首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A prevalent legacy of coal mining within Appalachia and elsewhere is acid mine drainage (AMD), which drastically alters both the chemical and biological components of the receiving waters. Hewett Fork is one such affected stream. Although AMD treatment has reduced acidity considerably downstream, the ability of this stream to sustain a biological community compared to those found in reference conditions remains unclear. To assess this, tiles colonized with diatom assemblages from a reference stream were transplanted into Hewett Fork in 5 locations along a 6.9 km stream length and sampled after one, three, and six weeks. Diatom assemblage structure metrics, including species evenness (J’), species richness (S), relative abundance of dominant taxon, and Shannon diversity (H′), as well as chlorophyll a concentrations, Bray–Curtis dissimilarities, and Acid Mine Drainage Diatom Index of Biotic Integrity (AMD-DIBI) scores were calculated for each site and sampling time. One-way ANOVAs of structural metrics showed significant differences (P  0.001) between the reference site and the 2nd and 3rd most upstream sites within the study reach for the duration of the study, with the exception of the relative abundance of dominant taxa at an intermediate site during the third week. Conversely, the most downstream Hewett Fork assemblage, located 11.6 km from the primary AMD input, did not differ significantly (P > 0.05) from that of the reference assemblage for any structural metrics after the initial sampling period. Throughout the study, only three sites obtained “good” AMD-DIBI narrative class:the reference site (weeks 1, 3, and 6), the most downstream site (weeks 1, 3, and 6; 11.6 km downstream of primary AMD input) and the uppermost site (weeks 1 and 6; 4.7 km downstream of primary AMD input). Results suggested that after an initial one-week acclimation period, assemblages at the uppermost and most downstream sites along the reach were relatively similar to those found in reference conditions, while sites within the middle region continued to show signs of impairment, although the factor(s) causing this impairment remain unknown. These findings suggest that while treatment has been effective on a site-specific basis, the expected linear-response to treatment was not achieved due to underlying factors that are inhibiting reference-like biological communities from reestablishing within the affected stream reach.  相似文献   

2.
Benthic diatoms are widely used indicators of human impacts on stream ecosystems because they are very responsive to changing environmental conditions. However, little research has explicitly focused on their reliability with regards to temporal variation in assemblage structure and environmental conditions. We examined variability in diatom-environment relationships at bi-weekly, monthly, and yearly time scales from 7 reference, 7 agricultural, and 2 acid mine drainage (AMD)-impacted streams, and how nutrient and pH fluctuations may affect the interpretation of diatom metrics and the Diatom Model Affinity (DMA) index. Reference streams had less bi-weekly variability in NO3-N concentrations than non-reference streams. The % eutraphentic diatoms and DMA scores were more strongly correlated with seasonal means of NO3-N and PO4-P concentrations than with same day concentrations. Most nutrient indicator metrics had strong correlations with watershed land use. All 14 non-AMD streams experienced substantial increases in NO3-N and decreases in temperature from November to May, which were associated with high species turnover, substantial changes in community structure, reduced diversity and richness, increased relative abundances of high nutrient diatoms, and decreases in low nutrient diatoms and DMA scores. The % acidophilic diatoms and DMA scores were significantly correlated with increased pH associated with greater precipitation at AMD sites from December to April (r = ?0.77, r = 0.62, respectively; P < 0.01). Yearly, DMA scores for all reference streams were consistently in the minimally impaired category, whereas scores for non-reference streams varied among impairment categories. Reference sites serve as reliable benchmarks for diatom ecological integrity during the summer. In this region, June to October is a recommended time period for diatom sampling in monitoring programs because subsequent shifts in hydrologic regimes, nutrients, and diatom assemblages occurred, affecting all sites and masking among stream differences attributable to agricultural land uses.  相似文献   

3.
《Harmful algae》2011,10(6):563-567
The large diatom Coscinodiscus wailesii is one of the problematic species which indirectly cause bleaching damage to “Nori” (Porphyra thalli) cultivation through competitive utilization of nutrients during its bloom. In the present study, we experimentally investigated the nitrate (N) and phosphate (P) uptake kinetics of C. wailesii, Harima-Nada strain. Maximum uptake rates (ρmax), obtained by short-term experiments, were 58.3 and 95.5 pmol cell−1 h−1 for nitrate and 41.9 and 59.1 pmol cell−1 h−1 for phosphate at 9 and 20 °C, respectively. The half saturation constants for uptake (Ks) were 2.91 and 5.08 μM N and 5.62 and 6.67 μM P at 9 and 20 °C, respectively. The ρmax values of C. wailesii, much higher than those of other marine phytoplankton species, suggest that C. wailesii is able to take up large amounts of nutrients from the water column. On the other hand, Vmax/Ks (Vmax; Vmax = ρmax/Q0, Q0; minimum cell quota) values of C. wailesii, which is a better measure to evaluate the competitive ability for nutrient uptake, were low in dominant diatom species. This parameter indicates that C. wailesii is disadvantaged compared to other diatom species in competing for nutrients, and the decreasing nutrient concentrations from winter to spring is an important factor limiting C. wailesii blooming in early spring.  相似文献   

4.
《Ecological Indicators》2007,7(3):541-552
Impact of abattoir effluents (characterized by intestinal and stomach contents of slaughtered animals, ashes from roasted animals and blood stains) on water quality, distribution and abundance of Diptera were investigated in an urban stream, River Orogodo, Southern Nigeria, from July 2003 to June 2004. Water quality changes indicated significant differences (p < 0.05) in conductivity, dissolved oxygen, BOD5, COD, total hardness, nitrate-nitrogen and phosphate-phosphorus between the three stations sampled. Higher values of these parameters were observed at the impacted station. The abundance and community structure of Diptera patterns, especially Chironomidae, Culicidae and Syrphidae families (all indicative of poor water quality) showed strong evidence of impact from the abattoir effluents. Comparisons of abundance values demonstrated high significance (p < 0.05) between the impacted station and the upstream (station 1) and downstream station (station 3). Shannon index and Berger–Parker dominance were greater at the impacted station (station 2). Analysis of faunal similarities showed that upstream station 1(unpolluted site) was significantly different from stations 2 and 3. The distinct taxa found in station 2 (the impacted station) suggest that the organic input from the abattoir favoured their abundance as most of them were opportunistic species.  相似文献   

5.
Understanding the factors driving the variation in urban green space and plant communities in heterogeneous urban landscapes is crucial for maintaining biodiversity and important ecosystem services. In this study, we used a combination of field surveys, remote sensing, census data and spatial analysis to investigate the interrelationships among geographical and social-economic variables across 328 different urban structural units (USUs) and how they may influence the distributions of urban forest cover, plant diversity and abundance, within the central urban area of Beijing, China. We found that the urban green space coverage varied substantially across different types of USUs, with higher in agricultural lands (N = 15), parks (N = 46) and lowest in utility zones (N = 36). The amount of urban green space within USUs declines exponentially with the distance to urban center. Our study suggested that geographical, social and economic factors were closely related with each other in urban ecological systems, and have important impacts on urban forest coverage and abundance. The percentage of forest as well as high and low density urban areas were mainly responsible for variations in the data across all USUs and all land use/land cover types, and thus are important constituents and ecological indicators for understanding and modeling urban environment. Herb richness is more strongly correlated with tree and shrub density than with tree and shrub richness (r = −0.472, p < 0.05). However, other geographic and socioeconomic factors showed no significant relationships with urban plant diversity or abundance.  相似文献   

6.
《Ecological Indicators》2007,7(3):521-540
Benthic, epiphytic, and phytoplanktonic diatoms, as well as soil and water physical–chemical parameters, were sampled from 70 small (average 0.86 ha) isolated depressional herbaceous wetlands located along a gradient of human disturbance in peninsular Florida to (1) compare diatom assemblage structure between algal types; (2) develop biological indicators of wetland condition; (3) examine synecological relationships between diatom structure and environmental variables, with the ultimate goal of developing an index of biological integrity using a single assemblage. Collected diatom samples were enumerated to 250 valves and identified to species or subspecies. An assessment of wetland condition was made using a landscape-scale human disturbance score (Landscape Development Intensity index, LDI), calculated for each site using land use maps and GIS.Assemblages from both impaired and reference sites were compared using blocked multi-response permutation procedures, the percent similarity index, and visually examined using non-metric multidimensional scaling (NMDS). No ecologically significant compositional differences were found within sites. Mantel's test (Mantel's r = 0.29, p < 0.0001) and NMDS (stress: 14.52, variance: 78.5%) identified epiphytic diatoms as the most responsive to human disturbance. Strong significant correlations (|rs| > 0.50, p < 0.05) were found between epiphytic NMDS site scores and soil pH, specific conductivity, water total phosphorous, and LDI, while soil pH, water color, soil TP, and turbidity were also significantly correlated (p < 0.05).Metrics to assess wetland condition were developed using epiphytic abundance data. Epiphytic taxa sensitive or tolerant to human landscape modification were identified using Indicator Species Analysis, and autecological indices relating diatom sensitivity to nutrients, pH, dissolved oxygen levels, saprobity, salinity, and trophic status were calculated. Fourteen final metrics were identified, scored on an ordinal scale, and combined into the Diatom Index of Wetland Condition (DIWC). The DIWC was highly correlated with the disturbance score (Spearman's rs = −0.71, p < 0.0001), although the results need to be validated.  相似文献   

7.
The diatom genus Pseudo-nitzschia (Peragallo) associated with the production of domoic acid (DA), the toxin reposnsible for amnesic shellfish poisoning, is abundant in Scottish waters. A two year study examined the relationship between Pseudo-nitzschia cells in the water column and DA concentration in blue mussels (Mytilus edulis) at two sites, and king scallops (Pecten maximus) at one site. The rate of DA uptake and depuration differed greatly between the two species with M. edulis whole tissue accumulating and depurating 7 μg g−1 (now expressed as mg kg−1) per week. In contrast, it took 12 weeks for DA to depurate from P. maximus gonad tissue from a concentration of 68 μg g−1 (now mg kg−1) to <20 μg g−1 (now mg kg‐1). The DA depuration rate from P. maximus whole tissue was <5% per week during both years of the study. Correlations between the Pseudo-nitzschia cell densities and toxin concentrations were weak to moderate for M. edulis and weak for P. maximus. Seasonal diversity on a species level was observed within the Pseudo-nitzschia genus at both sites with more DA toxicity associated with summer/autumn Pseudo-nitzschia blooms when P. australis was observed in phytoplankton samples. This study reveals the marked difference in DA uptake and depuration in two shellfish species of commercial importance in Scotland. The use of these shellfish species to act as a proxy for DA in the environment still requires investigation.  相似文献   

8.
In order to assess the level of ecological stress caused by the pollution from local disturbances in a stretch of the Garonne River, France, we applied the Abundance-Biomass Comparison (ABC) index, using fish assemblages. Data were collected in a 10-year span (1992–2002) in a reference site and in two pollution-exposed sites. The ABC index mean value in the reference site (S1) was 0.03 ± 0.002 (95% Confidence Interval – CI); for the polluted sites (S2 and S3), the values were −0.09 ± 0.002 (95% CI) and −0.12 ± 0.002 (95% CI), respectively. The ABC index showed that, besides flow variations, both downstream sites are statistically different (p < 0.05) from the reference site, but all three seem to be under moderate stress. Furthermore, we related our ABC scores to water quality and flow regime variables in the reference site and one of the polluted sites by means of a cluster analysis. The results showed that, in the reference site, the ABC scores are closely related to the flow regime, while in the polluted site, downstream a urban area, ABC is related to water quality variables such as phosphates and total phosphorous. We argue that ecological indicators can help decisions on environmental damage liability.  相似文献   

9.
The objective of the study was to identify nutrient impacts, if any, on stream periphyton growth in Black Bear Creek (north central Oklahoma) and its tributaries. Passive diffusion periphytometers were deployed at ten study sites within the Black Bear Creek basin to evaluate periphyton growth in response to nutrient enrichment. These sites were selected to represent a gradient of land uses, from predominantly agricultural to predominantly urban. Periphytometer treatments included phosphorus (P) (1.0 mg/L PO4-P, n = 10), nitrogen (N) (10.0 mg/L NO3-N, n = 10), N plus P (n = 10) and control (reverse osmosis-treated water, n = 10). Results indicated that average dissolved inorganic N (DIN, PQL = 0.04 mg/L) concentrations were significantly correlated (R2 = 0.63, p < 0.01) with chlorophyll a production on the periphytometer control treatments in the Black Bear Creek basin. Periphytic growth was nutrient-limited (increased chlorophyll a was measured on nutrient-enriched growth media) at four of the ten sites sampled; two sites were limited by N and two sites were co-limited by both N and P. The lotic ecosystem trophic status index (LETSI), the ratio of C to N + P chlorophyll a, was calculated to compare treatment responses across sites. At nutrient-limited sites, LETSI was positively correlated to ambient DIN values (R2 = 0.97, p < 0.01). However, some sites that were not nutrient-limited had ambient nutrient concentrations similar to sites with observed nutrient limitation, indicating other factors were limiting periphyton growth at those sites.  相似文献   

10.
A new toxin-producing marine diatom, Nitzschia bizertensis sp. nov., isolated from the Bizerte Lagoon (Tunisia, Southwest Mediterranean Sea) is, based on studies on eight different strains, characterized morphologically by light microscopy, transmission and scanning electron microscopy, and phylogenetically using the nuclear rDNA regions: SSU, ITS1, 5.8S, ITS2 and D1–D3 of the LSU. The species belongs to the sections Lanceolatae or Lineares as defined by Cleve and Grunow (1880). These sections are characterized by species having linear-lanceolate valves with an eccentric raphe where the fibulae does not extend into the valve, and are otherwise famous for the lack of characters useful for delineation of species. Nitzschia bizertensis differs from most other species in these sections by having a high density of interstriae. The morphological and phylogenetic studies and comparisons with previously described Nitzschia species showed Nitzschia bizertensis sp. nov. to be a new species. Batch culture experiments were conducted for estimations of maximum growth rate and production of domoic acid (DA). Maximum cellular DA content of the examined strains ranged from 2 × 10−4 to 3.6 × 10−2 pg cells−1. The total DA concentration (pg mL−1) was high already in exponential growth phase maybe due to reinoculation of “old” stationary phase cells, and increased into stationary growth phase where it reached a stationary level varying among the strains from ca. 4500 to 9500 pg mL−1. Nitzschia bizertensis represents a new domoic acid-producing diatom and is the second toxin producing Nitzschia species. The resolution of Nitzschia bizertensis and Nitzschia navis-varingica in different parts of the LSU phylogenetic tree, and the recovery of the Pseudo-nitzschia species phylogenetically distant from those two species suggests that the ability to produce DA either evolved multiple times independently or was lost multiple times.  相似文献   

11.
Some epiphytic species accumulate airborne particles and are suitable biological indicators for monitoring urban and industrial pollution. The species Tillandsia recurvata L. was studied as a monitor of air pollution in an urban area from Mexico. Individuals were collected in 25 sites which are exposed to different pollution degree and sources.The magnetic particle concentration, particle size, and mineralogy were determined and compared with chemical contents for all samples. The highest values of magnetic concentration dependent parameters were observed in industrial and heavy traffic sites (e.g., mass specific magnetic susceptibility of up to 171.5 × 10−8 m3 kg−1). In contrast, sites with low or without vehicular traffic reached low values (e.g., mass specific magnetic susceptibility of down to 1.8 × 10−8 m3 kg−1). The integrated magnetic analysis (King's and Day's plots, remanent magnetization parameters and thermomagnetic measurements) revealed the presence of ferromagnetic minerals, mostly magnetite-like with fine grain sizes (0.1–1 μm) and subordinate presence of high-coercivity minerals. Selected samples were observed by SEM and EDS analysis and revealed the presence of Fe-rich particles, as well as trace elements, among others, As, Sb, S, Cr, Mo, V, Zn, Ba, Hg, Pt and Cu. Most of the elements detected by EDS were also quantified by ICP-MS measurements.Multivariate statistical analyses prove a high correlation between magnetic parameters and elements, as well as allow us classifying sites in clusters (fuzzy c-means clustering) with different pollution degree. These results demonstrate the usefulness of the species T. recurvata L. as a passive pollution monitor, with an affordable and immediate application. This species is abundant not only in Mexico, but also in other cities from America.  相似文献   

12.
The diatom Eucampia zodiacus Ehrenberg is a harmful diatom which indirectly causes bleaching of aquacultured Nori (Porphyra thalli) through competitive utilization of nutrients during bloom events. In the present study, we experimentally investigated the nitrate (N) and phosphate (P) uptake kinetics of E. zodiacus, Harima-Nada strain. Maximum uptake rates (ρmax), which were obtained by short-term experiments, were 0.777 and 0.916 pmol cell?1 h?1 for nitrate and 0.244 and 0.550 pmol cell?1 h?1 for phosphate at 9 and 20 °C, respectively. The half-saturation constants for uptake (Ks) were 2.59 and 2.92 μM N and 1.83 and 4.85 μM P at 9 and 20 °C, respectively. Although the maximum specific uptake rate (Vmax; Vmax = ρmax/Q0, Q0; minimum cell quota) and Vmax/Ks for nitrate at 9 °C are about 1/2 of those obtained at the optimum temperature (20 °C), they are still higher than those obtained for many other phytoplankton at their optimum temperature conditions for uptake. These results suggest that E. zodiacus utilizes nitrogen efficiently at low water temperature, and it is one of the important factors causing the serious damage to Porphyra thalli by bleaching due of this species. For phosphate, the Ks values of E. zodiacus were higher than those reported for other species; the Vmax and Vmax/Ks values were much lower than those of other diatoms such as Skeletonema costatum (Greville) Cleve. These results suggest that E. zodiacus is disadvantaged compared to other diatom species during competitive utilization of phosphate.  相似文献   

13.
Major cyanobacterial blooms (biovolume > 4 mm3 L−1) occurred in the main water reservoirs on the upper Murray River, Australia during February and March 2010. Cyanobacterial-infested water was released and contaminated rivers downstream. River flow velocities were sufficiently high that in-stream bloom development was unlikely. The location has a temperate climate but experienced drought in 2010, causing river flows that were well below the long-term median values. This coupled with very low bed gradients meant turbulence was insufficient to destroy the cyanobacteria in-stream. Blooms in the upper 500 km of the Murray and Edward Rivers persisted for 5 weeks, but in the mid and lower Murray blooms were confined to a small package of water that moved progressively downstream for another 650 km. Anabaena circinalis was the dominant species present, confirmed by 16S rRNA gene sequencing, but other potentially toxic species were also present in smaller amounts. Saxitoxin (sxtA), microcystin (mcyE) and cylindrospermopsin (aoaA) biosynthesis genes were also detected, although water sample analysis rarely detected these toxins. River water temperature and nutrient concentrations were optimal for bloom survival. The operational design of weirs and retention times within weir pools, as well as tributary inflows to and diversions from the Murray River all influenced the distribution and persistence of the blooms. Similar flow, water quality and river regulation factors were underlying causes of another bloom in these rivers in 2009. Global climate change is likely to promote future blooms in this and other lowland rivers.  相似文献   

14.
《Aquatic Botany》2007,86(4):337-345
The seasonal dynamics of seagrass and epiphytic algal primary production were measured in an eelgrass (Zostera marina) bed in the Akkeshi-ko estuary, Hokkaido, Japan (43°02′N, 144°52′E). During spring and early summer, eelgrass biomass increased, with a high production (maximum: 2.89 g C m−2 day−1), but the production and biomass of epiphytic algae remained low. In contrast, epiphytic algae bloomed in August, with a high production (5.21 g C m−2 day−1), but eelgrass production ceased and its biomass subsequently decreased. Therefore, the major primary producers in this eelgrass bed switched seasonally from eelgrass in spring and early summer to epiphytic algae in late summer and autumn. Epiphytic algae maintained similar productivity because of the change of photosynthetic kinetics and the dominant epiphytic diatom changed from highly adhesive species to less adhesive or filamentous small species during the bloom. This suggests that the change of epiphyte density and biomass was due to change of its loss rate, possibly due to herbivorous grazing rate. Moreover, competition between epiphytic algae and eelgrass for nutrients and light may also affect the dramatic seasonal changes in the major primary producers.  相似文献   

15.
We aimed to assess the bioaccumulation of selected four trace metals (Cd, Ni, Zn and Co) in four tissues (muscles, skin, gills and liver) of a freshwater fish Wallago attu (lanchi) from three different sites (upstream, middle stream and downstream) of the Indus River in Mianwali district of Pakistan. Heavy metal contents in water samples and from different selected tissues of fish were examined by using flame atomic absorption spectrometry. The data were statistically compared to study the effects of the site and fish organs and their interaction on the bioaccumulation pattern of these metals at P < 0.05. In W. attu the level of cadmium ranged from 0.004 to 0.24; nickel 0.003–0.708; cobalt 0.002–0.768 and zinc 47.4–1147.5 μg/g wet weight. The magnitude of metal bioaccumulation in different organs of fish species had the following order gills > liver > skin > muscle. The order of bioaccumulation of these metals was Ni < Zn < Co < Cd. Heavy metal concentrations were increased during the dry season as compared to the wet season. The results of this study indicate that freshwater fish produced and marketed in Mianwali have concentrations below the standards of FEPA/WHO for these toxic metals.  相似文献   

16.
The ability of riverine ecosystems to retain nutrients depends on different hydrological, chemical and biological conditions including exchange processes between streams and wetlands. We investigated nutrient retention in a stream wetland complex on the time scale of daily hydrological exchange between both systems. Daily mass balances of NO3-N, NH4-N, TP and SRP were calculated with data obtained by two automated measurement stations in a stream reach upstream and downstream of a wetland. The pattern of hydrological exchange between stream and wetland was used to classify characteristic hydrological periods like floods, base and low flows. The nutrient retention function of the stream wetland complex varied considerably during phases of similar hydrologic conditions. Despite re-wetting measures in the wetland, an overall net export of all nutrients except for NH4-N characterised the whole growing season. Nitrate retention occurred during summer flood (retention in the wetland, 23 kg NO3-N d?1, 17% of the input load) and low flow (retention in the stream, 1 kg NO3-N d?1, 2% of the input load). TP retention during summer could be assigned to sedimentation (0.7 kg TP d?1, 7% during flooding in the wetland, 0.2 kg TP d?1, 4% during low flow in the stream). SRP retention was only intermittent. We concluded that the nutrient retention of streams and wetlands can only be optimised by restoration measures that regard both systems as one functional unit in terms of nutrient retention.  相似文献   

17.
Short-term variations in phosphorus (P) concentrations must be considered while assessing the long-term changes in trophic status and estimating the P load and export. Furthermore, given the challenges of conventional monitoring of river systems, a sediment-specific biomonitoring tool may be more successful inferring P related human controls. In this study, conducted along a 37 km river channel representing up-and downstream urban control, and through a trajectory from a major point source (Assi drain), we tested the patterns of concordance between alkaline phosphatase (AP) activity and soluble reactive-P (SRP) and between AP activity and trophic status in the Ganga River. To validate data comparison, we selected a reference site at Dev Prayag, situated ∼1130 km upstream to the main study stretch. Samples were collected for three consecutive year (March 2013 to February 2016) with respect to atmospheric deposition, surface runoff, point source loading, river water and sediment analysis. For trajectory analysis, samples were collected from 15 locations starting from the drain outlet (zero distance) upto 1.5 km downstream with sampling location 100 m away from the preceding one. We found marked spatial and temporal variations in P concentrations which could be traced by quantifying the AP activity. The AP activity, recorded highest at reference site, declined with increases in P; and at drain mouth it was close to zero reflecting strong influence of P level on alkaline phosphatase activity in the river. We used canonical correlation analysis (CCorA) to test the degrees of concordance and similarity in different variables. Most of the environmental variables and indicators of eutrophy appear largely clustered at one side of the coordinate separating AP activity and dissolved oxygen towards opposite side of the axis. The dynamic fit function relating AP activity with different variables showed significant positive correlation with DO (R2 = 0.67; p < 0.001) and negative correlations with BOD (R2 = 0.82; p < 0.001), Chl a biomass (R2 = 0.52; p < 0.001) and trophic status index (R2 = 0.54 (Chl a), 0.96 (DRP); p < 0.001). Furthermore, the enzyme activity did not show significant negative correlation with heavy metals in sediment. Because anthropogenic activities continue to enhance P loads; AP is inhibited directly by P availability; and eutrophy feedbacks sediment P release, our observations on P-AP activity relationship provide a valuable alternative means for detecting P related controls on water quality, trophic status and biogeochemical feedbacks in human impacted rivers.  相似文献   

18.
The application of salt is the primary means of deicing roads and highways in colder regions of north-eastern North America. This has increased the chloride concentrations of many lake and stream ecosystems. While this salinization has been documented, less is known about how increased salinity alters benthic communities in downstream ecosystems. Natural thresholds, at which there are large scale changes in community composition, have not yet been established for many types of contaminants, including chloride. The diatom community, which is sensitive to small changes in the ambient environment, has the potential to be a strong indicator of salinization effects on stream ecosystems. In this study, we sampled diatom communities in 41 streams across a salinity gradient throughout south central Ontario, Canada. We sampled benthic diatom assemblages in early May following complete snowmelt, when stream water chloride concentrations ranged from 5 to 502 mg/L. Based on redundancy analysis, we confirmed a strong association between the species composition of the diatom community and water conductivity, a commonly used index of stream salinity. Taxa indicator threshold analyses (TITAN) indicated the community changed substantially at chloride concentrations greater than 35 mg/L. We also found that, an indicator taxa, Meridion circulare, was extremely sensitive to high concentrations of salt and negatively correlated with chloride. In a wide synoptic survey of streams of our region, we found that streams in most developed watersheds exceed tolerance thresholds for benthic diatom communities. This work suggests that current chloride concentrations in urban watersheds are greatly exceeding the benthic community thresholds, for which improved management and regulatory practices are needed. Salinization thus appears to be an important feature of urban streams and needs to be considered as an important ecological driver in future studies.  相似文献   

19.
We examined the utility of nutrient criteria derived solely from total phosphorus (TP) concentrations in streams (regression models and percentile distributions) and evaluated their ecological relevance to diatom and algal biomass responses. We used a variety of statistics to characterize ecological responses and to develop concentration-based nutrient criteria (derived from ecological effects) for streams in Connecticut, USA, where urbanization is the primary cause of watershed alteration. Mean background TP concentration in the absence of anthropogenic land cover was predicted to be 0.017 mg/l, which was similar to the 25th percentile of all study sites. Increased TP concentrations were significantly correlated with altered diatom community structure, decreased percent low P diatoms and diatoms sensitive to impervious cover, and increased percent high P diatoms, diatoms that increase with greater impervious cover, and chlorophyll a (P < 0.01). Variance partitioning models showed that shared effects of anthropogenic land cover and chemistry (i.e., chemistry affected by land cover) represented the majority of explained variation in diatom metrics and chlorophyll a. Bootstrapped regression trees, threshold indicator taxa analysis, and boosted regression trees identified TP concentrations at which strong responses of diatom metrics and communities occurred, but these values varied among analyses. When considering ecological responses, scientifically defensible and ecologically relevant TP criteria were identified at (1) 0.020 mg/l for designating highest quality streams and restoration targets, above which sensitive taxa steeply declined, tolerant taxa increased, and community structure changed, (2) 0.040 mg/l, at which community level change points began to occur and sensitive diatoms were greatly reduced, (3) 0.065 mg/l, above which most sensitive diatoms were lost and tolerant diatoms steeply increased to their maxima, and (4) 0.082 mg/l, which appeared to be a saturated threshold, beyond which substantially altered community structure was sustained. These criteria can inform anti-degradation policies for high quality streams, discharge permit decisions, and future strategies for watershed development and managment. Our results indicated that management practices and decisions at the watershed scale will likely be important for improving degraded streams and conserving high quality streams. Results also emphasized the importance of incorporating ecological responses and considering the body of evidence from multiple conceptual approaches and statistical analyses for developing nutrient criteria, because solely relying on one approach could lead to misdirected decisions and resources.  相似文献   

20.
The toxic diatom genus Pseudo-nitzschia produces environmentally damaging harmful algal blooms (HABs) along the U.S. west coast and elsewhere, and a recent ocean warming event coincided with toxic blooms of record extent. This study examined the effects of temperature on growth, domoic acid toxin production, and competitive dominance of two Pseudo-nitzschia species from Southern California. Growth rates of cultured P. australis were maximal at 23 °C (∼0.8 d−1), similar to the maximum temperature recorded during the 2014–2015 warming anomaly, and decreased to ∼0.1 d−1 by 30 °C. In contrast, cellular domoic acid concentrations only became detectable at 23 °C, and increased to maximum levels at 30 °C. In two incubation experiments using natural Southern California phytoplankton communities, warming also increased the relative abundance of another potentially toxic local species, P. delicatissima. These results suggest that both the toxicity and the competitive success of particular Pseudo-nitzschia spp. can be positively correlated with temperature, and therefore there is a need to determine whether harmful blooms of this diatom genus may be increasingly prevalent in a warmer future coastal ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号