首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evaluating the efficacy of management actions to improve environmental quality is often difficult because there may be considerable lags before ecosystem management actions translate into measurable indicator responses. These delays make it difficult to justify often-expensive remedial actions to prevent eutrophication. Therefore, it is critical to identify reliable, rapid and sensitive indicators to detect degradation and environmental quality improvement. We evaluate the efficacy of a set of indicators based on the seagrass Posidonia oceanica to reliably and quickly detect ecosystem improvements using a 7-year (2003–2010) dataset of 10 stations along the Catalan coast (north-western Mediterranean Sea). In the Catalan region, environmental agencies have invested heavily on wastewater treatment, resulting in significant reductions (ca. 75%) in the BOD5 discharged to coastal waters from 2003 to 2010. These improvements were clearly reflected at the regional level (i.e. for all the stations averaged) in six biochemical seagrass indicators from our dataset. These indicators were directly related to eutrophication (nitrogen, δ15N, phosphorus and total non-structural carbohydrates content in rhizomes, δ34S and δ13C in seagrass rhizomes and N content in epiphytes). In contrast, seagrass structural indicators, related to seagrass abundance or meadow structure (density, cover) did not show any sign of overall recovery during the monitored period. These results confirm that biochemical seagrass indicators are the most sensitive to water quality improvements within management time-scales (7–10 years) for slow-growing species like P. oceanica. Given the budgetary restrictions under which most management actions operate, the availability of decision-support tools that function at appropriate time-scales is crucial to help managers validate the relative success of their remedial efforts. Our results indicate that low inertia, biochemical seagrass indicators fit this task, and can be a robust set of tools to include in monitoring programmes.  相似文献   

2.
Implementing the Ecosystem Approach in marine ecosystems is moving from preliminary steps—dedicated to defining the optimal features for indicators and developing efficient indicator frameworks—towards an operational phase where multisector marine management decisions are executed using this information. Within this operational context, emergent ecosystem properties are becoming quite promising as they have been demonstrated to be globally widespread and repeatable, and to be quite effective in detecting significant state variations of complex systems. Biomass accumulation across TLs (CumB‐TL) combines two important emergent properties of an ecosystem (energy flow, in terms of transfer efficiency, and storage, expressed as biomass), both amenable to detecting rapid ecosystem change. However, for further application, it is crucial to understand which types of drivers an indicator is sensitive to and how robust it is in relation to modifications of the external conditions and/or the system state. Here we address some outstanding questions of these CumB‐TL curves related to their sensitivity to various drivers by carrying out a global scale assessment (using data from 62 LMEs) over six decades (1950–2010). We confirm the consistency of the S‐pattern across all the LMEs, independent from latitude, ecosystem, environmental conditions, and stress level. The dynamics of the curve shape showed a tendency to stretch (i.e. decrease of steepness), in the presence of external disturbance and conversely to increase in steepness and shift towards higher TL in the case of recovery from stressed conditions. Our results suggest the presence of three main types of ecosystem dynamics, those showing an almost continuous increase in ecological state over time, those showing a continuous decrease in ecological state over time, and finally those showing a mixed behaviour flipping between recovering and degrading phases. These robust patterns suggest that the CumB‐TL curve approach has some useful properties for use in further advancing the implementation of the Ecosystem Approach, allowing us to detect the state of a given marine ecosystem based on the dynamics of its curve shape, by using readily available time series data. The value of being able to identify conditions that might require management actions is quite high and, in many respects, represents the main objective in the context of an Ecosystem Approach, with large applications for detecting and responding to global changes in marine ecosystems.  相似文献   

3.
There are global calls for new ecosystem-based fisheries management (EBFM) approaches. Scientific support for EBFM includes assessing ecosystem indicators of biological communities, environmental conditions, and human activities. As part of a broader research project we have synthesized a suite of traditional and new indicators for the Grand Bank in Atlantic Canada, which we share here. This is an ideal ecosystem for indicator analysis because it experienced dramatic changes over the past three decades, including a collapse in fish biomass that had profound socio-economic consequences. We exploit the wealth of data for this ecosystem to investigate how individual indicators reflect observed changes in the ecosystem, and then illustrate two applications of this indicator suite. Correlations were used to show that relationships among the fish functional groups changed after the collapse, and that a subset of indicators is sufficient to characterize each ecosystem category. Lagged correlations highlighted how changes in the drivers and pressures are often not immediately manifest in the fish community structure. We also organized indicators into the DPSIR (driver-pressure-state-impact-response) management framework. This exercise illustrated that indicator categorization is contextual and not straightforward, and we advocate for use of simpler categories that clearly show what is actionable. Additional future analyses that can be performed with our newly published suite of indicators are recommended.  相似文献   

4.
In the present study, we tested five trophic indicators and we demonstrated their usefulness to assess the environmental status of marine ecosystems and to implement an ecosystem approach to fisheries management (EAFM). The tested indicators include the slope of the biomass spectrum, the mean trophic level (MTL), the marine trophic index (MTI) and two newly developed indicators, the high trophic level indicator (HTI) and the apex predator indicator (API). Indicators are compared between current state and potential reference situations, using as case studies: the Celtic Sea/Bay of Biscay, North Sea and English Channel ecosystems. Trophic spectra are obtained from Ecopath models while reference situations are estimated, simulating with EcoTroph and Ecosim different fishing pressures including three candidate scenarios for an EAFM. Inter-ecosystems assessments are done using Ecopath models, simulations outputs and scientific surveys data to assess the current states of the studied ecosystems, contrast the reference situations and analyze the responses of all indicators. Sensitivity analyses are also conducted on the main simulation parameters to test the robustness of the chosen indicators. Ecosystems specific targets for EAFM are proposed for the five trophic indicators estimated from whole-ecosystem models, while in the Celtic Sea/Bay of Biscay ecosystem targets are proposed for the MTL (=3.85) and HTI (48%) estimated from standard bottom-trawl surveys. The HTI is proposed to be relevant for survey data and the API is recommended using whole-ecosystem models. We conclude that HTI and API show trends in ecosystems health better than MTI.  相似文献   

5.
生态系统健康评价的研究进展   总被引:82,自引:0,他引:82       下载免费PDF全文
生态系统健康评价是环境管理和生态系统监控的基础,生态系统监控可促进生态系统健康评价。首先介绍了生态系统健康概念的产生,发展及其不同的内涵,并着重回顾和讨论了生态系统健康评价指标及其存在的问题,生态系统健康评价指标包括生态指标,物理化学指标,人类健康与社会经济指标3大类,生态指标是反映生态系统特征和状态的生物指标,它分为生态系统,群落和种群与个体等不同层次的指标或指标体系,物理化学指标是检测生态系统的非生物环境的指标。人类健康与社会经济指标着眼于生态系统对人类生存与社会发展的支持作用,采用经济参数和社会发展的环境压力指标等来衡量生态服务的质量与可持续性,根据其敏感程度和功能性,生态系统健康评价指标分为早期预警指标,适宜程度指标和诊断指标3类,一个完整的生态系统评价应包括上述3大类指标或指标体系,但在具体的评价实践中往往因评价目的和对象的不同而有所选择,生态系统健康评价目前有两个亟待解决的问题,如何有效确立评价标准与参照系以及如何正确区分人为压力和自然干扰。  相似文献   

6.
The ability to understand and ultimately predict ecosystem response to multiple pressures is paramount to successfully implement ecosystem-based management. Thresholds shifts and nonlinear patterns in ecosystem responses can be used to determine reference points that identify levels of a pressure that may drastically alter ecosystem status, which can inform management action. However, quantifying ecosystem reference points has proven elusive due in large part to the multi-dimensional nature of both ecosystem pressures and ecosystem responses. We used ecological indicators, synthetic measures of ecosystem status and functioning, to enumerate important ecosystem attributes and to reduce the complexity of the Northeast Shelf Large Marine Ecosystem (NES LME). Random forests were used to quantify the importance of four environmental and four anthropogenic pressure variables to the value of ecological indicators, and to quantify shifts in aggregate ecological indicator response along pressure gradients. Anthropogenic pressure variables were critical defining features and were able to predict an average of 8-13% (up to 25-66% for individual ecological indicators) of the variation in ecological indicator values, whereas environmental pressures were able to predict an average of 1-5 % (up to 9-26% for individual ecological indicators) of ecological indicator variation. Each pressure variable predicted a different suite of ecological indicator’s variation and the shapes of ecological indicator responses along pressure gradients were generally nonlinear. Threshold shifts in ecosystem response to exploitation, the most important pressure variable, occurred when commercial landings were 20 and 60% of total surveyed biomass. Although present, threshold shifts in ecosystem response to environmental pressures were much less important, which suggests that anthropogenic pressures have significantly altered the ecosystem structure and functioning of the NES LME. Gradient response curves provide ecologically informed transformations of pressure variables to explain patterns of ecosystem structure and functioning. By concurrently identifying thresholds for a suite of ecological indicator responses to multiple pressures, we demonstrate that ecosystem reference points can be evaluated and used to support ecosystem-based management.  相似文献   

7.
Wide-ranging, indicator-based assessments of large, complex ecosystems are playing an increasing role in guiding environmental policy and management. An example is the EU’s Marine Strategy Framework Directive, which requires Member States to take measures to reach “good environmental status” (GES) in European marine waters. However, formulation of indicator targets consistent with the Directive’s high-level policy goal of sustainable use has proven challenging. We develop a specific, quantitative interpretation of the concepts of GES and sustainable use in terms of indicators and associated targets, by sharply distinguishing between current uses to satisfy current societal needs and preferences, and unknown future uses. We argue that consistent targets to safeguard future uses derive from a requirement that any environmental state indicator should recover within a defined time (e.g. 30 years) to its pressure-free range of variation when all pressures are hypothetically removed. Within these constraints, specific targets for current uses should be set. Routes to implementation of this proposal for indicators of fish-community size structure, population size of selected species, eutrophication, impacts of non-indigenous species, and genetic diversity are discussed. Important policy implications are that (a) indicator target ranges, which may be wider than natural ranges, systematically and rationally derive from our proposal; (b) because relevant state indicators tend to respond slowly, corresponding pressures should also be monitored and assessed; (c) support of current uses and safeguarding of future uses are distinct management goals, they require different types of targets, decision processes, and management philosophies.  相似文献   

8.
State of environment indicators of 'river health': exploring the metaphor   总被引:9,自引:0,他引:9  
1. Indicators are crucial to many socio-political schemes for portraying environmental influences of society. For example, the OECD model for State of the Environment Reporting uses three different sorts of indicators (pressure, condition, response) to differentiate the present condition of the environment from the anthropogenic pressures upon it and from any societal responses made to alleviate those pressures (thereby improving aspects of the overall condition). 2. These sorts of indicators have a fundamental technical basis in the science supporting their exposition and usage. However, the criteria used in interpreting the indicator values are likely to be set by considerations that go beyond scientific grounds. That is, indicators are socially determined in the end. However, many scientists find it difficult to involve the public in such reporting. 3. Scientists who are uncomfortable with this non-technical use of their indicator constructs should recognize that it is merely another manifestation of the overall broadening of environmental concern termed ‘ecosystem health’. The emerging field of ecosystem health seeks to take our technical understanding of how the environment functions and combine it with socio-economic goals, using a human health metaphor and an ethical underpinning. 4. River health might be better served by adopting a veterinary approach rather than the model of human health. This is because, like animals, riverine environments come in many different forms and cannot complain of ill health. Desirable interventions will vary with the uses to which we wish to put a river and our reasons for being concerned about a river’s health. A framework for this diagnostic approach is presented. 5. An enormous challenge lies ahead in integrating the various measurements of riverine attributes that might together constitute ‘river health’. We need ways to cater for the pluralism of modern societies, and we need more dynamic assessments of river condition, possibly founded on studies of key ecological processes.  相似文献   

9.
The Australian and New Zealand Environment and Conservation Council (ANZECC) and the Australian Water Resources Council (AWRC) have developed a National Water Quality Management Strategy which seeks to ensure that the nation's water resources are managed on a sustainable basis. An important element of this strategy are the Australian Water Quality Guidelines which focus on the protection of Australian freshwater and marine ecosystems. Here the aim is to protect biodiversity and maintain the ecological integrity of each marine and freshwater resource. Specific guidelines have been formulated in terms of key indicators of quality, with a single reference value or ranges of reference values provided for guidance. For those indicators where ranges are provided, it is the expectation that State environmental and resource management agencies will undertake local, site-specific investigations of their own systems to define the specific levels to be adopted. For the first time, specific and quantitative biological indicators have been introduced; these are species richness, species composition, primary production, and ecosystem function.As Australia progresses towards broader, more holistic, ecologically-based management of the nation's water resources, the present water quality guidelines must be extended to ecosystem or environmental guidelines, where the maintenance of adequate water quality is seen as only one (albeit important) component. Other considerations must include habitat protection, sediment quality, and stream flow maintenance. This increased emphasis on more ecologically-focused management of Australia's inland and coastal waters will present a number of challenges for the three major groups involved: the community, the managers, and the researchers. These challenges are discussed.Based on a paper presented at a Workshop on Biological Assessment of Aquatic Ecosystem Health, Sydney, 1–2 October 1992.  相似文献   

10.
11.
Three indicators quantifying interactions between species are developed for an upwelling system to provide useful measures for the comparison of marine ecosystem structure and function. Small pelagic fish are dominant in upwelling systems, and by definition, they are pivotal in a wasp-waist upwelling system. The indicator of interaction strength (IS) quantifies the effect that a change in biomass of one group has on abundance of other groups. The functional impact (FI) indicator quantifies the trophic impacts of species on their own and other functional groups or feeding guilds. The trophic replacement (TR) indicator quantifies the trophic similarity between a species that is removed from an ecosystem and other species in that ecosystem, i.e. it quantifies the ability of one group to trophically replace another. A trophic model of the southern Benguela ecosystem is used as an example for the application of the indicators. The strong similarities in trophic functioning of the southern Benguela ecosystem in the anchovy-dominated system of the 1980s, and the 1990s when there was a shift towards greater sardine abundance, are explained by the mutual trophic replacement abilities of anchovy and sardine. Differences between the proposed indicators and mixed trophic impact assessment are highlighted, mainly resulting from the static versus dynamic nature of the models upon which they are based. Trophic indicators such as those presented here, together with other kinds of ecosystem indicators, may assist in defining operational frameworks for ecosystem-based fisheries management.  相似文献   

12.
Biodiversity is globally recognised as a cornerstone of healthy ecosystems, and biodiversity conservation is increasingly becoming one of the important aims of environmental management. Evaluating the trade-offs of alternative management strategies requires quantitative estimates of the costs and benefits of their outcomes, including the value of biodiversity lost or preserved. This paper takes a decision-analytic standpoint, and reviews and discusses the alternative aspects of biodiversity valuation by dividing them into three categories: socio-cultural, economic, and ecological indicator approaches. We discuss the interplay between these three perspectives and suggest integrating them into an ecosystem-based management (EBM) framework, which permits us to acknowledge ecological systems as a rich mixture of interactive elements along with their social and economic aspects. In this holistic framework, socio-cultural preferences can serve as a tool to identify the ecosystem services most relevant to society, whereas monetary valuation offers more globally comparative and understandable values. Biodiversity indicators provide clear quantitative measures and information about the role of biodiversity in the functioning and health of ecosystems. In the multi-objective EBM approach proposed in the paper, biodiversity indicators serve to define threshold values (i.e., the minimum level required to maintain a healthy environment). An appropriate set of decision-making criteria and the best method for conducting the decision analysis depend on the context and the management problem in question. Therefore, we propose a sequence of steps to follow when quantitatively evaluating environmental management against biodiversity.  相似文献   

13.
Seagrasses are key components of coastal marine ecosystems and many monitoring programmes worldwide assess seagrass health and apply seagrasses as indicators of environmental status. This study aims at identifying the diversity and characteristics of seagrass indicators in use within and across European ecoregions in order to provide an overview of seagrass monitoring effort in Europe. We identified 49 seagrass indicators used in 42 monitoring programmes and including a total of 51 metrics. The seagrass metrics represented 6 broad categories covering different seagrass organizational levels and spatial scales. The large diversity is particularly striking considering that the pan-European Water Framework Directive sets common demands for the presence and abundance of seagrasses and related disturbance-sensitive species. The diversity of indicators reduces the possibility to provide pan-European overviews of the status of seagrass ecosystems. The diversity can be partially justified by differences in species, differences in habitat conditions and associated communities but also seems to be determined by tradition. Within each European region, we strongly encourage the evaluation of seagrass indicator–pressure responses and quantification of the uncertainty of classification associated to the indicator in order to identify the most effective seagrass indicators for assessing ecological quality of coastal and transitional water bodies.  相似文献   

14.
15.
Indicator species (IS) are used to monitor environmental changes, assess the efficacy of management, and provide warning signals for impending ecological shifts. Though widely adopted in recent years by ecologists, conservation biologists, and environmental practitioners, the use of IS has been criticized for several reasons, notably the lack of justification behind the choice of any given indicator. In this review, we assess how ecologists have selected, used, and evaluated the performance of the indicator species. We reviewed all articles published in Ecological Indicators (EI) between January 2001 and December 2014, focusing on the number of indicators used (one or more); common taxa employed; terminology, application, and rationale behind selection criteria; and performance assessment methods. Over the last 14 years, 1914 scientific papers were published in EI, describing studies conducted in 53 countries on six continents; of these, 817 (43%) used biological organisms as indicators. Terms used to describe organisms in IS research included “ecological index”, “environmental index”, “indicator species”, “bioindicator”, and “biomonitor,” but these and other terms often were not clearly defined. Twenty percent of IS publications used only a single species as an indicator; the remainder used groups of species as indicators. Nearly 50% of the taxa used as indicators were animals, 70% of which were invertebrates. The most common applications behind the use of IS were to: monitor ecosystem or environmental health and integrity (42%); assess habitat restoration (18%); and assess effects of pollution and contamination (18%). Indicators were chosen most frequently based on previously cited research (40%), local abundance (5%), ecological significance and/or conservation status (13%), or a combination of two or more of these reasons (25%). Surprisingly, 17% of the reviewed papers cited no clear justification for their choice of indicator. The vast majority (99%) of publications used statistical methods to assess the performance of the selected indicators. This review not only improves our understanding of the current uses and applications of IS, but will also inform practitioners about how to better select and evaluate ecological indicators when conducting future IS research.  相似文献   

16.
International and Canadian national and provincial level policy have proposed the use of criteria and indicators to examine the sustainability of renewable resource management. Species suitable as ecological indicators are those whose biology are sensitive to disturbance and therefore demonstrate a negative effect of management on the processes or functioning of the ecosystem. Ground dwelling invertebrates such as carabid beetles and spiders have strong potential as ecological indicators as they are readily surveyed in sufficient numbers for meaningful conclusions to be drawn, have a stable taxonomy and, at least in the case of ground beetles, are readily identified. They are good local scale indicators of ecosystem disturbance in forested landscapes at both the short and long time scales, responding to both clearcut logging and fire differently. Ground beetles and spiders in boreal Canada may not be good indicators of disturbance at landscape scales, as little response to the creation of forest edges and habitat fragmentation has so far been observed. We propose that these bioindicators be used as part of local-level validation monitoring to test hypotheses about disturbance impacts. In this way, bioindicators are used in a research setting to evaluate silvicultural practices, providing a rating of their sustainability for a given broad forest type grouping.  相似文献   

17.
Many ecological responses to environmental variables or anthropogenic agents are difficult and expensive to measure. Therefore it is attractive to describe such responses in terms of indicators that are easier to measure. In ecosystem management, indicators can be used to monitor spatial and temporal changes in an environmental feature. The aim of this paper is to show that it is important to take Liebig's law of the minimum into consideration to understand when it is appropriate or inappropriate to use ecological indicators based on abundance. When developing indicators that relate the abundance of an organism to an environmental factor, it is likely that this relationship will be polygonal rather than a simple linear relationship. The upper boundary of the distribution describes how abundance is limited by this factor, while the variation below the upper boundary is explained by situations when factors other than the factor of interest limit abundance. The variation below the upper boundary of the distribution means that the use of indicators to examine spatial patterns in the response of abundance to an environmental factor can be problematic. Thus, while abundance-based indicators can identify sites that are in a good condition, they are less useful to detect those affected by environmental degradation. In contrast, abundance-based ecological indicators may enable temporal monitoring of the impact of environmental factors, as it is expected that limiting factors are less variable in time than in space. In conclusion, when multiple factors are limiting, a significant correlation between an indicator and a variable is not enough to validate the status of a factor as an indicator.  相似文献   

18.
Following the advances in the field of the thermodynamics of far-from-equilibrium systems, several ecological orientors (indicators able to describe the stage and orientation of ecosystem development) incorporating entropy terms have been proposed. Although most of the proposed functions have a good theoretical basis and have proved to perform adequately as ecological indicators, their suitability as ecological orientors has yet to receive a full confirmation in real case studies. The aim of the present contribution is to examine how several entropy-based indicators (exergy, structural information, entropy production, specific entropy production and the Eco-exergy index) perform as orientors when applied to a special case of ecological succession, i.e. eutrophication, in a homogeneous set of shallow lakes lying along a trophic gradient, from oligotrophy to hyper-eutrophy. The results show that a coherent pattern of response emerge, which is also consistent with the classical ecological theory. In particular, the maximisation of storage and the minimisation of specific entropy production are confirmed as the most reliable principles of ecosystem development, whereas the maximisation of dissipation (as entropy production) appears as a debatable criterion of development.  相似文献   

19.
Understanding mechanistic relationships between seagrass and their environmental stressors should be considered for effective management of estuaries and may inform on why change has occurred. We aimed to develop indicators for seagrass health in response to sediment conditions for the Swan-Canning Estuary, south-west Australia. This article describes the development of a new sediment-stress indicator, relating aspects of seagrass productivity with sediment sulfur dynamics. Sulfur stable isotope ratio and total sulfur were measured monthly within the roots, rhizomes and leaves of Halophila ovalis, and significantly varied across sites and months. The growth of seagrass over the summer months appeared restricted by sediment condition, with growth of seagrass lower when sediment derived sulfur and/or total sulfur within rhizome of leaf tissues was higher. H. ovalis appeared quite tolerant of sulfide intrusion within the root compartment, but growth was compromised when sulfide breached the root–rhizome barrier. The tightest correlation between potential sulfur metrics and seagrass growth was observed for the ratio (δ34Sleaf + 30)/(TSleaf), and it is this ratio that we propose may be a useful sediment-stress indicator for seagrass. The study also highlights that sediment condition needs to be considered at the meadow scale.  相似文献   

20.
The ecosystem approach to environmental management is viewed by many as being fundamental to the development of appropriate management strategies. While this approach represents a major advance in the way researchers view environmental assessment, the approach in itself does not provide practical information as to what questions to ask and what tools to use in assessing and managing ecosystems. Similarly, the concept of ecosystem health, as it is usually defined, has little practical value for ecosystem managers. We suggest the next stage in environmental assessment will be the development of specific frameworks designed to assess individual ecosystems. Of primary importance is the need to consider the basic structure and function of the ecosystem itself. Such consideration, together with explicit identification of anthropogenic stresses particular to the system, serves to identify those components most at risk and those issues most deserving of attention. Researchers should explore critical linkages between environmental stressors and their observable, measurable and predictable effects on ecological parameters and use this understanding to develop a management strategy that incorporates appropriate ecological indicators. The importance of these considerations will be illustrated using examples from the Northern River Basins Study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号