首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cortisol, the dominant corticosteroid in fish, and 11-ketotestosterone (11KT), the most potent androgen in fish, are both synthesized and (or) deactivated by the same two enzymes, 11beta-hydroxylase and 11beta-hydroxysteroid dehydrogenase. Cortisol is synthesized in response to stress (such as that caused by interaction with a dominant conspecific), whereas 11KT is synthesized during protogynous sex change. It has been hypothesized that corticosteroids (such as cortisol) inhibit 11KT synthesis via substrate competition, thereby providing a mechanism for the regulation of socially mediated, protogynous sex change. We tested this hypothesis by administering cortisol (50 microg g(-1) body weight) to female sandperch (Parapercis cylindrica) under social conditions that were permissive to sex change (i.e. in the absence of suppressive male dominance). Twenty-one days later, mean physiological cortisol concentration in cortisol-treated fish was 4.2-fold greater than that in 'socially stressed' female fish maintained in a semi-natural system. Although the dosage of cortisol was therefore considered to be favorable for engendering competitive inhibition of 11KT synthesis, all cortisol-treated fish changed sex, as did all sham-treated and control fish (n=7 fish per treatment). In addition, there was no effect of cortisol treatment on the rate of sex change or on the pattern of steroidogenesis. Thus, our results refute the hypothesis that protogynous sex change is regulated by substrate competition between corticosteroids and androgens.  相似文献   

2.
Benthic structure plays an important role as shelter and feeding habitat for demersal fauna. While many studies have investigated the relationship between structural complexity of aquatic vegetation and the number of species or abundance of motile organisms, little is known of the attractiveness of submerged mangrove roots. We tested the importance of various root attributes in attracting fish species in a field experiment using different artificial mangrove units (AMUs) with PVC pipes mimicking roots to exclude interaction with other environmental and biotic factors. We manipulated length, vertical orientation, and three-dimensional structural complexity of root mimics in the AMUs to explore their effects on the fish community variables: fish abundance, number of species and community composition. Pipe length and three-dimensional structure did not have an effect on fish community variables. Vertical pipe orientation had a significant effect and AMUs with standing pipes showed higher total fish abundances and number of species than AMUs with hanging pipes. Also community composition differed greatly between AMUs with standing versus hanging pipes. At species level, demersal fish species mainly occupied AMUs with standing pipes and occurred only at very low abundances when hanging pipes dominated in the AMUs; in contrast, the semi-pelagic swimmer Sphyraena barracuda showed a trend of higher abundance in AMUs with mainly hanging pipes. When analyzed across all AMUs, fish abundances of demersal as well as semi-pelagic species decreased significantly with increasing interspatial pipe distance among AMUs, suggesting that distance to refuge may be the underlying mechanism for the observed patterns. The above findings are important in the context of the worldwide degradation of mangroves, because human alteration to mangrove vegetation affects its structure and thus composition and size of fish communities.  相似文献   

3.
Synopsis The growth and reproduction of Cantigaster valentini were studied in two sites at Lizard Island, Australia. C. valentini was found to be a gonochore, with a sex ratio very close to 1:1; sexes could be distinguished externally. The growth (in length) of known individuals from both sites was measured at least every two months over two years. Growth rates of males and females decrease as their sizes increase. Growth rates differ between sexes and between sites: males generally grow faster than females and individuals at Mermaid Cove generally grow faster than individuals at Palfrey Island. Spawning is demersal, it occurs daily between 0800 and 1600h, and continues year-round. For females the interval between successive spawnings varies from about 4 days in the warm-water season to about 10 days in the cool-water season. From a comparison of local reproductive output and local recruitment survivorship of larvae in the plankton was estimated to be much higher than in another species (Pomacentrus wardi) for which a similar estimate was available. We suggest that some aspects of the reproductive strategy of C. valentini differ from other, non-toxic reef fishes in ways consistent with a reduced threat of predation upon adults, eggs, and larvae: courtship and spawning are unhurried and occur throughout most of the day; spawning is unrelated to lunar cycles; there is no parental care or defense of fertilized eggs; and embryos often hatch on rising tides.Centre for Environmental and Urban StudiesSenior author's present address: School of Biological Sciences F07, University of Sydney, Sydney 2006, N.S.W., Australia  相似文献   

4.
The impact of wastewater effluent from a sewage treatment works (STW) on the health of brown trout held in cages and wild brown trout in a river was investigated. Biochemical, histological, and organismal responses as well as parasite abundances were monitored and then analyzed using multivariate analyses. Stress responses in trout induced by the water quality of the river upstream of the STW were enhanced by the discharge of the STW. For caged fish, the serum chemistry values alkaline phosphatase, blood urea nitrogen, and creatinine, as well as histological indices of gills and liver, were most effective at distinguishing among fish held in river water, a mixture of river water and wastewater, and tap water. For wild fish, total protein, histological liver alterations and abundance of two parasites (sessile peritrichia, Sphaerospora sp.) were the most indicative parameters for discriminating the health of fish between sites upstream and downstream of the STW. Considering the relationships between the measured parameters concurrently, the multivariate discriminant analysis is an effective method to evaluate which combination of parameters provide the best discrimination between the treatment groups. In contrast to the calculation of group differences based on individual responses, the integrated responses of parameters representing different biological levels lead to a more comprehensive assessment of organismal health and a more accurate distinction in differences between treatment groups.  相似文献   

5.
6.
Abstract Biodiversity is frequently associated with functional redundancy. Indo‐Pacific coral reefs incorporate some of the most diverse ecosystems on the globe with over 3000 species of fishes recorded from the region. Despite this diversity, we document changes in ecosystem function on coral reefs at regional biogeographical scales as a result of overfishing of just one species, the giant humphead parrotfish (Bolbometopon muricatum). Each parrotfish ingests over 5 tonnes of structural reef carbonates per year, almost half being living corals. On relatively unexploited oceanic reefs, total ingestion rates per m2 balance estimated rates of reef growth. However, human activity and ecosystem disruption are strongly correlated, regardless of local fish biodiversity. The results emphasize the need to consider the functional role of species when formulating management strategies and the potential weakness of the link between biodiversity and ecosystem resilience.  相似文献   

7.
Little is known about the thermal tolerances of fish that occupy tropical intertidal habitats or how their distribution, physiological condition, and survival are influenced by water temperature. We used a combination of laboratory and field approaches to study the thermal biology of bonefish, Albula vulpes, a fish species that relies on nearshore intertidal habitats throughout the Caribbean. The critical thermal maximum (CTMax) for bonefish was determined to be 36.4±0.5 and 37.9±0.5 °C for fish acclimated to 27.3±1.3 and 30.2±1.4 °C, respectively, and these tolerances are below maximal temperatures recorded in the tropical tidal habitats where bonefish frequently reside (i.e., up to 40.6 °C). In addition, daily temperatures can fluctuate up to 11.4 °C over a 24-h period emphasizing the dramatic range of temperatures that could be experienced by bonefish on a diel basis. Use of an acoustic telemetry array to monitor bonefish movements coupled with hourly temperature data collected within tidal creeks revealed a significant positive relationship between the amount of time bonefish spent in the upper portions of the creeks with the increasing maximal water temperature. This behavior is likely in response to feeding requirements necessary to fuel elevated metabolic demands when water temperatures generally warm, and also to avoid predators. For fish held in the laboratory, reaching CTMax temperatures elicited a secondary stress response that included an increase in blood lactate, glucose, and potassium levels. A field study that involved exposing fish to a standardized handling stressor at temperatures approaching their CTMax generated severe physiological disturbances relative to fish exposed to the same stressor at cooler temperatures. In addition, evaluation of the short-term survival of bonefish after surgical implantation of telemetry tags revealed that there was a positive relationship between water temperature at time of tagging and mortality. Collectively, the data from these laboratory and field studies suggest that bonefish occupy habitats that approach their laboratory-determined CTMax and can apparently do so without significant sub-lethal physiological consequences or mortality, except when exposed to additional stressors.  相似文献   

8.
Considerable attention has been given to the potential impacts of global climate change on biodiversity. In the present study, we combine understudied themes by examining the ability of a freshwater fish (polymorphic for heat‐sensitivity) to respond to short‐term thermal stress mimicking an extreme temperature event. We simultaneously measured the effect of thermal stress on the body condition of heat‐sensitive and heat‐tolerant forms to evaluate an existing hypothesis regarding the underlying mechanism by which temperature affects the maintenance of genetic variation in this species. Surprisingly, the heat‐sensitive allelic variant increased in body condition equally as much as a heat‐tolerant variant under acute heat stress. More importantly, the heat‐sensitive variant exhibited a significant response to thermal stress, with an upward shift of greater than 2 °C in critical thermal maximum. Our findings suggest a complexity to the relationship between thermal stress and male body condition that may depend on an interaction with other factors such as resource level. Although the evolutionary fate of species with respect to climate change is typically evaluated in terms long‐term adaptive response, short‐term selection events could drastically reduce fitness and reduce evolutionary potential. Our results suggest that heat‐sensitive species may have considerably greater resilience to the short‐term, extreme perturbations to the environment that are expected under climate change. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 504–510.  相似文献   

9.
Climate warming is expected to increase respiration rates of tropical forest trees and lianas, which may negatively affect the carbon balance of tropical forests. Thermal acclimation could mitigate the expected respiration increase, but the thermal acclimation potential of tropical forests remains largely unknown. In a tropical forest in Panama, we experimentally increased nighttime temperatures of upper canopy leaves of three tree and two liana species by on average 3  ° C for 1 week, and quantified temperature responses of leaf dark respiration. Respiration at 25  ° C (R25) decreased with increasing leaf temperature, but acclimation did not result in perfect homeostasis of respiration across temperatures. In contrast, Q10 of treatment and control leaves exhibited similarly high values (range 2.5–3.0) without evidence of acclimation. The decrease in R25 was not caused by respiratory substrate depletion, as warming did not reduce leaf carbohydrate concentration. To evaluate the wider implications of our experimental results, we simulated the carbon cycle of tropical latitudes (24 ° S–24 ° N) from 2000 to 2100 using a dynamic global vegetation model (LM3VN) modified to account for acclimation. Acclimation reduced the degree to which respiration increases with climate warming in the model relative to a no‐acclimation scenario, leading to 21% greater increase in net primary productivity and 18% greater increase in biomass carbon storage over the 21st century. We conclude that leaf respiration of tropical forest plants can acclimate to nighttime warming, thereby reducing the magnitude of the positive feedback between climate change and the carbon cycle.  相似文献   

10.
Plant FtsZ (filamentous temperature-sensitive Z) proteins are regarded as descendants of prokaryotic cell division proteins. We could show previously that four FtsZ isoforms of the moss Physcomitrella patens assemble into, and interact in, distinct structures inside the chloroplasts and in the cytosol. Their organisation and localisation patterns indicate an involvement in chloroplast and cell division and in the maintenance of chloroplast shape and integrity. The cellular processes of chloroplast division and maintenance of chloroplast shape were disturbed either by application of the beta-lactam antibiotic ampicillin or by a mutation that presumably affects signal transduction of the plant hormone cytokinin. When cells of these plants were analysed microscopically, there was no indication that cytosolic functions of FtsZ proteins were affected. Furthermore, FtsZ proteins continued to build three-dimensional plastoskeleton networks, even in considerably enlarged or malformed chloroplasts. On the other hand, macrochloroplast formation promoted the localisation of FtsZ proteins in filaments that emanate from the plastids and, therefore, most likely represent stromules. Annular FtsZ structures that are regarded as essential components of the division apparatus were absent from macrochloroplasts of ampicillin-treated cells. Thus, the distribution of FtsZ proteins after inhibition of chloroplast division further strengthens our hypothesis on the functions of distinct isoforms. In addition, the results provide further insight into the regulation of protein targeting and dynamics of plastoskeletal elements.  相似文献   

11.
Sediment-dwelling prokaryotes play a vital role in determining the fate and speciation of metals, yet are also susceptible to the biological effects of trace metals. In this article, optimized DNA extraction and purification techniques and species-specific primers are used to assess the genetic incidence and abundance of metal detoxification and general stress genes of Pseudomonas aeruginosa to complement chemical analysis in inferring the severity of metal-contaminated sites along the Clark Fork River, Montana. Results show the highest incidence of candidate genes related to bacterial stress at the most polluted site, while multiple regression analysis demonstrated significant correlations (P<0.05, r(2)=0.9) between in situ metal concentrations (As, Cu and Zn), total gene incidence, and the incidence of metal detoxification genes. Furthermore, principal components plotting the incidence of genes related to metal resistance show clear separation of sites giving clear clusters on the basis of contamination. Quantification of three genes (sodA, htpX and mt) from surveyed sites found significantly higher (anova, P<0.05) copy numbers at the more contaminated sites compared with reference sites. The development of rapid microbial biomarker tools represents a significant advance in the field of environmental biomonitoring and the prediction of metal bioavailability.  相似文献   

12.
River ecosystems face growing threats from human-induced stressors, resulting in habitat degradation and biodiversity loss. Crucial to these ecosystems, macroinvertebrates maintain river health and functioning. In this review, we examine the challenges confronting macroinvertebrates, explore restoration strategies and management approaches, and shed light on knowledge gaps and future research directions. Habitat degradation, water pollution, climate change, and invasive species are discussed as key challenges. Various restoration strategies, such as in-stream habitat restoration, flow regime restoration, riparian zone restoration, and connectivity restoration, are evaluated for macroinvertebrate conservation. Integrated catchment management, adaptive management, community-based management, monitoring, and policy integration are highlighted as essential management approaches, and knowledge gaps in long-term monitoring, innovative restoration techniques, climate change resilience, and policy incorporation are identified as areas calling for further research. Ultimately, a proactive, adaptable, and cooperative approach to river management will ensure macroinvertebrate conservation and sustainable river ecosystems.  相似文献   

13.
《Chronobiology international》2013,30(9):1051-1061
Since fish show daily rhythms in most physiological functions, it should not be surprising that stressors may have different effects depending on the timing of exposure. In this study, we investigated the influence of time of day on the stress responses, at both physiological and cellular levels, in gilthead sea bream (Sparus aurata L.) submitted to air exposure for 30?s and then returned to their tank. One hour after air exposure, blood, hypothalamus and liver samples were taken. Six fish per experimental group (control and stressed) were sampled every 4?h during a 24-h cycle. Fish were fed in the middle of the light cycle (ML) and locomotor activity rhythms were recorded using infrared photocells to determine their daily activity pattern of behaviour, which showed a peak around feeding time in all fish. In the control group, cortisol levels did not show daily rhythmicity, whereas in the stressed fish, a daily rhythm of plasma cortisol was observed, being the average values higher than in the control group, with increased differences during the dark phase. Blood glucose showed daily rhythmicity in the control group but not in the stressed one which also showed higher values at all sampling points. In the hypothalamus of control fish, a daily rhythm of corticotropin-releasing hormone (crh) gene expression was observed, with the acrophase at the beginning of the light phase. However, in the stressed fish, this rhythm was abolished. The expression of crh-binding protein (crhbp) showed a peak at the end of the dark phase in the control group, whereas in the stressed sea bream, this peak was found at ML. Regarding hepatic gene expression of oxidative stress biomarkers: (i) cytochrome c oxidase 4 showed daily rhythmicity in both control and stressed fish, with the acrophases located around ML, (ii) peroxiredoxin (prdx) 3 and 5 (prdx5) only presented daily rhythmicity of expression in the stressed fish, with the acrophase located at the beginning of the light cycle and (iii) uncoupling protein 1 showed significant differences between sampling points only in the control group, with significantly higher expression at the beginning of the dark phase. Taken together, these results indicate that stress response in gilthead sea bream is time-dependent as cortisol level rose higher at night, and that different rhythmic mechanisms interplay in the control of neuroendocrine and cellular stress responses.  相似文献   

14.
The focus of a new experiment, set up in Jena in spring 2002, are the effects of biodiversity on element cycles and the interaction of plant diversity with herbivores and soil fauna. The experimental design explicitly addresses criticisms provoked by previous biodiversity experiments. In particular, the choice of functional groups, the statistical separation of sampling versus complementarity effects, and testing for the effects of particular functional groups differ from previous experiments. Based on a species pool of 60 plant species common to the Central European Arrhenatherion grasslands, mixtures of one to 16 (60) species and of one to four plant functional groups were established on 90 plots (20 m × 20 m) with nested experiments. In order to test specific hypotheses 390 additional small-area plots (3.5 m × 3.5 m) were set-up. Exact replicates of all species mixtures serve to assess the variability in ecosystem responses. In a dominance experiment, the effects of interactions among nine selected highly productive species are studied. Each species is grown as monoculture replicated once.Effekte der Biodiversität auf Elementkreisläufe und Wechselwirkungen der pflanzlichen Artenvielfalt mit Bodenfauna und Herbivoren stehen im Mitttelpunkt eines neuen Experiments, das im Frühjahr 2002 in Jena eingerichtet wurde. Das Versuchsdesign berücksichtigt ausdrücklich die Kritik, die an den Aufbau früherer Biodiversitätsversuche gerichtet wurde. Die Auswahl funktioneller Gruppen von Pflanzenarten, die statistischen Möglichkeiten, die Effekte des “Sampling” gegen Komplementarität zu trennen sowie den Einfluß funktioneller Gruppen zu überprüfen, unterscheiden dieses Experiment von früheren Versuchen. Sechzig typische Pflanzenarten der zentraleuropäischen Frischwiesen (Arrhenatherion) bilden den Artenpool für den Versuch. Auf 90 Flächen wurden Artenmischungen etabliert, die 1 bis 16 (60) Arten und 1 bis 4 funktionelle Gruppen dieser Pflanzenarten enthalten. Die Versuchsparzellen haben eine Größe von 20 m × 20 m, auf denen in genesteter Anordnung verschiedene Teilexperimente durchgeführt werden. Zusätzlich wurden 390 kleine Parzellen (3.5 m × 3.5 m) angelegt, um spezifische Hypothesen zu überprüfen. Alle Arten werden hier mit je einer Wiederholung als Monokulturen kultiviert. Identische Wiederholungen aller Artenmischungen sollen deren Variabilität untersuchen. In einem Dominanz-Versuch werden die Effekte der Wechselwirkungen zwischen 9 ausgewählten hochproduktiven Arten untersucht.  相似文献   

15.
Both local site conditions and landscape context influence the course of succession, but there is a lack of experimental studies on the relative importance of these two factors. It is hypothesised that convergence vs. divergence in succession is determined by the interplay of site factors, such as type of substrate and the nature of the surrounding landscape. In order to evaluate the role of substrate and surrounding landscape in the initial development of vegetation, experimental plots with tertiary clay, sand, peat, sterilised local soil and undisturbed local soil as a control were established in two contrasting regions, and the cover of all the species present was recorded annually for 10 years. In early succession, vegetation was affected by both the substrate and surrounding landscape, but their effects resulted in different trends. The importance of the substrate gradually decreased, while that of the landscape context increased. In the course of succession the vegetation between the two regions diverged and converged within each region. We concluded with regard to the divergence vs. convergence dichotomy in succession: if contrasting habitats occur in the same or similar landscapes, convergence is expected, whereas if similar or the same habitats are located in contrasting landscapes, divergence is expected. For the remaining combinations, i.e. contrasting habitats in contrasting landscapes or the same habitats in the same or a similar landscape, successions may exhibit no or only slight divergence or convergence.  相似文献   

16.
Nalini M. Nadkarni 《Oecologia》1994,100(1-2):94-97
Some of the proximate factors that would induce aboveground stems to produce adventitious roots were investigated experimentally on Senecio cooperi, a tropical cloud forest tree. Stem segments were air-layered with different treatments to promote root formation, and the number of roots initiated and rates of root growth were monitored for 20 weeks. Treatments were the application of wet epiphytes or dry epiphytes plus associated humus, sponges wetted with either water or nutrient solutions, or dry sponges. Controls (stem segments with nothing applied) were also monitored. Numbers of adventitious roots formed and rates of subsequent root growth differed among treatments. Wet epiphyte/humus and nutrient solutions were most effective in producing roots, which suggests that epiphytes and the nutrients they intercept and retain within the canopy may cue adjacent host tissue to exploit this resource.  相似文献   

17.
18.
A genetic study was carried out on a neotropical fish species to illustrate the refuge theory, whose main principles are summarized. The geographical structure of the anostomid species Leporinus friderici was analysed in French Guiana and Brazil by horizontal starch gel electrophoresis. Fifteen enzymatic systems corresponding to 21 loci were studied, revealing the following particularities: (1) specimens of fish from six independent coastal rivers of French Guiana form two groups geographically situated on either side of the Kourou River; (2) two alleles can serve as geographic markers, Ldh2 ( l30 ) showing an affinity between the populations in eastern French Guiana and Brazil, and Me 1 ( 300 ) being specific to the west.
These observations are probably related to the refuges that were formed in the Quaternary in South America, especially on the Guiana Shield. We consider that the populations of French Guiana are separated into two groups at the boundary between the two migratory flows, one arising in the west from the refuge of the Guiana Shield and the other in the east from a nearby undetermined Amazonian refuge.  相似文献   

19.
Fish feed waste enhancement of the particulate food supply and performance of mussels Mytilus edulis suspended near salmon cages at an integrated multi-trophic aquaculture (IMTA) site was assessed using a multi-indicator approach. Dietary indicators included bulk measurements of seston quantity and nutritional quality, proximate analysis (PA), fatty acid (FA) and stable isotope (SI) composition. Mussel tissue indicators consisted of PA and FA composition. Mussel performance was assessed from physiological integrations (scope for growth, SFG), growth efficiency (K2) and condition index (CI). All measurements were made over 2 days at a commercial IMTA farm and a monoculture mussel farm in the Bay of Fundy (Canada). Significant differences detected in seston quantity and quality were within the range of natural spatial variability. The SFG of IMTA mussels was lower (28.71 J h−1) than monoculture mussels (38.71 J h−1) and reflected site differences in natural food availability and composition that affected absorption rate. PA of mussel organs didn't reflect a significant fish feed contribution to the mussel diet. However, dietary enhancement and assimilation of fish feed waste was demonstrated by significantly higher levels of feed FA biomarkers 20:1ω9, 18:2ω6, 18:1ω9 and low ω3/ω6 ratio in seston, mussel tissues and feces at the IMTA site than at the mussel farm. SI (δ13C and δ15N) in seston and mussel feces significantly differed among sites and IMTA mussels had significantly higher CI (21%) than monoculture individuals (16%). It was concluded that bulk indicators of the diet, short-term physiological integrations, and PA of mussel tissues have a limited capacity to detect dietary enhancement at IMTA sites. FA and SI tracers of fish feed waste were shown to be more sensitive for detecting the low-levels of diet enhancement within the large range of natural seston variation.  相似文献   

20.
The Catskill Mountains of southeastern New York State have among thehighest rates of atmospheric nitrogen deposition in the United States. Somestreams draining Catskill catchments have shown dramatic increases in nitrateconcentrations while others have maintained low nitrate concentrations. Streamsin which exchange occurs between surface and subsurface (i.e. hyporheic) watersare thought to be conducive to nitrate removal via microbial assimilationand/ordenitrification. Hyporheic exchange was documented in the Neversink River inthesouthern Catskill Mountains, but dissolved organic carbon (DOC) and nitrate(NO3 ) losses along hyporheic flowpaths werenegligible. In this study, Neversink River water was amended with natural,bioavailable dissolved organic carbon (BDOC) (leaf leachate) in a series ofexperimental mesocosms that simulated hyporheic flowpaths. DOC and N dynamicswere examined before and throughout a three week BDOC amendment. In addition,bacterial production, dissolved oxygen demand, denitrification, and sixextracellular enzyme activities were measured to arrive at a mechanisticunderstanding of potential DOC and NO3 removalalong hyporheic flowpaths. There were marked declines in DOC and completeremoval of nitrate in the BDOC amended mesocosms. Independent approaches wereused to partition NO3 loss into two fractions:denitrification and assimilation. Microbial assimilation appears to be thepredominant process explaining N loss. These results suggest that variabilityinBDOC may contribute to temporal differences in NO3 export from streams in the Catskill Mountains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号