首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Parkinson's disease (PD) is the second most prevalent central nervous system (CNS) degenerative disease. Oxidative stress is one of key contributors to PD. Nuclear factor erythroid‐2‐related factor 2 (Nrf2) is considered to be a master regulator of many genes involved in anti‐oxidant stress to attenuate cell death. Therefore, activation of Nrf2 signalling provides an effective avenue to treat PD. Ellagic acid (EA), a natural polyphenolic contained in fruits and nuts, possesses amounts of pharmacological activities, such as anti‐oxidant stress and anti‐inflammation. Recent studies have confirmed EA could be used as a neuroprotective agent in neurodegenerative diseases. Here, mice subcutaneous injection of rotenone (ROT)‐induced DA neuronal damage was performed to investigate EA‐mediated neuroprotection. In addition, adult Nrf2 knockout mice and different cell cultures including MN9D‐enciched, MN9D‐BV‐2 and MN9D‐C6 cell co‐cultures were applied to explore the underlying mechanisms. Results demonstrated EA conferred neuroprotection against ROT‐induced DA neurotoxicity. Activation of Nrf2 signalling was involved in EA‐mediated DA neuroprotection, as evidenced by the following observations. First, EA activated Nrf2 signalling in ROT‐induced DA neuronal damage. Second, EA generated neuroprotection with the presence of astroglia and silence of Nrf2 in astroglia abolished EA‐mediated neuroprotection. Third, EA failed to produce DA neuroprotection in Nrf2 knockout mice. In conclusion, this study identified EA protected against DA neuronal loss via an Nrf2‐dependent manner.  相似文献   

2.
In the current study, neuroprotective significance of ellagic acid (EA, a polyohenol) was explored by primarily studying its antioxidant and antiapoptotic potential against arsenic trioxide (As2O3)‐induced toxicity in SH‐SY5Y human neuroblastoma cell lines. The mitigatory effects of EA with particular reference to cell viability and cytotoxicity, the generation of reactive oxygen species, DNA damage, and mitochondrial dynamics were studied. Pretreatment of SH‐SY5Y cells with EA (10 and 20 μM) for 60 min followed by exposure to 2 μM As2O3 protected the SH‐SY5Y cells against the harmful effects of the second. Also, EA pre‐treated groups expressed improved viability, repaired DNA, reduced free radical generation, and maintained altered mitochondrial membrane potential than those exposed to As2O3 alone. EA supplementation also inhibited As2O3‐induced cytochrome c expression that is an important hallmark for determining mitochondrial dynamics. Thus, the current investigations are more convinced for EA as a promising candidate in modulating As2O3‐induced mitochondria‐mediated neuronal toxicity under in vitro system.  相似文献   

3.
4.
The anticancer drug doxorubicin causes testicular toxicity as an undesirable effect. The present study was undertaken to investigate the possible protection of ellagic acid and rosmarinic acid during doxorubicin administration. For this purpose eight groups of male Sprague–Dawley rats were used (n = 10), one group received vehicle served as control, and other groups received 5 mg/kg doxorubicin twice a week for 2 weeks for a cumulative dose of 20 mg/kg, ellagic acid (10 mg/kg/day, 14 consecutive days p.o.), rosmarinic acid (75 mg/kg/day, 14 consecutive days p.o.), ellagic acid and rosmarinic acid. The latter three regimens were given to control and doxorubicin‐received rats. Doxorubicin decreased testicular relative weight, sperm count, motility, serum testosterone, testicular glycogen, and sialic acid with increased incidence of histopathological changes, oxidative stress, tumor necrosis factor‐alpha, as well as cholinesterase activity. Conversely, ellagic and rosmarinic acid treatment ameliorated such damage, thus showing the possibility to use as an adjuvant during doxorubicin treatment.  相似文献   

5.
Pharmacological interventions targeting mitochondria present several barriers for a complete efficacy. Therefore, a new mitochondriotropic antioxidant (AntiOxBEN3) based on the dietary antioxidant gallic acid was developed. AntiOxBEN3 accumulated several thousand-fold inside isolated rat liver mitochondria, without causing disruption of the oxidative phosphorylation apparatus, as seen by the unchanged respiratory control ratio, phosphorylation efficiency, and transmembrane electric potential. AntiOxBEN3 showed also limited toxicity on human hepatocarcinoma cells. Moreover, AntiOxBEN3 presented robust iron-chelation and antioxidant properties in both isolated liver mitochondria and cultured rat and human cell lines. Along with its low toxicity profile and high antioxidant activity, AntiOxBEN3 strongly inhibited the calcium-dependent mitochondrial permeability transition pore (mPTP) opening. From our data, AntiOxBEN3 can be considered as a lead compound for the development of a new class of mPTP inhibitors and be used as mPTP de-sensitiser for basic research or clinical applications or emerge as a therapeutic application in mitochondria dysfunction-related disorders.  相似文献   

6.
A substance designated as compound D, which reacts spontaneously with 7,8-dihydropterin to give drosopterins, is found in Drosophila melanogaster. The compound was partially purified from the extract of flies by column chromatography and identified as β-hydroxy-α-ketobutyric acid by analysis of its 2,4-dinitrophenylhydrazone, mass spectrometry and reactivity with 7,8-dihydropterin. A highly significant correlation (r = 0.969, p < 0.001) was found between the amounts of the compound and drosopterins in the eye-pigment mutants of Drosophila. Changes of the compound during development of flies were also closely related to those of drosopterins. Based on these observations, a role of the compound in biosynthesis of drosopterins has been discussed.  相似文献   

7.
Nitrofurantoin (N‐(5‐nitro‐2‐furfurylidine) 1‐amino‐hydantoine; NIT) is mainly used for the treatment of acute urinary tract infections. However, its administration can be associated with liver failure or cirrhosis. The aim of this study was to determine whether NIT is a mitochondrial toxicant, if so, what mechanism(s) is involved. The rat liver mitochondria were isolated and treated with different doses of NIT alone or in combination with a reagent of choice for protecting thiol groups, dithiothreitol (DTT). Several mitochondrial parameters, including succinate dehydrogenase activity (also called 3‐(4,5‐dimethylthiazol‐2‐yl) 2,5‐diphenyl tetrazolium bromide assay), lipid peroxidation, superoxide dismutase activity, Reduced glutathione (GSH), and oxidized glutathione (GSSG), and GSSG (oxidized glutathione) levels were determined. The results from this study showed that simultaneous treatment of mitochondria with NIT and DTT significantly reduces the toxicity. Here, we provide evidence that mitochondrial dysfunction followed by depletion of reduced glutathione can be reversed by DTT administration.  相似文献   

8.
Abstract The D. melanogaster rst and kirre genes encode two highly related immunoglobulin-like cell adhesion molecules that function redundantly during embryonic muscle development. The two genes appear to be derived from a common ancestor by gene duplication. Gene duplications have been proposed to be of major evolutionary significance since duplicated redundant sequences can accumulate mutations without detrimental effects for the organism and leave the duplicated genes free to assume novel functions. To address the issue of conservation of the duplicated sequences and their putative redundancy, as well as to identify putative functional divergence of the paralogs during drosophilid evolution, we performed an interspecies comparison of the rst and kirre genes from D. virilis and D. melanogaster. The D. virilis genome contains orthologues of both rst and kirre and hence the duplication took place before the split of the two lineages and has subsequently been conserved. However, whilst the Rst orthologues show a high degree of sequence similarity, this similarity is lower in Kirre orthologues. Especially the intracellular domains of D. virilis and D. melanogaster Kirre sequences are highly divergent: the D. virilis kirre gene lacks the 3′-most exon present in D. melanogaster, which contains motifs conserved between kirre and rst in D. melanogaster. Hence, while each of the two genes is highly conserved at the level of its exon-intron organization, the selection forces acting on the rst and kirre coding sequences are different. These findings are discussed in the light of general evolutionary mechanisms.  相似文献   

9.
10.
赵璐  花蕾  白芃  刘静  张勇  郭敏  李钊  刘威 《微生物学通报》2020,47(6):1867-1875
【背景】高盐饮食目前引起普遍关注,肠道微生物与盐胁迫的相互作用正成为研究热点之一。【目的】以黑腹果蝇为宿主模型,探讨肠道微生物对果蝇盐胁迫反应的影响与潜在机理。【方法】利用平板计数法和定量PCR法检测果蝇肠道载菌量;利用存活率和运动能力测定装置测定果蝇适合度;用化学试剂和抗生素处理建立无菌果蝇,测定肠道菌对果蝇盐胁迫反应的影响;利用亮蓝食用色素染料渗透性实验检测果蝇肠道屏障的完整性;应用实时定量PCR检测先天免疫系统的活性。【结果】高盐处理引起果蝇肠道菌群失调,导致其肠道载菌量显著增加。此外,高盐饮食(high salt diet,HSD)降低了黑腹果蝇成虫的存活率和运动能力。经0.75 mol/L NaCl处理,雌性GF (germ-free)果蝇存活率比对照组升高了11%,同时混合抗生素有效地提高了高盐处理后果蝇的存活率。肠道微生物加剧了肠道屏障功能损伤,雌性GF果蝇出现染料渗透性实验现象的百分率比对照组降低了8%。在分子水平上,盐胁迫下雌性GF果蝇体内Attacin-C、Duox基因表达水平分别是CR(conventionally reared)果蝇的2.5倍和1.7倍。【结论】肠道微生物加重果蝇盐胁迫反应,引发高盐诱导的肠屏障功能紊乱,并且抑制高盐诱导的先天免疫活性。  相似文献   

11.
Ageing is a crucial risk factor for the development of age-related cardiovascular diseases. Therefore, the molecular mechanisms of ageing and novel anti-ageing interventions need to be deeply studied. Alginate oligosaccharide (AOS) possesses high pharmacological activities and beneficial effects. Our study was undertaken to investigate whether AOS could be used as an anti-ageing drug to alleviate cardiac ageing. D-galactose (D-gal)-induced C57BL/6J ageing mice were established by subcutaneous injection of D-gal (200 mg·kg-1·d-1) for 8 weeks. AOS (50, 100 and 150 mg·kg-1·d-1) were administrated intragastrically for the last 4 weeks. As a result, AOS prevented cardiac dysfunction in D-gal-induced ageing mice, including partially preserved ejection fraction (EF%) and fractional shortening (FS%). AOS inhibited D-gal-induced up-regulation of natriuretic peptides A (ANP), brain natriuretic peptide (BNP) and ageing markers p53 and p21 in a dose-dependent manner. To further explore the potential mechanisms contributing to the anti-ageing protective effect of AOS, the age-related mitochondrial compromise was analysed. Our data indicated that AOS alleviated D-gal-induced cardiac ageing by improving mitochondrial biogenesis, maintaining the mitochondrial integrity and enhancing the efficient removal of impaired mitochondria. AOS also decreased the ROS production and oxidative stress status, which, in turn, further inhibiting cardiac mitochondria from being destroyed. Together, these results demonstrate that AOS may be an effective therapeutic agent to alleviate cardiac ageing.  相似文献   

12.
Paraquat (PQ) is a widely used herbicide that can cause severe oxidative and fibrotic injuries in lung tissue. Due to the antioxidant and anti-inflammatory properties of chlorogenic acid (CGA), the present study investigated its effects on PQ-induced pulmonary toxicity. To this end, 30 male rats were randomly categorized into five groups of six. Initially, the first and third groups were treated intraperitoneally (IP) with normal saline and CGA (80 mg/kg) for 28 consecutive days, respectively. The second, fourth, and fifth groups were treated with normal saline and 20 and 80 mg/kg of CGA for 28 consecutive days, respectively, and received a single dose of PQ (IP, 20 mg/kg) on Day 7. Then, the animals were anesthetized with ketamine and xylazine, and lung tissue samples were collected for biochemical and histological examinations. The results showed that PQ significantly increased hydroxyproline (HP) and lipid peroxidation (LPO) and decreased the lung tissue antioxidant capacity. In addition, myeloperoxidase (MPO) activity increased significantly, while glutathione peroxidase (GPx), catalase (CAT), and superoxide dismutase (SOD) activity declined substantially. The administration of therapeutic doses of CGA could prevent the oxidative, fibrotic, and inflammatory effects of PQ-induced lung toxicity, and these changes were consistent with histological observations. In conclusion, CGA may improve the antioxidant defense of lung tissue and prevent the spread of inflammation and the development of PQ-induced fibrotic injuries by enhancing antioxidant enzymes and preventing inflammatory cell infiltration.  相似文献   

13.
Zn72D encodes the Drosophila zinc finger protein Zn72D. It was first identified to be involved in phagocytosis and indicated to have a role in immunity. Then it was demonstrated to have a function in RNA splicing and dosage compensation in Drosophila melanogaster. In this study, we discovered a new function of Zn72D in male fertility. We showed that knockdown of Zn72D in fly testes caused an extremely low egg hatch rate. Immunofluorescence staining of Zn72D knockdown testes exhibited scattered spermatid nuclei and no actin cones or individualization complexes (ICs) during spermiogenesis, whereas the early‐stage germ cells and the spermatocytes were observed clearly. There were no mature sperms in the seminal vesicles of Zn72D knockdown fly testes, although a few sperms could be found close to the seminal vesicle. We further showed that many cytoskeleton‐related genes were significantly downregulated in fly testes due to Zn72D knockdown. Taken together these findings suggest that Zn72D may have an important function in spermatogenesis by sustaining the cytoskeleton‐based morphogenesis and individualization thus ensuring the proper formation of sperm in D. melanogaster.  相似文献   

14.
Antioxidants are potential therapeutic agents for reducing stress-induced organ damage. We investigated the effects of ascorbic acid and β-carotene on oxidative stress-induced cerebral, cerebellar, cardiac and hepatic damage using microscopy and biochemistry. Male Wistar albino rats were divided into five groups: untreated control, stressed, stressed + saline, stressed + ascorbic acid and stressed + β-carotene. The rats in the stressed groups were subjected to starvation, immobilization and cold. The histopathological damage scores for the stressed and stressed + saline groups were higher than those of the control group for all organs examined. The histopathological damage scores and mean tissue malondialdehyde levels for the groups treated with antioxidants were lower than those for the stressed and stressed + saline groups. Mean tissue superoxide dismutase activities for groups that received antioxidants were higher than those for the stressed + saline group for most organs evaluated. Ascorbic acid and β-carotene can reduce stress-induced organ damage by both inhibiting lipid oxidation and supporting the cellular antioxidant defense system.  相似文献   

15.
16.
Myocardial remodelling is important pathological basis of HF, mitochondrial oxidative stress is a promoter to myocardial hypertrophy, fibrosis and apoptosis. ECH is the major active component of a traditional Chinese medicine Cistanches Herba, plenty of studies indicate it possesses a strong antioxidant capacity in nerve cells and tumour, it inhibits mitochondrial oxidative stress, protects mitochondrial function, but the specific mechanism is unclear. SIRT1/FOXO3a/MnSOD is an important antioxidant axis, study finds that ECH binds covalently to SIRT1 as a ligand and up-regulates the expression of SIRT1 in brain cells. We hypothesizes that ECH may reverse myocardial remodelling and improve heart function of HF via regulating SIRT1/FOXO3a/MnSOD signalling axis and inhibit mitochondrial oxidative stress in cardiomyocytes. Here, we firstly induce cellular model of oxidative stress by ISO with AC-16 cells and pre-treat with ECH, the level of mitochondrial ROS, mtDNA oxidative injury, MMP, carbonylated protein, lipid peroxidation, intracellular ROS and apoptosis are detected, confirm the effect of ECH in mitochondrial oxidative stress and function in vitro. Then, we establish a HF rat model induced by ISO and pre-treat with ECH. Indexes of heart function, myocardial remodelling, mitochondrial oxidative stress and function, expression of SIRT1/FOXO3a/MnSOD signalling axis are measured, the data indicate that ECH improves heart function, inhibits myocardial hypertrophy, fibrosis and apoptosis, increases the expression of SIRT1/FOXO3a/MnSOD signalling axis, reduces the mitochondrial oxidative damages, protects mitochondrial function. We conclude that ECH reverses myocardial remodelling and improves cardiac function via up-regulating SIRT1/FOXO3a/MnSOD axis and inhibiting mitochondrial oxidative stress in HF rats.  相似文献   

17.
Adaptive response is the ability of an organism to better counterattack stress‐induced damage in response to a number of different cytotoxic agents. Monosodium L‐glutamate (MSG), the sodium salt of amino acid glutamate, is commonly used as a food additive. We investigated the effects of MSG on the life span and antioxidant response in Drosophila melanogaster (D. melanogaster). Both genders (1 to 3 days old) of flies were fed with diet containing MSG (0.1, 0.5, and 2.5‐g/kg diet) for 5 days to assess selected antioxidant and oxidative stress markers, while flies for longevity were fed for lifetime. Thereafter, the longevity assay, hydrogen peroxide (H2O2), and reactive oxygen and nitrogen species levels were determined. Also, catalase, glutathione S‐transferase and acetylcholinesterase activities, and total thiol content were evaluated in the flies. We found that MSG reduced the life span of the flies by up to 23% after continuous exposure. Also, MSG increased reactive oxygen and nitrogen species and H2O2 generations and total thiol content as well as the activities of catalase and glutathione S‐transferase in D. melanogaster (P < .05). In conclusion, consumption of MSG for 5 days by D. melanogaster induced adaptive response, but long‐term exposure reduced life span of flies. This study may therefore have public health significance in humans, and thus, moderate consumption of MSG is advocated by the authors.  相似文献   

18.
A major feature of the injury sustained by the kidney during obstructive nephropathy is a profound induction of apoptosis in the tubular epithelium. In this study, we explored the central roles of mitochondria and the mechanism of the protective effect of the mitochondrial targeted peptides in tubular cell apoptosis and interstitial fibrosis during obstructive nephropathy. Unilateral ureter obstruction (UUO) was performed on rats, and the animals were randomly assigned to intravenous treatment with normal saline, rat serum albumin (RSA), or HOCl-rat serum albumin (HOCl-RSA) in the presence or absence of SS-31. A sham-operation control group was set up by left ureteral dissociation but not ligation. Compared with the control group, UUO animals displayed fibrotic abnormalities, accompanied by increased expression of collagen-I, fibronectin, α-SMA protein and mRNA in the renal interstitium. They also displayed oxidative stress, as evidenced by increased levels of HOCl-alb, TBARS, and mitochondrial reactive oxygen species (ROS) and a decrease in MnSOD activity in the renal homogenate. Damage to mitochondrial structure and functions was observed, as evidenced by a decrease in the mitochondrial membrane potential (MMP), ATP production, mtDNA copy number alterations and release of cytochrome C (cyto C) from the mitochondria to the cytoplasm. These changes were accompanied by activation of caspase-3, caspase-7, caspase-9, and PARP-1 and increased apoptotic cells in the proximal tubules. HOCl-RSA challenge further exacerbated the above biological effects in UUO animals, but these effects were prevented by administration of SS-31. These data suggested that accumulation of HOCl-alb may promote tubular cell apoptosis and interstitial fibrosis, probably related to mitochondrial oxidative stress and damage, and that SS-31 might contribute to apoptotic pathway suppression via scavenging of ROS in the mitochondria.  相似文献   

19.
A number of previous studies have documented the gross response of mitochondrial respiration to salinity treatment, but it is unclear how NaCl directly affects the kinetics of plant phosphorylating and non‐phosphorylating electron transport pathways. This study investigates the direct effects of NaCl upon different respiratory pathways in wheat, by measuring rates of isolated mitochondrial oxygen consumption across different substrate oxidation pathways in saline media. We also profile the abundance of respiratory proteins by using targeted selected reaction monitoring (SRM) mass spectrometry of mitochondria isolated from control and salt‐treated wheat plants. We show that all pathways of electron transport were inhibited by NaCl concentrations above 400 mM; however electron transfer chains showed divergent responses to NaCl concentrations between 0 and 200 mM. Stimulation of oxygen consumption was measured in response to NaCl in scenarios where exogenous NADH was provided as substrate and electron flow was coupled to the generation of a proton gradient across the inner membrane. Protein abundance measurements show that several enzymes with activities less affected by NaCl are induced by salinity, whereas enzymes with activities inhibited by NaCl are depleted. These data deepen our understanding of how plant respiration responds to NaCl, offering new mechanistic explanations for the divergent salinity responses of whole‐plant respiratory rate in the literature.  相似文献   

20.
Paraquat (PQ) has accounted for numerous suicide attempts in developing countries. Aspirin (ASA) as an adjuvant treatment in PQ poisoning has an ameliorative role. And, it's uncoupling of mitochondrial oxidative phosphorylation role has been well established. The current study aimed at examining the aspirin mechanism on lung mitochondria of rats exposed to PQ. Male rats were randomly allocated in five groups: Control group, PQ group (50 mg/kg; orally, only on the first day), and PQ + ASA (100, 200, and 400 mg/kg; i.p.) groups for 3 weeks. Mitochondrial indices and respiratory chain‐complex activities were determined. PQ induced lung interstitial fibrosis; however, ASA (400 mg/kg) led to decrease in this abnormal alteration. In comparison with PQ group, complex II and IV activity, and adenosine triphosphate content in ASA groups had significantly increased; however, reactive oxygen species production, mitochondrial membrane permeabilization, and mitochondrial swelling were significantly reduced. In conclusion, aspirin can alleviate lung injury induced by PQ poisoning by improving mitochondrial dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号