaf damage by different natural enemies (chewers, miners and pathogens) in 12 populations across the range of the relict tree Prunus lusitanica. Results regarding the proportion of leaves attacked by any enemy showed no support for the PSH at either micro or mesoscale, observing instead higher damage in less stressed individuals within populations and in high-quality habitats. However, the latter was true exclusively within the Macaronesian region, highlighting the important effect of the type of abiotic stress on plant susceptibility to herbivory. At the macroscale, alternatively, results showed support for the PSH: we observed a higher proportion of leaves attacked in Macaronesia than in Iberia, where plants unexpectedly exhibited greater stress symptoms. Among-scale inconsistencies may respond to the effect of distinct climatic factors governing both plant and herbivore dynamics at large scales, particularly in species with distributional ranges across contrasting climatic regions such as P. lusitanica. Finally, different plant enemies showed different patterns of damage, corroborating the need to study them separately to achieve consistent generalizations of these hypotheses.  相似文献   

3.
4.
The nutritional and social conditions that individuals experience during early development can have profound effects on their morphology, physiology, behaviour and life history. Experimental increases in brood size in birds can result in reduced offspring condition and survival, indicating that developmental deficits in enlarged broods have negative fitness consequences within the affected generation. To study long-term effects (i.e. transgenerational effects of developmental stress), we conducted a two-step breeding experiment in which we manipulated early developmental conditions in zebra finches Taeniopygia guttata. We raised zebra finches by manipulating brood sizes and controlled for maternal and genetic effects by cross-fostering. In a previous study, we showed that offspring condition and body size decreased with increasing brood size. Here we show that this effect was carried over to the next generation. Body size in nestlings and at nutritional independence was affected by the brood size in which the mothers were raised. Female offspring did significantly worse than male offspring when the mother had been raised in large broods, suggesting a sex-specific influence of maternal effects. These findings link early developmental stress in females with the phenotype of the next generation via maternal effects.  相似文献   

5.
Development commonly involves an interplay between signaling, genetic expression and biophysical forces. However, the relative importance of these mechanisms during the different stages of development is unclear. Leaf venation networks provide a fitting context for the examination of these questions. In mature leaves, venation patterns are extremely diverse, yet their local structure satisfies a universal property: at junctions between veins, angles and diameters are related by a vectorial equation analogous to a force balance. Using a cell proliferation model, we reproduce in silico the salient features of venation patterns. Provided that vein cells are given different mechanical properties, tensile forces develop along the veins during growth, causing the network to deform progressively. Our results suggest that the local structure of venation networks results from a reorganization driven by mechanical forces, independently of how veins form. This conclusion is supported by recent observations of vein development in young leaves and by the good quantitative agreement between our simulations and data from mature leaves.  相似文献   

6.
7.
The objective of this study was to investigate the effect of pre-anthesis high-temperature acclimation on leaf physiology of winter wheat in response to post-anthesis heat stress. The results showed that both pre- and post-anthesis heat stresses significantly depressed flag leaf photosynthesis and enhanced cell membrane peroxidation, as exemplified by increased O2 production rate and reduction in activities of antioxiditave enzymes. However, under post-anthesis heat stress, plants with pre-anthesis high-temperature acclimation (HH) showed much higher photosynthetic rates than those without pre-anthesis high-temperature acclimation (CH). Leaves of HH plants exhibited a higher Chl a/b ratio and lower chlorophyll/carotenoid ratio and superoxide anion radical release rate compared with those of the CH plants. In addition, antioxidant enzyme activities in HH plants were significantly higher than in CH. Coincidently, expressions of photosythesis-responsive gene encoding Rubisco activase B (RcaB) and antioxidant enzyme-related genes encoding mitochondrial manganese superoxide dismutase (Mn-SOD), chloroplastic Cu/Zn superoxide dismutase (Cu/Zn-SOD), catalase (CAT) and cytosolic glutathione reductase (GR) were all up-regulated under HH, whereas a gene encoding a major chlorophyll a/b-binding protein (Cab) was up-regulated by post-anthesis heat stress at 10 DAA, but was down-regulated at 13 DAA. The changes in the expression levels of the HH plants were more pronounced than those for the CH. Collectively, the results indicated that pre-anthesis high-temperature acclimation could effectively alleviate the photosynthetic and oxidative damage caused by post-anthesis heat stress in wheat flag leaves, which was partially attributable to modifications in the expression of the photosythesis-responsive and antioxidant enzymes-related genes.  相似文献   

8.
Young leaves of most species experience remarkably higher herbivore attack rates than mature leaves. Considerable theoretical effort has focused on predicting optimal defense and tradeoffs in defense allocation during leaf expansion. Among others, allocation to secondary chemistry may be dependent on growth constraints. We studied flavanoid production during leaf development in two species of Inga (Fabaceae: Mimosoideae) with different expansion strategies: Inga goldmanii, a species with slowly expanding young leaves, and Inga umbellifera, a species with fast-expanding young leaves. In these two species, the most abundant and toxic class of defensive compounds is flavanoids (which include tannins). We measured their concentration by leaf dry weight, their total content per leaf, their HPLC chemical profile and their toxicity to a generalist herbivore at different expansion levels. Although in both species the flavanoid concentration decreased with increasing leaf expansion, that decrease was twice as pronounced for I. umbellifera as it was for I. goldmanii. I. umbellifera leaves produced flavanoids only during the first half of their development while I. goldmanii leaves continued production throughout. The changes in flavanoid HPLC profiles and toxicity were also more dramatic for I. umbellifera, which had different flavanoids in young than in mature leaves. Relative to I. umbellifera, I. goldmanii showed smaller changes in both flavanoid composition and toxicity in the transition from young to mature leaves. These results indicate that, even though young leaves suffer higher rates of attack and are predicted to have better chemical defenses than mature leaves, growth constraints may modulate defense allocation and thus, evolution of defense strategies.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

9.
The proportion of leaves damaged by specialist guilds such as miners and sap-feeders decreased at locations with higher species richness and at higher elevation in four subtropical forest seedling communities in south China. The effect of elevation was stronger in winter. Patterns of the generalist guild chewers were weaker.  相似文献   

10.
11.
Fluctuating asymmetry (FA) represents small, random variation from symmetry and can be used as an indicator of plant susceptibility to herbivory. We investigated the effects of FA of two oak species, Quercus laevis and Q. geminata, and the responses of three herbivore guilds: leaf miners, gallers, and chewers. To examine differences in FA and herbivory between individuals, 40 leaves from each tree were collected, and FA indices were calculated. To examine differences in FA and herbivory within-individuals, we sampled pairs of mined and unmined leaves for asymmetry measurements. Differences in growth of leaf miners between leaf types were determined by tracing 50 mines of each species on symmetric leaves and asymmetric leaves. Asymmetric leaves contained significantly lower concentrations of tannins and higher concentrations of nitrogen than symmetric leaves for both plant species. Both frequency of asymmetric leaves on plants and levels of asymmetry positively influenced the abundance of Brachys, Stilbosis and other leaf miners, but no significant relationship between asymmetry and herbivory was observed for Acrocercops. Brachys and Stilbosis mines were smaller on asymmetric leaves, but differences in mine survivorship between symmetric and asymmetric leaves were observed only for Stilbosis mines. This study indicated that leaf miners might use leaf FA as a cue to plant quality, although differential survivorship among leaf types was not observed for all species studied. Reasons for the different results between guilds are discussed.  相似文献   

12.
Considerable soybean yield losses caused by ozone (O3) stress have been demonstrated by large‐scale meta‐analyses of free‐gas concentration enrichment systems. In this study, comparative proteomic approach was employed to explore the differential changes of proteins in O3 target structures such as leaf and chloroplasts of soybean seedlings. Acute O3 exposure (120 parts‐per‐billion) for 3 days did not cause any visible symptoms in developing leaves. However, higher amounts of ROS and lipid peroxidation indicated that severe oxidative burst occurred. Immunoblot analysis of O3‐induced known proteins revealed that proteins were modulated before symptoms became visible. Proteomic analysis identified a total of 20 and 32 differentially expressed proteins from O3‐treated leaf and chloroplast, respectively. Proteins associated with photosynthesis, including photosystem I/II and carbon assimilation decreased following exposure to O3. In contrast, proteins involved in antioxidant defense and carbon metabolism increased. The activity of enzymes involved in carbohydrate metabolism increased following exposure to O3, which is consistent with the decrease in starch and increase in sucrose concentrations. Taken together, these results suggest that carbon allocation is tightly programmed, and starch degradation probably feeds the tricarboxylic acid cycle while the photosynthesis pathway is severely affected during O3 stress.  相似文献   

13.
14.
Salt adaptation was induced in two successive generations of Sorghum bicolor , and the germination of their seeds was compared. When germinated in the absence of NaCl, the progeny of adapted plants displayed a specific malformation at the first two leaves, which was never observed in progeny of control plants. The frequency of leaf malformation was enhanced in progeny of the second generation of adapted plants, indicating a cumulative influence of salt adaptation. When germinated in the presence of 75 m M NaCl, seedlings from seeds of salt-adapted plants never displayed the leaf malformation, whereas it was observed on seedlings from seeds of control plants germinated in the presence of 75 m M NaCl. The occurrence of leaf malformation was analyzed for progeny of 20 salt-adapted plants germinated in the absence of NaCl. The link with the reproductive characters of the parents indicates a strong parental control on the expression of the leaf malformation. A comparison with previous data relative to the leaf malformation in Sorghum suggests the existence of a developmental window which 'opens'during embryo morphogenesis. This enables the imprinting of the embryo by the parent's physiological environment. This conclusion is related to other data describing a long-term maternal influence in plants.  相似文献   

15.
Undertaken investigations have shown that the antigen prepared from larvae of O. tarandi is diagnostically effective and stricktly specific only to this infection in the reaction of indirect hemagglutination (RIHA). The experiments have proved the possibility of practical use of RIHA as a principal method of early diagnosis of infection of reindeer caused by O. tarandi.  相似文献   

16.
We studied developmental plasticity under food stress in three female-biased size dimorphic predatory mite species, Phytoseiulus persimilis, Neoseiulus californicus, and Amblyseius andersoni. All three species prey on two-spotted spider mites but differ in the degree of adaptation to this prey. Phytoseiulus persimilis is a specialized spider mite predator, N. californicus is a generalist with a preference for spider mites, and A. andersoni is a broad generalist. Immature predators were offered prey patches of varying density and their survival chances, dispersal tendencies, age and size at maturity measured. Amblyseius andersoni dispersed earlier from and had lower survival chances in low density prey patches than N. californicus and P. persimilis. Age at maturity was not affected by prey density in the generalist A. andersoni, whereas both the specialist P. persimilis and the generalist N. californicus accelerated development at low prey densities. Species-specific plasticity in age at maturity reflects opposite survival strategies when confronted with limited prey: to prematurely leave and search for other food (A. andersoni) or to stay and accelerate development (P. persimilis, N. californicus). In all species, size at maturity was more plastic in females than males, indicating that males incur higher fitness costs from deviations from optimal body size.  相似文献   

17.
18.
  • Excess salt affects about 955 million ha of arable land worldwide, and 49% of agricultural land is Zn‐deficient. Soil salinity and zinc deficiency can intensify plant abiotic stress. The mechanisms by which Zn can mitigate salinity effects on plant functions are not well understood.
  • We conducted an experiment to determine how Zn and salinity effects on rice plant retention of Zn, K+ and the salt ion Na+ affect chlorophyll formation, leaf cell membrane stability and grain yield. We examined the mechanisms of Zn nutrition in mitigating salinity stress by examining plant physiology and nutrition. We used native Zn‐deficient soils (control), four salinity (EC ) and Zn treatments – Zn 10 mg·kg?1 (Zn10), EC 5 dS ·m?1 (EC 5), Zn10+EC 5 and Zn15+EC 5, a coarse rice (KS ‐282) and a fine rice (Basmati‐515) in the study.
  • Our results showed that Zn alone (Zn10) significantly increased rice tolerance to salinity stress by promoting Zn/K+ retention, inhibiting plant Na+ uptake and enhancing leaf cell membrane stability and chlorophyll formation in both rice cultivars in native alkaline, Zn‐deficient soils (<  0.05). Further, under the salinity treatment (EC 5), Zn inputs (10–15 mg·kg?1) could also significantly promote rice plant Zn/K+ retention and reduce plant Na+ uptake, and thus increased leaf cell membrane stability and grain yield. Coarse rice was more salinity‐tolerant than fine rice, having significantly higher Zn/K+ nutrient retention.
  • The mechanistic basis of Zn nutrition in mitigating salinity impacts was through promoting plant Zn/K+ uptake and inhibiting plant Na+ uptake, which could result in increased plant physiological vigour, leaf cell membrane stability and rice productivity.
  相似文献   

19.
We compared the susceptibility of five herbivores to tomato resistance induced by methyl jasmonate (MeJA) treatment. We tested for lethal effects against five herbivores (Spodoptera litura, Mamestra brassicae, Frankliniella occidentalis, Tetranychus urticae, and Henosepilachna vigintioctopunctata) at various MeJA concentrations. The mortality of all five herbivores increased significantly with increasing MeJA concentration. The 25 % lethal concentration was 0.03 μM for both first-instar larvae of S. litura and third-instar larvae of M. brassicae, 0.51 μM for third-instar larvae of S. litura, 0.76 μM for adult T. urticae, 2.4 μM for first-instar larvae of F. occidentalis, and 5.7 μM for first-instar larvae of H. vigintioctopunctata. Thus, the degree of susceptibility to MeJA-induced resistance of tomato was first-instar larvae of S. litura = third-instar larvae of M. brassicae > third-instar larvae of S. litura ≈ adult T. urticae > first-instar larvae of F. occidentalis > first-instar larvae of H. vigintioctopunctata. Mortality of first-instar larvae of M. brassicae was >90 % at all concentrations. Mortality of fourth-instar larvae of H. vigintioctopunctata (<7 %) was similar to that of the control at all MeJA concentrations. We also detected statistically significant weight loss of the surviving lepidopteran larvae, increased larval duration of F. occidentalis and H. vigintioctopunctata, and reduced egg production by T. urticae grown on MeJA-treated tomato, suggesting that the MeJA-induced resistance can control these herbivores, but effectiveness is different on different species and growth stage. Feeding by both M. brassicae and H. vigintioctopunctata larvae activated JA-inducible genes in tomato.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号