首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
H2 thresholds, concentrations below which H2 consumption by a microbial group stops, have been associated with microbial respiratory processes such as dechlorination, denitrification, sulfate reduction, and methanogenesis. Researchers have proposed that observed H2 thresholds occur when the available Gibbs free energy is minimal (ΔG ≈ 0) for a specific respiratory reaction. Others suggest that microbial kinetics also may play a role in controlling the thresholds. Here, we comprehensively evaluate H2 thresholds in light of microbial thermodynamic and kinetic principles. We show that a thermodynamic H2 threshold for Methanobacterium bryantii M.o.H. is not controlled by ΔG for methane production from H2 + HCO3. We repeatedly attain a H2 threshold near 0.4 nM, with a range of 0.2–1 nM, and ΔG for methanogenesis from H2 + HCO3 is positive, +5 to +7 kJ/mol-H2, at the threshold in most cases. We postulate that the H2 threshold is controlled by a separate reaction other than methane production. The electrons from H2 oxidation are transferred to an electron sink that is a solid-phase component of the cells. We also show that a kinetic threshold (S min) occurs at a theoretically computed H2 concentration of about 2400 nM at which biomass growth shifts from positive to negative.  相似文献   

2.
Oxidative stress is associated with many cardiovascular diseases, such as hypertension and arteriosclerosis. Oxidative stress reportedly activates the L-type voltage-gated calcium channel (VDCCL) and elevates [Ca2+]i in many cells. However, how oxidative stress activates VDCCL under clinical setting and the consequence for arteries are unclear. Here, we examined the hypothesis that hydrogen peroxide (H2O2) regulates membrane potential (Em) by altering Na+ influx through cation channels, which consequently activates VDCCL to induce vasoconstriction in rat mesenteric arteries. To measure the tone of the endothelium-denuded arteries, a conventional isometric organ chamber was used. Membrane currents and Em were recorded by the patch-clamp technique. [Ca2+]i and [Na+]i were measured with microfluorometry using Fura2-AM and SBFI-AM, respectively. We found that H2O2 (10 and 100 µM) increased arterial contraction, and nifedipine blocked the effects of H2O2 on isometric contraction. H2O2 increased [Ca2+]i as well as [Na+]i, and depolarised Em. Gd3+ (1 µM) blocked all these H2O2-induced effects including Em depolarisation and increases in [Ca2+]i and [Na+]i. Although both nifedipine (30?nM) and low Na+ bath solution completely prevented the H2O2-induced increase in [Na+], they only partly inhibited the H2O2-induced effects on [Ca2+]i and Em. Taken together, the results suggested that H2O2 constricts rat arteries by causing Em depolarisation and VDCCL activation through activating Gd3+-and nifedipine-sensitive, Na+-permeable channels as well as Gd3+-sensitive Ca2+-permeable cation channels. We suggest that unidentified Na+-permeable cation channels as well as Ca2+-permeable cation channels may function as important mediators for oxidative stress-induced vascular dysfunction.  相似文献   

3.
New copper(II) complexes [CuL2]2+ (L2=7,7,9-trimethyl-1,3,6,10,13-pentaazabicyclo[11,2,11.13]hexadec-9-ene) and [Cu2(L3)(H2O)2]4+ have been prepared by the reaction of [CuL1]2+ (L1=5,5,7-trimethyl-1,4,8,11,14-pentaazatetradce-7-ene) and formaldehyde. The mononuclear complex [CuL2]2+ has a square-planar coordination geometry with a 5-6-5-6 chelate ring sequence and is relatively stable even in low pH at room temperature. The dinuclear complex [Cu2(L3)(H2O)2]4+ consists of two unsaturated 15-membered pentaaza macrocyclic units (7,7,9-trimethyl-1,3,6,10,13-pentaazacyclopentadec-9-ene) that are linked together by a methylene group in a tilted face-to-face arrangement [Cu?Cu distance: 7.413(2) Å ]. Each macrocyclic unit of [Cu2(L3)(H2O)2]4+ contains one four-membered chelate ring and has a severely distorted octahedral coordination polyhedron. The dinuclear complex is quite stable in aqueous solutions containing an excess of formaldehyde or in dry acetonitrile but is decomposed to [CuL1]2+ and [CuL2]2+ in pure water.  相似文献   

4.
《Inorganica chimica acta》2004,357(9):2543-2552
Ni(II), Co(II) and Co(III) complexes of imidazole- and pyrrole-2-carbaldehyde thiosemicarbazone ligands (H2L1 and H2L2, respectively) have been prepared. The X-ray crystal structures of [Co(L1)(HL1)], [Ni(H2L1)2]Cl2 · 3.5H2O and [Ni(HL2)2] have been solved. The Co(III) ion assumes a slightly distorted octahedral coordination geometry, involving both N2S binding domain of di- and monoanionic ligand molecules. Whereas in [Ni(HL2)2] the metal ion is tetracoordinated in a square planar geometry by two pyrrole-2-carbaldehyde thiosemicarbazone molecules acting as NS-donor, the spatial array of non deprotonated H2L1 ligand molecules in [Ni(H2L1)2]Cl2 · 3.5H2O is equivalent to that found for [Co(L1)(HL1)]. The in vitro antimicrobial properties of the ligands and their complexes were tested against representative bacterial and fungal strains in broth culture. The compounds H2L2 and [Co(L2)(HL2)(H2L2)] · 1.5H2O exhibit a moderate inhibitory effect on the microbial proliferation and only against some Gram positive bacteria.  相似文献   

5.
Three mono oxovanadium(V) complexes of tridentate Schiff base ligands [VO(OMe)L1] (1), [VO(OMe)L2] (2) and [VO(OMe)L3] (3) obtained by monocondensation of 3-hydroxy-2-naphthohydrazide and aromatic o-hydroxyaldehydes have been synthesized (H2L1 = (E)-3-hydroxy-N′-(2-hydroxy-3-methoxybenzylidene)-2-naphthohydrazide, H2L2 = (E)-3-hydroxy-N′-(2-hydroxybenzylidene)-2-naphthohydrazide and H2L3 = (E)-N′-(5-bromo-2-hydroxybenzylidene)-3-hydroxy-2-naphthohydrazide). The complexes were characterized by spectroscopic methods in the solid state (IR) and in solution (UV-Vis, 1H NMR). Single crystal X-ray analyses were performed with 1 and 2. The catalytic potential of these complexes has been tested for the oxidation of cyclooctene using H2O2 as the terminal oxidant. The effects of various parameters including the molar ratio of oxidant to substrate, the temperature, and the solvent have been studied. The catalyst 2 showed the most powerful catalytic activity in oxidation of various terminal, cyclic and phenyl substituted olefins. Excellent conversions have been obtained for the oxidation of cyclic and bicyclic olefins.  相似文献   

6.
We investigated the biosynthetic pathway for 2-phenylethanol, the dominant floral scent compound in roses, using enzyme assays. L-[2H8] Phenylalanine was converted to [2H8] phenylacetaldehyde and [2H8]-2-phenylethanol by two enzymes derived from the flower petals of R. ‘Hoh-Jun,’ these being identified as pyridoxal-5′-phosphate-dependent L-aromatic amino acid decarboxylase (AADC) and phenylacetaldehyde reductase (PAR). The activity of rose petal AADC to yield phenylacetaldehyde was nine times higher toward L-phenylalanine than toward its D-isomer, and this conversion was not inhibited by iproniazid, a specific inhibitor of monoamine oxidase. Under aerobic conditions, rose petal AADC stoichiometrically produced NH3 together with phenylacetaldehyde during the course of decarboxylation and oxidation, followed by the hydrolysis of L-phenylalanine. Phenylacetaldehyde was subsequently converted to 2-phenylethanol by the action of PAR. PAR showed specificity toward several volatile aldehydes.  相似文献   

7.
The acid-base properties and Cu(II), Ni(II), Ag(I) and Hg(II) binding abilities of PAMAM dendrimer, L, and of the simple model compounds, the tetraamides of EDTA and PDTA, L1, were studied in solution by pH-metric methods and by 1H NMR and UV-Vis spectroscopy. PAMAM is hexabasic and six pKa values have been determined and assigned. PAMAM forms five identifiable complexes with copper(II), [CuLH4]6+, [CuLH2]4+, [CuLH]3+, [CuL]2+ and [CuLH-1]+ in the pH range 2-11 and three with nickel(II), [NiLH]3+, [NiL]2+ and [NiLH-1]+ in the pH range 7-11. The complex [CuLH4]6+, which contains two tertiary nitrogen and three amide oxygen atoms coordinated to the metal ion, is less stable than the analogous EDTA and PDTA tetraamide complexes [CuL1]2+, which contain two tertiary nitrogen and four amide oxygen atoms, due to ring size and charge effects. With increasing pH, [CuLH4]6+ undergoes deprotonation of two coordinated amide groups to give [CuLH2]4+ with a concomitant change from O-amide to N-amidate coordination. Surprisingly and in contrast to the tetraamide complexes [CuL1]2+, these two deprotonation steps could not be separated. As expected the nickel(II) complexes are less stable than their copper(II) analogues. The tetra-N-methylamides of EDTA, L1(b), and PDTA form mononuclear and binuclear complexes with Hg(II). In the case of L1(b) these have stoichiometries HgL1(b)Cl2, [HgL1(b)H−2Cl2]2−, [Hg2L1(b)Cl2]2+, Hg2L1(b)H−2Cl2 and [Hg2L1(b)H−5Cl2]3−. Based on 1H NMR and pH-metric data the proposed structure for HgL1(b)Cl2, the main tetraamide ligand containing species in the pH range <3-6.5, contains L1(b) coordinated to the metal ion through the two tertiary nitrogens and two amide oxygens while the structure of [HgL1(b)H−2Cl2]2−, the main tetraamide ligand species at pH 7.5-9.0, contains the ligand similarly coordinated but through two amidate nitrogen atoms instead of amide oxygens. The proposed structure of [Hg2L1(b)Cl2]2+, a minor species at pH 3-6.5, also based on 1H NMR and pH-metric data, contains each Hg(II) coordinated to a tertiary amino nitrogen, two amide oxygens and a chloride ligand while that of [Hg2L1(b)H−5Cl2]3−, contains each Hg(II) coordinated to a tertiary amino nitrogen, two amidate nitrogens, a chloride and a hydroxo ligand in the case of one of the Hg(II) ions. The parent EDTA and PDTA amides only form mononuclear complexes. PAMAM also forms dinuclear as well as mononuclear complexes with mercury(II) and silver(I). In the pH range 3-11 six complexes with Hg(II) i.e. [HgLH4Cl2]4+, [HgLH3Cl2]3+, [Hg2LCl2]2+, [Hg2LH−1Cl2]+, [HgLH−1Cl2] and [HgLH−2Cl2]2− were identified and only two with Ag(I), [AgLH3]4+ and [Ag2L]2+. Based on stoichiometries, stability constant comparisons and 1H NMR data, structures are proposed for these species. Hence [HgLH4Cl2]4+ is proposed to have a similar structure to [CuLH4]6+ while [Hg2LCl2]2+has a similar structure to [Hg2L1(b)H−5Cl2]3−.  相似文献   

8.
White birch (Betula papyrifera Marsh.) seedlings were exposed to ambient or doubled ambient carbon dioxide concentration ([CO2]), three soil temperatures (Tsoil) (low, intermediate, high), and three phosphorus (P) regimes (low, medium, high) in environment‐controlled greenhouses. Height (H), root‐collar diameter (RCD), biomass, and leaf phosphorus concentration (leaf P) were determined four months after initiation of treatments. The low Tsoil reduced H, RCD, shoot biomass, root biomass and total seedling biomass whereas the high‐P level and the [CO2] elevation increased all the growth and biomass parameters. Elevated [CO2] significantly reduced leaf P. There were significant two‐factor interactions suggesting that the effect of elevated [CO2] on (1) H, total biomass, biomass of plant components, and leaf P was dependent on Tsoil, (2) total biomass was contingent on P regime. For instance, the positive response of H and total biomass to elevated [CO2] was limited to seedlings raised under the intermediate and high Tsoil, respectively. In addition, [CO2] elevation increased total biomass only at the high‐P regime but not at the low‐ or medium‐P level where the effect of [CO2] was statistically insignificant. No significant main effect of treatment or interaction was observed for root to shoot biomass ratio.  相似文献   

9.
Hydrogenotrophic methanogenesis and dissimilatory sulfate reduction, two of the oldest energy conserving respiratory systems on Earth, apparently could not have evolved in the same host, as sulfite, an intermediate of sulfate reduction, inhibits methanogenesis. However, certain methanogenic archaea metabolize sulfite employing a deazaflavin cofactor (F420)-dependent sulfite reductase (Fsr) where N- and C-terminal halves (Fsr-N and Fsr-C) are homologs of F420H2 dehydrogenase and dissimilatory sulfite reductase (Dsr), respectively. From genome analysis we found that Fsr was likely assembled from freestanding Fsr-N homologs and Dsr-like proteins (Dsr-LP), both being abundant in methanogens. Dsr-LPs fell into two groups defined by following sequence features: Group I (simplest), carrying a coupled siroheme-[Fe4-S4] cluster and sulfite-binding Arg/Lys residues; Group III (most complex), with group I features, a Dsr-type peripheral [Fe4-S4] cluster and an additional [Fe4-S4] cluster. Group II Dsr-LPs with group I features and a Dsr-type peripheral [Fe4-S4] cluster were proposed as evolutionary intermediates. Group III is the precursor of Fsr-C. The freestanding Fsr-N homologs serve as F420H2 dehydrogenase unit of a putative novel glutamate synthase, previously described membrane-bound electron transport system in methanogens and of assimilatory type sulfite reductases in certain haloarchaea. Among archaea, only methanogens carried Dsr-LPs. They also possessed homologs of sulfate activation and reduction enzymes. This suggested a shared evolutionary history for methanogenesis and sulfate reduction, and Dsr-LPs could have been the source of the oldest (3.47-Gyr ago) biologically produced sulfide deposit.  相似文献   

10.
New molybdenum complexes were prepared by the reaction of [MoVIO2(acac)2] or (NH4)2[MoVOCl5] with different N-substituted pyridoxal thiosemicarbazone ligands (H2L1 = pyridoxal 4-phenylthiosemicarbazone; H2L2 = pyridoxal 4-methylthiosemicarbazone, H2L3 = pyridoxal thiosemicarbazone). The investigation of monomeric [MoO2L1(CH3OH)] or polymeric [MoO2L1-3] molybdenum(VI) complexes revealed that molybdenum is coordinated with a tridentate doubly-deprotonated ligand. In the oxomolybdenum(V) complexes [MoOCl2(HL1-3)] the pyridoxal thiosemicarbazonato ligands are tridentate mono-deprotonated. Crystal and molecular structures of molybdenum(VI) [MoO2L1(CH3OH)]·CH3OH, and molybdenum(V) complexes [MoOCl2(HL1)]·C2H5OH, as well as of the pyridoxal thiosemicarbazone ligand methanol solvate H2L3·MeOH, were determined by the single crystal X-ray diffraction method.  相似文献   

11.
Reaction of the potassium salts of (EtO)2P(O)CH2C6H4-4-(NHC(S)NHP(S)(OiPr)2) (HLI), (CH2NHC(S)NHP(S)(OiPr)2)2 (H2LII) or cyclam(C(S)NHP(S)(OiPr)2)4 (H4LIII) with [Cu(PPh3)3I] or a mixture of CuI and Ph2P(CH2)1-3PPh2 or Ph2P(C5H4FeC5H4)PPh2 in aqueous EtOH/CH2Cl2 leads to [Cu(PPh3)LI] (1), [Cu2(Ph2PCH2PPh2)2LII] (2), [Cu{Ph2P(CH2)2PPh2}LI] (3), [Cu{Ph2P(CH2)3PPh2}LI] (4), [Cu{Ph2P(C5H4FeC5H4)PPh2}LI] (5), [Cu2(PPh3)2LII] (6), [Cu2(Ph2PCH2PPh2)LII] (7), [Cu2{Ph2P(CH2)2PPh2}2LII] (8), [Cu2{Ph2P(CH2)3PPh2}2LII] (9), [Cu2{Ph2P(C5H4FeC5H4)PPh2}2LII] (10), [Cu8(Ph2PCH2PPh2)8LIIII4] (11), [Cu4{Ph2P(CH2)2PPh2}4LIII] (12), [Cu4{Ph2P(CH2)3PPh2}4LIII] (13) or [Cu4{Ph2P(C5H4FeC5H4)PPh2}4LIII] (14) complexes. The structures of these compounds were investigated by IR, 1H, 31P{1H} NMR spectroscopy; their compositions were examined by microanalysis. The luminescent properties of the complexes 1-14 in the solid state are reported.  相似文献   

12.
A potential tetradentate indolecarboxamide ligand, H4L3 is synthesized and investigated for its coordination abilities towards Ni(II) and Cu(II) ions. Two H4L3 ligands in their tetra-deprotonated form [L3]4−, were found to coordinate two metal centers resulting in the formation of [Ni2(L3)2]4− (5) and [Cu2(L3)2]4− (6) complexes. The crystal structure of 6 displays the formation of a dinuclear structure where two fully deprotonated ligands, [L3]4− hold two copper(II) ions together. Even more interesting is the fact that both deprotonated ligands, [L3]4− coordinate the copper ions in an identical and symmetrical fashion. The Na+ cations present in the complex 6 stitch together the dinuclear units resulting in the formation of a coordination chain polymer. Four sodium ions connect two dinuclear units via interacting with the Oamide groups. Further, Na+ cations were found to coordinate several DMF molecules; some of them are terminal and a few are bridging in nature. The solution state structure (determined by the NMR spectral analysis) of the diamagnetic complex 5 also supported the fact that two deprotonated ligands, coordinate two nickel ions in an identical and symmetrical fashion. Absorption spectral studies reveal that the solid-state square-planar geometry is retained in solution and both complexes do not show any tendency to coordinate potential axial ligands. The variable-temperature magnetic measurements and EPR spectra indicate spin-spin exchange between two copper centers in complex 6. The electrochemical results for both complexes show three irreversible oxidative responses that correspond to the oxidation of first and second metal ion followed by the ligand oxidation, respectively.  相似文献   

13.
The dinuclear complex [Cu2(L1)2(H2tea)2] (1) as well as the linear trinuclear complexes [Cu3(L1)4(H2tea)2] (2), [Cu3(L2)4(H2tea)2] (3) and [Cu3(L1)2(H2tea)2(NO3)2] (4) where L1 = 2-thiophene carboxylato, L2 = 2-thiophene acetato and H2tea = the single deprotonated form of triethanolamine have been prepared and pharmacochemically studied. The crystal structure of 1 is also reported. In vitro antioxidant activity of free ligands and their respective copper complexes includes: a) interaction with 1,1-diphenyl-2-picrylhydrazyl stable free radical, b) the ΗΟ˙ mediated oxidation of DMSO, c) scavenging of superoxide anion radicals, d) inhibition of lipid peroxidation and e) soybean lipoxygenase inhibition. The results indicate selectivity of the complexes to different free radicals as a consequence of their physichochemical features. The majority of the complexes 1, 2, 3, 4 effectively inhibit lipid peroxidation. The trinuclear complex 3 is by far the most active with IC50 = 10 μM, within the set, followed by complexes 1 and 2. The complexes were evaluated for their efficacy as anticancer agents against different cancer and normal human cell lines. Results showed that, these compounds mediate a moderate cytotoxic response to normal and cancer cell lines tested and induce cell cycle arrest in G2/M phase of the cell cycle. Flow cytometric analysis suggested that the tested compounds can induce apoptosis.  相似文献   

14.
Treatment of 4N-monosubstituted bis(thiosemicarbazone) ligands of 3,5-diacetyl-1,2,4-triazol series with lithium tetrachloridopalladate gave the dinuclear complexes of general formula [Pd(μ-H3L1-5)]2, but using dichloridobistriphenylphosphinepalladium(II) salt, the first mononuclear bis(thiosemicarbazone)-palladium-triphenylphosphine complexes of the 3,5-diacetyl-1,2,4-triazol series, [Pd(H3L1-5)PPh3], have been obtained. All the compounds have been characterized by elemental analysis and by IR and NMR spectroscopy, and the crystal and molecular structures of dinuclear complexes [Pd(μ-H3L3)]2 and [Pd(μ-H3L5)]2 as well as mononuclear complexes [Pd(H3L1)PPh3], [Pd(H3L2)PPh3], [Pd(H3L3)PPh3] and [Pd(H3L4)PPh3] have been determined by X-ray crystallography. The new compounds synthesized have been evaluated for antiproliferative activity in vitro against NCI-H460, A2780 and A2780cisR human cancer cell lines. Subsequent toxicity study, on normal renal LLC-PK1 cells, shows that all compounds investigated exhibit very low toxicity on kidney cells with respect to cisplatin.  相似文献   

15.
A novel series of 5H-chromeno[3,4-c]pyridine, 6H-isochromeno[3,4-c]pyridine and 6H-isochromeno[4,3-d]pyrimidine derivatives as dual ROCK1 and ROCK2 inhibitors is described. Optimization led to compounds with sub-nanomolar inhibitory affinity for both kinases and excellent kinome selectivity. Compound 19 exhibited ROCK1 and ROCK2 IC50 of 0.67 nM and 0.18 nM respectively.  相似文献   

16.
Benzoylhydrazones and semicarbazones derived from 2,6-diacetylpyridine react with common dioxouranium(VI) compounds such as uranyl nitrate or [NBu4]2[UO2Cl4] to form air-stable complexes. 2,6-Diacetylpyridinebis(benzoylhydrazone) (H2L1), 2,6-diacetylpyridinebis(N4-phenylsemicarbazone) (H2L2) and the asymmetric proligand 2,6-diacetylpyridine(benzoylhydrazone)(N4-phenylsemicarbazone) (H2L3) give yellow products of the composition [UO2(L)]. The neutral compounds contain doubly deprotonated ligands and possess uranium atoms with distorted pentagonal-bipyramidal coordination spheres. The equatorial coordination spheres of the metal atoms can be extended by the addition of a monodentate ligand such as pyridine or DMSO. The uranium atoms in the resulting complexes have hexagonal-bipyramidal coordination environments with the oxo ligands in axial positions.X-ray diffraction studies on [UO2(L1)(DMSO)], [UO2(L2)], [UO2(L2)(DMSO)] and [UO2(L3)] show relatively short U-O bonds to the benzoylic oxygen atoms between 2.273(6) and 2.368(5) Å. This suggests a preference of these donor sites of the ligands over their imino and amine functionalities (U-N bond lengths: 2.502(7)-2.671(7) Å). The addition of a sixth ligand to the equatorial coordination sphere results in a lengthening of the metal-pyridine bonds.  相似文献   

17.
Three coordination complexes of formula [Ni(L1)2(H2O)4].4H2O (1), [Mn(L2)2(H2O)4] (2) and [Mn(L2)2(H2O)2]n (3) [L1H = 6-methylpyridine-3-carboxylic acid, L2H = 3-(3-pyridyl)acrylic acid] have been synthesized and structurally characterized by X-ray single crystal analysis. A 3D network is achieved through H-bonding in 1 and 2, while crystal packing of complex 3 shows a 3D supramolecular coordination polymer. Thermal properties have been investigated by thermogravimetric analysis. Luminescence study features the presence of LMCT and metal purterbed ligand centered emission bands.  相似文献   

18.
Imidazole-2-thiol derivatives H2L1-3 (H2L1 = 1H-benzoimidazole-2-thiol, H2L2 = 5-methyl-1H-benzoimidazole-2-thiol, and H2L3 = 1H-imidazole-2-thiol) act as neutral monodentate ligands in a number of technetium and rhenium complexes. Disubstituted M(V) (M = Tc, Re) complexes of the type [AsPh4]{[MOCl2(H2Ln)2(H2O)]Cl2} are formed when [MOCl4] react with H2L1-3 in 1:2 stoichiometric ratio. Single crystal X-ray structure determinations were carried out on [AsPh4]{[TcOCl2(H2L1)2(H2O)]Cl2}. The coordination sphere is pseudo-octahedral in which the sulfur atoms of two ligands sit in the equatorial plane and a water molecule is in trans to the TcO multiple bond. All the complexes react with an excess of the corresponding ligand to form tetrasubstituted cationic species {[MO(H2Ln)4]Cl3}. These complexes can be also isolated by reaction of [MOCl4] with an excess of ligand. No complex is obtained with benzothiazole-2-thiol (HL4) and benzoxazole-2-thiol (HL5). Ligand exchange reactions of [ReOCl3(PPh3)2] with HL4,5 have also been investigated. Treating the oxo-precursor with HL4 no product is isolated, while with HL5 the chelate oxo-compound [ReOCl2(L5)(PPh3)] is formed as two isomers. An interesting organometallic complex of Re(IV) [ReCl3(L5∗)(PPh3)2] is obtained when a slight excess of HL5 reacts with [ReOCl3(PPh3)2] in refluxing benzene solution and in air. Geometry about the Re atom is approximately octahedral in which the equatorial plane contains three Cl atoms and the carbon atom of the benzoxazole ligand anion, the apical positions are occupied by two PPh3. The reaction with O-ethyl S-hydrogen p-tolyl carbonothioimidate HL6 which contains the same heteroatoms of HL5 does not form an organometallic species, but forms the chelate oxo-Re(V) complex [ReOCl2(L6)(PPh3)]. The solid-state structure has been authenticated by X-ray crystallography.  相似文献   

19.
The synthesis and characterization by elemental analysis, emission atomic spectroscopy, TG measurements, magnetic measurements, FTIR, 1H NMR, UV–visible spectra and conductivity of a series of iron (II) and nickel (II) complexes with two heterocyclic ligands (L1(SMX): sulfamethoxazole and L2(MIZ): metronidazole) used in pharmaceutical field and with a new ligand derived benzoxazole (L3(MPBO): 2-(5-methylpyridine-2-yl)benzoxazole), were reported. The formulae obtained for the complexes are: [M(L1)2 Cl2nH2O, [M(L2)2Cl2(H2O)2]·H2O and [M(L3)2(OH)2nH2O. Stability constants of these complexes have been determined by potentiometric methods in water–ethanol (90:10, v/v) mixture at a 0.2 mol L?1 ionic strength (NaCl) and at 25.0 ± 0.1 °C. Sirko program was used to determine the protonation constants as well as the binding constants of three species [ML2H2]2+, [ML2] and [ML]2+. The antimicrobial activity of the ligands and complexes was evaluated in vitro against different human bacteria and fungi using agar diffusion method.Iron sulfamethoxazole complex showed a remarkable inhibition of bacteria growth especially on Staphylococcus aureus and P. aeruginosa. The iron metronidazole complex is active against yeasts especially on Candida tropicalis strain. Nickel complexes presented different antibacterial and antifungal behavior's against bacteria and fungal.The acute toxicity study revealed that the iron complexes are not toxic at 2000 mg/kg dose orally administrated.LD50 for nickel complexes was determined using graphical method.No significant differences in the body weights between the control and the treated groups of both rat sexes in subacute toxicity study using for iron complexes. Hematological and clinical blood chemistry analysis revealed no toxicity effects of the iron complexes. Pathologically, neither gross abnormalities nor histopathological changes were observed for these complexes.  相似文献   

20.
The aggregates {[Zn(L1)]H2O} and {[Y(L2)]4Na3(H2O)2(MeOH)1.2}(NO3)3·2H2O·5.6MeOH have been assembled from complexes of imino-phosphonate monoester ligands [L1]2− {CH2[CH2NC(CH3)PO2(OMe)]2}2− and [L2]3− {N[CH2CH2NC(CH3)PO2(OMe)]3}3−, the topology of these materials differing from that of their imino-carboxylate analogues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号