首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 414 毫秒
1.

Background

Protein inter-residue contact maps provide a translation and rotation invariant topological representation of a protein. They can be used as an intermediary step in protein structure predictions. However, the prediction of contact maps represents an unbalanced problem as far fewer examples of contacts than non-contacts exist in a protein structure. In this study we explore the possibility of completely eliminating the unbalanced nature of the contact map prediction problem by predicting real-value distances between residues. Predicting full inter-residue distance maps and applying them in protein structure predictions has been relatively unexplored in the past.

Results

We initially demonstrate that the use of native-like distance maps is able to reproduce 3D structures almost identical to the targets, giving an average RMSD of 0.5Å. In addition, the corrupted physical maps with an introduced random error of ±6Å are able to reconstruct the targets within an average RMSD of 2Å. After demonstrating the reconstruction potential of distance maps, we develop two classes of predictors using two-dimensional recursive neural networks: an ab initio predictor that relies only on the protein sequence and evolutionary information, and a template-based predictor in which additional structural homology information is provided. We find that the ab initio predictor is able to reproduce distances with an RMSD of 6Å, regardless of the evolutionary content provided. Furthermore, we show that the template-based predictor exploits both sequence and structure information even in cases of dubious homology and outperforms the best template hit with a clear margin of up to 3.7Å. Lastly, we demonstrate the ability of the two predictors to reconstruct the CASP9 targets shorter than 200 residues producing the results similar to the state of the machine learning art approach implemented in the Distill server.

Conclusions

The methodology presented here, if complemented by more complex reconstruction protocols, can represent a possible path to improve machine learning algorithms for 3D protein structure prediction. Moreover, it can be used as an intermediary step in protein structure predictions either on its own or complemented by NMR restraints.  相似文献   

2.

Background

Prediction of protein structures from their sequences is still one of the open grand challenges of computational biology. Some approaches to protein structure prediction, especially ab initio ones, rely to some extent on the prediction of residue contact maps. Residue contact map predictions have been assessed at the CASP competition for several years now. Although it has been shown that exact contact maps generally yield correct three-dimensional structures, this is true only at a relatively low resolution (3–4 Å from the native structure). Another known weakness of contact maps is that they are generally predicted ab initio, that is not exploiting information about potential homologues of known structure.

Results

We introduce a new class of distance restraints for protein structures: multi-class distance maps. We show that C α trace reconstructions based on 4-class native maps are significantly better than those from residue contact maps. We then build two predictors of 4-class maps based on recursive neural networks: one ab initio, or relying on the sequence and on evolutionary information; one template-based, or in which homology information to known structures is provided as a further input. We show that virtually any level of sequence similarity to structural templates (down to less than 10%) yields more accurate 4-class maps than the ab initio predictor. We show that template-based predictions by recursive neural networks are consistently better than the best template and than a number of combinations of the best available templates. We also extract binary residue contact maps at an 8 Å threshold (as per CASP assessment) from the 4-class predictors and show that the template-based version is also more accurate than the best template and consistently better than the ab initio one, down to very low levels of sequence identity to structural templates. Furthermore, we test both ab-initio and template-based 8 Å predictions on the CASP7 targets using a pre-CASP7 PDB, and find that both predictors are state-of-the-art, with the template-based one far outperforming the best CASP7 systems if templates with sequence identity to the query of 10% or better are available. Although this is not the main focus of this paper we also report on reconstructions of C α traces based on both ab initio and template-based 4-class map predictions, showing that the latter are generally more accurate even when homology is dubious.

Conclusion

Accurate predictions of multi-class maps may provide valuable constraints for improved ab initio and template-based prediction of protein structures, naturally incorporate multiple templates, and yield state-of-the-art binary maps. Predictions of protein structures and 8 Å contact maps based on the multi-class distance map predictors described in this paper are freely available to academic users at the url http://distill.ucd.ie/.  相似文献   

3.
Bolstered by recent methodological and hardware advances, deep learning has increasingly been applied to biological problems and structural proteomics. Such approaches have achieved remarkable improvements over traditional machine learning methods in tasks ranging from protein contact map prediction to protein folding, prediction of protein–protein interaction interfaces, and characterization of protein–drug binding pockets. In particular, emergence of ab initio protein structure prediction methods including AlphaFold2 has revolutionized protein structural modeling. From a protein function perspective, numerous deep learning methods have facilitated deconvolution of the exact amino acid residues and protein surface regions responsible for binding other proteins or small molecule drugs. In this review, we provide a comprehensive overview of recent deep learning methods applied in structural proteomics.  相似文献   

4.
The topology of protein folds can be specified by the inter-residue contact-maps and accurate contact-map prediction can help ab initio structure folding. We developed TripletRes to deduce protein contact-maps from discretized distance profiles by end-to-end training of deep residual neural-networks. Compared to previous approaches, the major advantage of TripletRes is in its ability to learn and directly fuse a triplet of coevolutionary matrices extracted from the whole-genome and metagenome databases and therefore minimize the information loss during the course of contact model training. TripletRes was tested on a large set of 245 non-homologous proteins from CASP 11&12 and CAMEO experiments and outperformed other top methods from CASP12 by at least 58.4% for the CASP 11&12 targets and 44.4% for the CAMEO targets in the top-L long-range contact precision. On the 31 FM targets from the latest CASP13 challenge, TripletRes achieved the highest precision (71.6%) for the top-L/5 long-range contact predictions. It was also shown that a simple re-training of the TripletRes model with more proteins can lead to further improvement with precisions comparable to state-of-the-art methods developed after CASP13. These results demonstrate a novel efficient approach to extend the power of deep convolutional networks for high-accuracy medium- and long-range protein contact-map predictions starting from primary sequences, which are critical for constructing 3D structure of proteins that lack homologous templates in the PDB library.  相似文献   

5.
Recent work has shown that the accuracy of ab initio structure prediction can be significantly improved by integrating evolutionary information in form of intra-protein residue-residue contacts. Following this seminal result, much effort is put into the improvement of contact predictions. However, there is also a substantial need to develop structure prediction protocols tailored to the type of restraints gained by contact predictions. Here, we present a structure prediction protocol that combines evolutionary information with the resolution-adapted structural recombination approach of Rosetta, called RASREC. Compared to the classic Rosetta ab initio protocol, RASREC achieves improved sampling, better convergence and higher robustness against incorrect distance restraints, making it the ideal sampling strategy for the stated problem. To demonstrate the accuracy of our protocol, we tested the approach on a diverse set of 28 globular proteins. Our method is able to converge for 26 out of the 28 targets and improves the average TM-score of the entire benchmark set from 0.55 to 0.72 when compared to the top ranked models obtained by the EVFold web server using identical contact predictions. Using a smaller benchmark, we furthermore show that the prediction accuracy of our method is only slightly reduced when the contact prediction accuracy is comparatively low. This observation is of special interest for protein sequences that only have a limited number of homologs.  相似文献   

6.
Inter-residue interactions in protein folding and stability   总被引:6,自引:0,他引:6  
During the process of protein folding, the amino acid residues along the polypeptide chain interact with each other in a cooperative manner to form the stable native structure. The knowledge about inter-residue interactions in protein structures is very helpful to understand the mechanism of protein folding and stability. In this review, we introduce the classification of inter-residue interactions into short, medium and long range based on a simple geometric approach. The features of these interactions in different structural classes of globular and membrane proteins, and in various folds have been delineated. The development of contact potentials and the application of inter-residue contacts for predicting the structural class and secondary structures of globular proteins, solvent accessibility, fold recognition and ab initio tertiary structure prediction have been evaluated. Further, the relationship between inter-residue contacts and protein-folding rates has been highlighted. Moreover, the importance of inter-residue interactions in protein-folding kinetics and for understanding the stability of proteins has been discussed. In essence, the information gained from the studies on inter-residue interactions provides valuable insights for understanding protein folding and de novo protein design.  相似文献   

7.
We investigate the average inter-residue folding forces derived from mutational data of the 15 proteins: barstar, barnase, chymotrypsin inhibitor 2 (CI2), Src SH3 domain, spectrin R16 domain, Arc repressor, apo-azurin, cold shock protein B (cspB), C-terminal domain of ribosomal protein L9 (CTL9), FKBP12, α-lactalbumin, colicin E7 immunity protein 7 (IM7), colicin E9 immunity protein 9 (IM9), spectrin R17 domain, and ubiquitin. The residue-specific contributions to folding in most of the 15 protein molecules are highly non-uniformly distributed and are typically about 1 piconewton (pN) per interaction. The strongest folding forces often occur in some of the helices and strands of folding nuclei which suggests that folding nucleation−condensation is partially directed by formation of some secondary structure interactions. The correlation of the energy changes of mutants with inter-residue contact maps of the protein molecules provides a higher resolution than assigning the mutant data to certain positions in the polypeptide strand alone. In contrast to previous Φ-value analysis, we now can partially resolve folding motions. Compaction of at least one α-helix along its axis mediated by internal hydrogen bonds and stabilized by diffuse tertiary structure interactions appears to be one important molecular event during early folding in barstar, CI2, spectrin R16 domain, Arc repressor, α-lactalbumin, IM7, IM9, and spectrin R17 domain. A lateral movement of at least two strands neighbored in sequence towards each other appears to be involved in early folding of the SH3 domain, cspB, CTL9, and FKBP12.  相似文献   

8.
Abstract

The conformational sub-space oriented on early-stage protein folding is applied to lysozyme folding. The part of the Ramachandran map distinguished on the basis of a geometrical model of the polypeptide chain limited to the mutual orientation of the peptide bond planes is shown to deliver the initial structure of the polypeptide for the energy minimization procedure in the ab initio model of protein folding prediction. Two forms of energy minimization and molecular dynamics simulation procedures were applied to the assumed early-stage protein folding of lysozyme. One of them included the disulphide bond system and the other excluded it. The post-energy-minimization and post-dynamics structures were compared using RMS-D and non-bonding contact maps to estimate the degree of approach to the native, target structure of the protein molecule obtained using the limited conformational sub-space for the early stage of folding.  相似文献   

9.
Predicted protein residue–residue contacts can be used to build three‐dimensional models and consequently to predict protein folds from scratch. A considerable amount of effort is currently being spent to improve contact prediction accuracy, whereas few methods are available to construct protein tertiary structures from predicted contacts. Here, we present an ab initio protein folding method to build three‐dimensional models using predicted contacts and secondary structures. Our method first translates contacts and secondary structures into distance, dihedral angle, and hydrogen bond restraints according to a set of new conversion rules, and then provides these restraints as input for a distance geometry algorithm to build tertiary structure models. The initially reconstructed models are used to regenerate a set of physically realistic contact restraints and detect secondary structure patterns, which are then used to reconstruct final structural models. This unique two‐stage modeling approach of integrating contacts and secondary structures improves the quality and accuracy of structural models and in particular generates better β‐sheets than other algorithms. We validate our method on two standard benchmark datasets using true contacts and secondary structures. Our method improves TM‐score of reconstructed protein models by 45% and 42% over the existing method on the two datasets, respectively. On the dataset for benchmarking reconstructions methods with predicted contacts and secondary structures, the average TM‐score of best models reconstructed by our method is 0.59, 5.5% higher than the existing method. The CONFOLD web server is available at http://protein.rnet.missouri.edu/confold/ . Proteins 2015; 83:1436–1449. © 2015 Wiley Periodicals, Inc.  相似文献   

10.
Jie Hou  Tianqi Wu  Renzhi Cao  Jianlin Cheng 《Proteins》2019,87(12):1165-1178
Predicting residue-residue distance relationships (eg, contacts) has become the key direction to advance protein structure prediction since 2014 CASP11 experiment, while deep learning has revolutionized the technology for contact and distance distribution prediction since its debut in 2012 CASP10 experiment. During 2018 CASP13 experiment, we enhanced our MULTICOM protein structure prediction system with three major components: contact distance prediction based on deep convolutional neural networks, distance-driven template-free (ab initio) modeling, and protein model ranking empowered by deep learning and contact prediction. Our experiment demonstrates that contact distance prediction and deep learning methods are the key reasons that MULTICOM was ranked 3rd out of all 98 predictors in both template-free and template-based structure modeling in CASP13. Deep convolutional neural network can utilize global information in pairwise residue-residue features such as coevolution scores to substantially improve contact distance prediction, which played a decisive role in correctly folding some free modeling and hard template-based modeling targets. Deep learning also successfully integrated one-dimensional structural features, two-dimensional contact information, and three-dimensional structural quality scores to improve protein model quality assessment, where the contact prediction was demonstrated to consistently enhance ranking of protein models for the first time. The success of MULTICOM system clearly shows that protein contact distance prediction and model selection driven by deep learning holds the key of solving protein structure prediction problem. However, there are still challenges in accurately predicting protein contact distance when there are few homologous sequences, folding proteins from noisy contact distances, and ranking models of hard targets.  相似文献   

11.
Genome sequencing projects have ciphered millions of protein sequence, which require knowledge of their structure and function to improve the understanding of their biological role. Although experimental methods can provide detailed information for a small fraction of these proteins, computational modeling is needed for the majority of protein molecules which are experimentally uncharacterized. The I-TASSER server is an on-line workbench for high-resolution modeling of protein structure and function. Given a protein sequence, a typical output from the I-TASSER server includes secondary structure prediction, predicted solvent accessibility of each residue, homologous template proteins detected by threading and structure alignments, up to five full-length tertiary structural models, and structure-based functional annotations for enzyme classification, Gene Ontology terms and protein-ligand binding sites. All the predictions are tagged with a confidence score which tells how accurate the predictions are without knowing the experimental data. To facilitate the special requests of end users, the server provides channels to accept user-specified inter-residue distance and contact maps to interactively change the I-TASSER modeling; it also allows users to specify any proteins as template, or to exclude any template proteins during the structure assembly simulations. The structural information could be collected by the users based on experimental evidences or biological insights with the purpose of improving the quality of I-TASSER predictions. The server was evaluated as the best programs for protein structure and function predictions in the recent community-wide CASP experiments. There are currently >20,000 registered scientists from over 100 countries who are using the on-line I-TASSER server.  相似文献   

12.
Describing the whole story of protein folding is currently the main enigmatic problem in molecular bioinformatics study. Protein folding mechanisms have been intensively investigated with experimental as well as simulation techniques. Since a protein folds into its specific 3D structure from a unique amino acid sequence, it is interesting to extract as much information as possible from the amino acid sequence of a protein. Analyses based on inter-residue average distance statistics and a coarse-grained Gō-model simulation were conducted on Ig and FN3 domains of a titin protein to decode the folding mechanisms from their sequence data and native structure data, respectively. The central region of all domains was predicted to be an initial folding unit, that is, stable in an early state of folding. This common feature coincides well with the experimental results and underscores the significance of the β-sandwich proteins' common structure, namely, the key strands for folding and the Greek-key motif, which is located in the central region. We confirmed that our sequence-based techniques were able to predict the initial folding event just next to the denatured state and that a 3D-based Gō-model simulation can be used to investigate the whole process of protein folding.  相似文献   

13.

Background  

Predicting protein residue-residue contacts is an important 2D prediction task. It is useful for ab initio structure prediction and understanding protein folding. In spite of steady progress over the past decade, contact prediction remains still largely unsolved.  相似文献   

14.
Template-based modeling is considered as one of the most successful approaches for protein structure prediction. However, reliably and accurately selecting optimal template proteins from a library of known protein structures having similar folds as the target protein and making correct alignments between the target sequence and the template structures, a template-based modeling technique known as threading, remains challenging, particularly for non- or distantly-homologous protein targets. With the recent advancement in protein residue-residue contact map prediction powered by sequence co-evolution and machine learning, here we systematically analyze the effect of inclusion of residue-residue contact information in improving the accuracy and reliability of protein threading. We develop a new threading algorithm by incorporating various sequential and structural features, and subsequently integrate residue-residue contact information as an additional scoring term for threading template selection. We show that the inclusion of contact information attains statistically significantly better threading performance compared to a baseline threading algorithm that does not utilize contact information when everything else remains the same. Experimental results demonstrate that our contact based threading approach outperforms popular threading method MUSTER, contact-assisted ab initio folding method CONFOLD2, and recent state-of-the-art contact-assisted protein threading methods EigenTHREADER and map_align on several benchmarks. Our study illustrates that the inclusion of contact maps is a promising avenue in protein threading to ultimately help to improve the accuracy of protein structure prediction.  相似文献   

15.
Human metapneumovirus (HMPV) of the family Paramyxoviridae is a major cause of respiratory illness worldwide. Phosphoproteins (P) from Paramyxoviridae are essential co-factors of the viral RNA polymerase that form tetramers and possess long intrinsically disordered regions (IDRs). We located the central region of HMPV P (Pced) which is involved in tetramerization using disorder analysis and modeled its 3D structure ab initio using Rosetta fold-and-dock. We characterized the solution-structure of Pced using small angle X-ray scattering (SAXS) and carried out direct fitting to the scattering data to filter out incorrect models. Molecular dynamics simulations (MDS) and ensemble optimization were employed to select correct models and capture the dynamic character of Pced. Our analysis revealed that oligomerization involves a compact central core located between residues 169-194 (Pcore), that is surrounded by flexible regions with α-helical propensity. We crystallized this fragment and solved its structure at 3.1 Å resolution by molecular replacement, using the folded core from our SAXS-validated ab initio model. The RMSD between modeled and experimental tetramers is as low as 0.9 Å, demonstrating the accuracy of the approach. A comparison of the structure of HMPV P to existing mononegavirales Pced structures suggests that Pced evolved under weak selective pressure. Finally, we discuss the advantages of using SAXS in combination with ab initio modeling and MDS to solve the structure of small, homo-oligomeric protein complexes.  相似文献   

16.
To understand the folding mechanism of a protein is one of the goals in bioinformatics study. Nowadays, it is enigmatic and difficult to extract folding information from amino acid sequence using standard bioinformatics techniques or even experimental protocols which can be time consuming. To overcome these problems, we aim to extract the initial folding unit for titin protein (Ig and fnIII domains) by means of inter-residue average distance statistics, Average Distance Map (ADM) and contact frequency analysis (F-value). TI I27 and TNfn3 domains are used to represent the Ig-domain and fnIII-domain, respectively. Beta-strands 2, 3, 5, and 6 are significant for the initial folding processes of TI I27. The central strands of TNfn3 were predicted as a primary folding segment. Known 3D structure and unknown 3D structure domains were investigated by structure or non-structure based multiple sequence alignment, respectively, to learn the conserved hydrophobic residues and predicted compact region relevant to evolution. Our results show good correspondence to experimental data, phi-value and protection factor from H-D exchange experiments. The significance of conserved hydrophobic residues near F-value peaks for structural stability using hydrophobic packing is confirmed. Our prediction methods once again could extract a folding mechanism only knowing the amino acid sequence.  相似文献   

17.

Background  

Protein topology representations such as residue contact maps are an important intermediate step towards ab initio prediction of protein structure. Although improvements have occurred over the last years, the problem of accurately predicting residue contact maps from primary sequences is still largely unsolved. Among the reasons for this are the unbalanced nature of the problem (with far fewer examples of contacts than non-contacts), the formidable challenge of capturing long-range interactions in the maps, the intrinsic difficulty of mapping one-dimensional input sequences into two-dimensional output maps.  相似文献   

18.
Abstract

A set of software tools designed to study protein structure and kinetics has been developed. The core of these tools is a program called Folding Machine (FM) which is able to generate low resolution folding pathways using modest computational resources. The FM is based on a coarse-grained kinetic ab initio Monte-Carlo sampler that can optionally use information extracted from secondary structure prediction servers or from fragment libraries of local structure. The model underpinning this algorithm contains two novel elements: (a) the conformational space is discretized using the Ramachandran basins defined in the local φ-ψ energy maps; and (b) the solvent is treated implicitly by rescaling the pairwise terms of the non-bonded energy function according to the local solvent environments. The purpose of this hybrid ab initio/knowledge-based approach is threefold: to cover the long time scales of folding, to generate useful 3-dimensional models of protein structures, and to gain insight on the protein folding kinetics. Even though the algorithm is not yet fully developed, it has been used in a recent blind test of protein structure prediction (CASP5). The FM generated models within 6 Å backbone rmsd for fragments of about 60–70 residues of a-helical proteins. For a CASP5 target that turned out to be natively unfolded, the trajectory obtained for this sequence uniquely failed to converge. Also, a new measure to evaluate structure predictions is presented and used along the standard CASP assessment methods. Finally, recent improvements in the prediction of β-sheet structures are briefly described.  相似文献   

19.
Contact order and ab initio protein structure prediction   总被引:1,自引:0,他引:1       下载免费PDF全文
Although much of the motivation for experimental studies of protein folding is to obtain insights for improving protein structure prediction, there has been relatively little connection between experimental protein folding studies and computational structural prediction work in recent years. In the present study, we show that the relationship between protein folding rates and the contact order (CO) of the native structure has implications for ab initio protein structure prediction. Rosetta ab initio folding simulations produce a dearth of high CO structures and an excess of low CO structures, as expected if the computer simulations mimic to some extent the actual folding process. Consistent with this, the majority of failures in ab initio prediction in the CASP4 (critical assessment of structure prediction) experiment involved high CO structures likely to fold much more slowly than the lower CO structures for which reasonable predictions were made. This bias against high CO structures can be partially alleviated by performing large numbers of additional simulations, selecting out the higher CO structures, and eliminating the very low CO structures; this leads to a modest improvement in prediction quality. More significant improvements in predictions for proteins with complex topologies may be possible following significant increases in high-performance computing power, which will be required for thoroughly sampling high CO conformations (high CO proteins can take six orders of magnitude longer to fold than low CO proteins). Importantly for such a strategy, simulations performed for high CO structures converge much less strongly than those for low CO structures, and hence, lack of simulation convergence can indicate the need for improved sampling of high CO conformations. The parallels between Rosetta simulations and folding in vivo may extend to misfolding: The very low CO structures that accumulate in Rosetta simulations consist primarily of local up-down beta-sheets that may resemble precursors to amyloid formation.  相似文献   

20.
A parameterized algorithm for protein structure alignment.   总被引:2,自引:0,他引:2  
This paper proposes a parameterized polynomial time approximation scheme (PTAS) for aligning two protein structures, in the case where one protein structure is represented by a contact map graph and the other by a contact map graph or a distance matrix. If the sequential order of alignment is not required, the time complexity is polynomial in the protein size and exponential with respect to two parameters D(u)/D(l) and D(c)/D(l), which usually can be treated as constants. In particular, D(u) is the distance threshold determining if two residues are in contact or not, D(c) is the maximally allowed distance between two matched residues after two proteins are superimposed, and D(l) is the minimum inter-residue distance in a typical protein. This result clearly demonstrates that the computational hardness of the contact map based protein structure alignment problem is related not to protein size but to several parameters modeling the problem. The result is achieved by decomposing the protein structure using tree decomposition and discretizing the rigid-body transformation space. Preliminary experimental results indicate that on a Linux PC, it takes from ten minutes to one hour to align two proteins with approximately 100 residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号