共查询到20条相似文献,搜索用时 0 毫秒
1.
Ants co‐occur with herbivorous thrips in several tropical plants, but their interactions are largely unexplored. Should thrips be deterred by ants, a positive effect of ants on plant fitness might be expected. Here, by using an experimental study design with ant‐present and ant‐excluded treatments, we investigated the influence of Camponotus blandus on Pseudophilothrips obscuricornis abundance and herbivory in three extrafloral nectaried species: Banisteriopsis malifolia, B. laevifolia and B. stellaris. In addition, we examined the effect of thrips herbivory on flower set and fruit development and dispersion. Thrips abundance and herbivory were higher on ant‐present stems of B. malifolia and B. laevifolia, where thrips managed to escape from ants by hiding in between clusters of flower buds (thygmotaxis behaviour). In B. stellaris the results were the opposite, as flower bud clusters did not offer hiding places, so thrips were unable to hide from ants; thus both thrips abundance and herbivory were lower on ant‐present stems. Thrips herbivory had no significant effect on flower and fruit set, but samaras (V‐shaped winged fruits of Malpighiaceae) attacked by thrips presented severe distortions and asymmetries. This caused damaged fruits to be dispersed closer to the mother plant, whereas uninjured fruits were dispersed further away. This study is evidence that ant–plant–herbivore systems have variable outcomes depending on the species involved, their behaviour and the plant structure under consideration. Unlike other herbivores, thrips negatively influence the very last stage of plant reproduction. The minute and furtive herbivorous thrips have long been ignored in natural systems, but because of their wide host range, they may be important herbivores even in extrafloral nectaried plants, which are usually fiercely protected by ants. 相似文献
2.
The visiting behaviour of oil-gathering, anthophorid bees on eglandular morphs of two Malpighiaceae species was observed in southeastern Brazil. The bees landed on eglandular flowers apparently by mistake, as suggested by their making one to a few scraping movements on landing, and behaving in the same way as they scrape oil glands on glandular flowers. After perceiving their mistake the bees either left the flower, making one to a few additional visits to other eglandular flowers before leaving the plant, or switched to pollen collecting. Large and medium-sized species of Centris, and some Epicharis, left the flowers after mistake visits, thus wasting time and energy, whereas small Centris and larger Epicharis switched to pollen harvesting, thus turning a mistake into a rewarding visit. Eglandular flowers of both Banisteriopsis muricata and Heteropterys aceroides attracted oil-gathering bees by deceit and probably acted as mimics of glandular flowers of their own species (automimicry). The pollination of eglandular morphs of these two Malpighiaceae species seems dependent mainly on the opportunistic, mixed oil-pollen gathering behaviour of deceived bees such as Epicharis schrottkyi. We suggest that some showy, eglandular species such as Banisteriopsis lutea may act as general mimics of other, oil-rewarding Malpighiaceae species. 相似文献
3.
A multiscale approach has lead to significant advances in the understanding of species population dynamics. The scale-dependent nature of population processes has been particularly clearly illustrated for insect herbivores. However, one of the most well-studied insect herbivores, the galling sawfly Euura lasiolepis, has to date been examined almost exclusively at fine spatial scales. The preference-performance, plant vigour and larval survival hypotheses are well supported by this species. Here, we test these hypotheses at a spatial scale larger than that previously considered, i.e. across a landscape in northern Arizona represented by an altitudinal gradient encompassing a series of drainages. We also develop a qualitative model for understanding the population dynamics of E. lasiolepis based on patterns of survival and mortality found in this study and previous ones. Gall density was highly variable across the altitudinal gradient, not explained by host plant variables, and thus a poor surrogate fot population abundance. These findings for the first time fail to support the plant vigour and preference hierarchy hypotheses for E. lasiolepis. Dispersal limitation most likely explains the lack of support for these hypotheses at this scale. By contrast, sawfly survival, gall abortion, parasitism and larval mortality were well explained by host plant quality variables and altitude. The larval survival hypothesis was well supported and is thus comparatively scale-invariant. A qualitative model developed here highlighted the importance of both willow water status and disturbance in determining host plant quality, as well as an apparent trade off between shoot length and plant moisture status in determining vital rates across the altitudinal gradient. This study thus demonstrated for the first time the scale-dependent nature of mechanisms underlying the population dynamics E. lasiolepis, and identified the interaction between parasitism and altitude as a novel mechanism underlying spatial patterns in the survival and mortality patterns of this species. 相似文献
4.
BACKGROUND AND AIMS: This study on reproductive biology examines the stigmatic morphology of 12 Brazilian Malpighiaceae species with regard to their pollination and breeding system. METHODS: The species were studied in natural populations of a semi-deciduous forest fragment. Style tips were processed for observation by SEM and pollen-tube growth was analyzed under fluorescence microscopy. The breeding system was investigated by isolating flowers within waterproof bags. Floral visitors were recorded through notes and photographs. KEY RESULTS: Flowers are yellow, pink or white, protogynous, herkogamous and sometimes lack oil glands. While Banisteriopsis pubipetala has functional female flowers (with indehiscent anthers), 11 species present hermaphrodite flowers. Stigmas of these species may be terminal, with a slightly concave surface, or internal, consisting of a circular cavity with a large orifice, and are covered with a thin, impermeable cuticle that prevents pollen from adhering, hydrating, or germinating. Malpighiaceae have a special type of 'wet' stigma, where a secretion accumulates under the cuticle and is released by mechanical means-mainly rupture by pollinators. Even though six species show a certain degree of self-compatibility, four of them present a form of late-acting self-incompatibility, and the individual of B. pubipetala is agamospermous. Species of Centris, Epicharis and Monoeca bees pollinate these flowers, mainly collecting oil. Some Epicharis and Monoeca species collected pollen by vibration. Paratetrapedia and Tetrapedia bees are pollen and oil thieves. CONCLUSIONS: The Malpiguiaceae species studied are pollinator-dependent, as spontaneous self-pollination is limited by herkogamy, protogyny and the stigmatic cuticle. Both the oil- and pollen-collecting behaviours of the pollinators favour the rupture of the stigmatic cuticle and the deposition of pollen on or inside the stigmas. As fruit-set rates in natural conditions are low, population fragmentation may have limited the sexual reproduction of these species. 相似文献
5.
《Microbiological research》2014,169(1):30-39
To feed all of the world's people, it is necessary to sustainably increase agricultural productivity. One way to do this is through the increased use of plant growth-promoting bacteria; recently, scientists have developed a more profound understanding of the mechanisms employed by these bacteria to facilitate plant growth. Here, it is argued that the ability of plant growth-promoting bacteria that produce 1-aminocyclopropane-1-carboxylate (ACC) deaminase to lower plant ethylene levels, often a result of various stresses, is a key component in the efficacious functioning of these bacteria. The optimal functioning of these bacteria includes the synergistic interaction between ACC deaminase and both plant and bacterial auxin, indole-3-acetic acid (IAA). These bacteria not only directly promote plant growth, they also protect plants against flooding, drought, salt, flower wilting, metals, organic contaminants, and both bacterial and fungal pathogens. While a considerable amount of both basic and applied work remains to be done before ACC deaminase-producing plant growth-promoting bacteria become a mainstay of plant agriculture, the evidence indicates that with the expected shift from chemicals to soil bacteria, the world is on the verge of a major paradigm shift in plant agriculture. 相似文献
6.
We investigated the effects of insect herbivory on a plant community of a productive old-field community by applying foliar and soil insecticides in a full factorial design. During the first 3 years of succession, insecticide treatments had only minor effects on total cover abundance and species richness. However, species ranking within the plant community was strongly affected by soil insecticide but not by foliar insecticide. Creeping thistle, Cirsium arvense , dominated the experimental plots with reduced root herbivory, while square-stemmed willow-herb, Epilobium adnatum , dominated the control and the plots with foliar insecticide. When soil insecticide was applied, cover abundance of monocarpic forbs increased and cover abundance of polycarpic herbs decreased compared to the control. However, this effect was due to a few abundant plant species and is not based on a consistent difference between life history groups. Instead, application of soil insecticide promoted persistence of species that established at the start of succession, and suppressed species that established in the following years. We conclude that below-ground herbivory reduces competitive ability of resident species and, thus, facilitates colonization by late-successional species. Hence, soil insects can exert strong top-down effects on the vegetation of productive sites by affecting dominant plant species and altering competitive balances. 相似文献
7.
农田生态系统植物多样性对害虫种群数量的影响 总被引:32,自引:5,他引:32
着重分析植物多样性影响害虫发生为害及种群数量的生态学机制,综合评述了关于这种机制的两种主要假说,即天敌假说和资源集中假说.同时总结了植物多样性增大和减少对害虫控制的有利和不利因素.研究表明农田生态系统中植物多样性的增大在多数情况下能导致某些害虫种群数量的下降,但是目前很难就不同栖境中所有类型的害虫形成一般性的结论 相似文献
8.
David Finnoff 《Journal of theoretical biology》2009,261(2):227-237
Most models of plant competition represent competition as taking place between species when realistically competition takes place between individuals. We model individual plants as optimally choosing biomass in order to maximize net energy that is directed into reproduction. Competition is for access to light and a plant that grows more biomass adds to the leaf area index, creating negative feedback in the form of more self shading and shading of its neighbors. In each period and for given species densities, simultaneous maximization by all plants yields an equilibrium characterized by optimum biomasses. Between periods the net energies plants obtain are used to update the densities, and if densities change the equilibrium changes in the subsequent period. A steady state is attained when all plants have net energies that just allow for replacement. Four main predictions of the resource-ratio theory of competition are obtained, providing behavioral underpinnings for species level models. However, if individual plant parameters are not identical across species, then the predictions do not follow. The optimization framework yields many other predictions, including how specific leaf areas and resource stress impact biomass and leaf area indices. 相似文献
9.
Infection of Ipomoea purpurea by anthracnose, the disease caused by the fungal pathogen Colletotrichum dematium, increases resistance to subsequent infections on previously uninfected leaves. Fungal isolates varied in their levels of virulence but not in the extent to which they induced resistance. Induced resistance was equally effective against all isolates tested. Plant lines varied in the baseline level of resistance expressed in newly emerging leaves. In some lines, new leaves were poorly defended but developed resistance with maturity, even in the absence of infection. In those lines, induced resistance could not prevent anthracnose damage to young leaves, and this damage reduced plant fitness by increasing juvenile mortality and decreasing juvenile growth rates. In contrast, anthracnose damage to well-defended older leaves had no effect on juvenile growth rates. In at least one line, new leaves were well-defended, regardless of disease experience. This line did not experience reduced growth from anthracnose infection of either young or mature leaves, suggesting that lines with higher baseline levels of resistance are more fit than those dependent upon induced resistance. These results suggest that induced resistance cannot substitute for baseline local resistance in this I. purpurea population. 相似文献
10.
Current theories of plant-herbivore interactions suggest that plants may differ in palatability to herbivores as a function of abiotic stress; however, studies of these theories have produced mixed results. We compared the palatability of eight common salt marsh plants that occur across elevational and salinity stress gradients to six common leaf-chewing herbivores to determine patterns of plant palatability. The palatability of every plant species varied across gradients of abiotic stress in at least one comparison, and over half of the comparisons indicated significant differences in palatability. The direction of the preferences, however, was dependent on the plant and herbivore species studied, suggesting that different types of stress affect plants in different ways, that different plant species respond differently to stress, and that different herbivore species measure plant quality in different ways. Overall, 51% of the variation in the strength of the feeding preferences could be explained by a knowledge of the strength of the stress gradient and the type of gradient, plant and herbivore studied. This suggests that the prospects are good for a more complex, conditional theory of plant stress and herbivore feeding preferences that is based on a mechanistic understanding of plant physiology and the factors underlying herbivore feeding preferences. 相似文献
11.
Plant miRNAs and abiotic stress responses 总被引:4,自引:0,他引:4
MicroRNAs (miRNAs) are endogenous approximate 22 nucleotide (nt) small non-coding regulatory RNAs that play important roles in plants by targeting mRNAs for cleavage or translational repression. Plant miRNAs were described 10 years later than animal miRNAs did; there are some differences between them in terms of biogenesis and mechanism of function. Furthermore, plant miRNAs have been shown to be involved in various stress responses, such as oxidative, mineral nutrient deficiency, dehydration, and even mechanical stimulus. In this review, we focus on the current understanding of biogenesis and regulatory mechanisms of plant miRNAs. We also highlight specific examples of miRNAs, which are important regulators for plant abiotic stress responses. 相似文献
12.
Francis Corson Mokhtar Adda-Bedia Arezki Boudaoud 《Journal of theoretical biology》2009,259(3):440-93
Development commonly involves an interplay between signaling, genetic expression and biophysical forces. However, the relative importance of these mechanisms during the different stages of development is unclear. Leaf venation networks provide a fitting context for the examination of these questions. In mature leaves, venation patterns are extremely diverse, yet their local structure satisfies a universal property: at junctions between veins, angles and diameters are related by a vectorial equation analogous to a force balance. Using a cell proliferation model, we reproduce in silico the salient features of venation patterns. Provided that vein cells are given different mechanical properties, tensile forces develop along the veins during growth, causing the network to deform progressively. Our results suggest that the local structure of venation networks results from a reorganization driven by mechanical forces, independently of how veins form. This conclusion is supported by recent observations of vein development in young leaves and by the good quantitative agreement between our simulations and data from mature leaves. 相似文献
13.
Fernando Torres‐Medina Sonia Cabezas Tracy A. Marchant Julio Blas 《Journal of avian biology》2019,50(10)
In birds, the magnitude of the adrenocortical stress response can be down‐regulated during specific life‐history stages. Such modulation likely occurs when the effects of mounting robust corticosterone (Cort) elevations interfere with the normal progression of critical lifecycle activities (e.g. development, molt, migration, reproduction). The developmental hypothesis posits that altricial birds should display a ‘stress hyporesponsive period’ during the early post‐natal life stages, characterized by reduced adrenocortical stress responses compared to adult birds and a gradual age‐related increase. Such modulation would allow avoiding the potential deleterious effects that long‐term elevations of circulating Cort might exert on growth and development, when the physiological and behavioral abilities to cope with disturbance are limited. Two proximate hypotheses have been proposed to explain this age‐dependent pattern of Cort secretion. The ‘maturation hypothesis’ proposes a progressive age‐related growth, maturation and enhanced sensitivity to sensory input of the Hypothalamic‐Pituitary‐Adrenal (HPA) axis tissues, whereas the ‘negative feedback attenuation hypothesis’ proposes a gradual attenuation in the intensity of the negative feedback in the HPA axis. Here we tested these hypotheses by experimentally inducing negative feedback on the HPA axis via dexamethasone (DEX) treatment in nestling white storks Ciconia ciconia. Nestling age positively affected stress‐induced plasma Cort (STRESS‐Cort) levels during experimental handling and restraint, thus supporting the developmental hypothesis. DEX treatment significantly reduced STRESS‐Cort levels compared to saline (SAL) treatment, thus eliciting the expected negative feedback on the HPA axis. However, inter‐ and intra‐individual comparisons indicated no age effects on the intensity of the negative feedback exerted by DEX. Our results do not support the negative feedback attenuation hypothesis and suggest that progressive maturation of the HPA axis tissues is the proximate mechanism responsible for age‐related changes in the stress response during avian post‐natal development. We encourage further tests of the proposed proximate mechanisms during migration, breeding and molt. 相似文献
14.
Alexandra Bächtold Estevao Alves Silva Kleber Del-Claro 《Studies on Neotropical Fauna and Environment》2016,51(2):112-120
We investigated the occurrence of myrmecophilous florivorous lycaenid larvae in Banisteriopsis malifolia (Malpighiaceae) according to habitat conservation status (disturbed and preserved savanna), plant phenology, height and the presence of tending ants. The abundance and richness of lycaenids were sixfold and fivefold greater, respectively, in the disturbed area than in the protected savanna. Lycaenids occurred mostly on plants visited by Camponotus blandus, a mutualistic partner of larvae. Habitat type was the main factor influencing lycaenid occurrence, as plants in open areas offered more food resources and tending ants. Banisteriopsis malifolia was considered useful as a host for lycaenids in disturbed sites. 相似文献
15.
Yunyun Wang Jian Zhang Jalene M. LaMontagne Fei Lin Buhang Li Ji Ye Zuoqiang Yuan Xugao Wang Zhanqing Hao 《植被学杂志》2017,28(2):413-423
16.
捕食者不但可以通过直接捕杀猎物而控制猎物的种群数量,还可以通过捕食风险效应影响猎物种群的繁殖和动态,并且在某些情况下,捕食风险效应对猎物种群动态的控制作用甚至大于捕食者的直接捕杀.关于捕食风险效应对猎物动物繁殖产出和种群动态变化的作用及其机理方面的野外研究越来越受到国内外学者重视.本文介绍了近年来捕食风险效应的研究进展,重点关注了美国黄石国家公园中捕食者对马鹿(Cervus elephus)、加拿大育空地区的捕食者对白靴兔(Lepus americanus)的捕食风险效应等案例研究,以阐明捕食风险效应对猎物种群动态影响的重要性,以及关于捕食风险效应影响猎物种群繁殖和动态机理的两个假说(捕食者敏感食物假说、捕食应激假说).并结合我国在捕食者与猎物之间关系的研究现状,提出了进一步在野外开展捕食风险效应对濒危有蹄类猎物种群动态影响研究的建议,阐释了开展这些研究的重要意义. 相似文献
17.
《Basic and Applied Ecology》2014,15(5):444-452
Following its introduction into Europe (EU), the common milkweed (Asclepias syriaca) has been free of most specialist herbivores that are present in its native North American (NA) range, except for the oleander aphid Aphis nerii. We compared EU and NA populations of A. nerii on EU and NA milkweed populations to test the hypothesis that plant–insect interactions differ on the two continents. First, we tested if herbivore performance is higher on EU plants than on NA plants, because the former have escaped most of their herbivores and have perhaps been selected for lower defence levels following introduction. Second, we compared two A. nerii lines (one from each continent) to test whether genotypic differences in the herbivore may influence species interactions in plant–herbivore communities in the context of species introductions. The NA population of A. nerii developed faster, had higher fecundity and attained higher population growth rates than the EU population. There was no overall significant continental difference in aphid resistance between the plants. However, milkweed plants from EU supported higher population growth rates and faster development of the NA line of A. nerii than plants from NA. In contrast, EU aphids showed similar (low) performance across plant populations from both continents. In a second experiment, we examined how chewing herbivores indirectly mediate interactions between milkweeds and aphids, and induced A. syriaca plants from each continent by monarch caterpillars (Danaus plexippus) to compare the resulting changes in plant quality on EU aphid performance. As specialist chewing herbivores of A. syriaca are only present in NA, we expected that plants from the two continents may affect aphid growth in different ways when they are challenged by a specialist chewing herbivore. Caterpillar induction decreased aphid developmental times on NA plants, but not on EU plants, whereas fecundity and population growth rates were unaffected by induction on both plant populations. The results show that genetic variation in the plants as well as in the herbivores can determine the outcome of plant–herbivore interactions. 相似文献
18.
A. M. Sánchez-Moreiras N. Pedrol L. González & M. J. Reigosa 《Plant biology (Stuttgart, Germany)》2009,11(4):582-590
In order to test the stress hypothesis of allelopathy of Reigosa et al. (1999, 2002) , the combined action of a well-established allelochemical compound (2-3 H -benzoxazolinone, BOA) and a common abiotic stress (salt stress) were investigated in lettuce ( Lactuca sativa L.). In a previous study ( Baerson et al. 2005 ), we demonstrated that the primary effects of BOA are related to the expression of genes involved in detoxification and stress responses, which might serve to simultaneously alleviate biotic and abiotic stresses. Through analysis of the same physiological and biochemical parameters previously studied for BOA alone ( Sánchez-Moreiras & Reigosa 2005 ), we observed specific effects of salt stress alone, as well as for the two stresses together (BOA and salt). This paper demonstrates that plants showing tolerance to salt stress (reduced stomatal density, increased proline content, higher K+ concentration, etc .) become salt sensitive (markedly low Ψw values, high putrescine content, increased lipid peroxidation, etc .) when simultaneously treated with the allelochemical BOA. We also report additional information on the mechanisms of action of BOA, and general stress responses in this plant species. 相似文献
19.
20.