首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
There is an increasing need for new cancer therapies. The antitumour effect of bacterial infection has been well observed and practiced throughout history. Bacteria are well‐suited to serve as anticancer agents due to their intrinsic mobility, cell toxicity, immunogenicity, and preferential accumulation within the anoxic tumour environment. Furthermore, advances in biotechnology and molecular techniques have made it easier than ever to engineer bacteria as both therapeutic agents themselves and as therapeutic vectors. Here, we review bacteriolytic therapy and immunotherapy strategies, and examine the development of bacteria as vehicles for cell‐ and tissue‐targeted delivery of genetic cancer therapeutics.  相似文献   

3.
4.
Advances in biotechnology have now created a capacity to produce therapeutically active proteins on a commercial scale, opening the potential for their application in an array of disease conditions. The process of translation of the variety of different therapeutic proteins into the medicines used in clinics is now occurring. To assist in this translation, new formulations to deliver proteins could play an important role. These new formulations need to more adequately address the pharmacological and therapeutic requirement for each particular protein/peptide and, in that way, either improve present therapies or extend with new entries the current list of protein based medicines used in clinic.
Snjezana StolnikEmail:
  相似文献   

5.
We present here a general system for the coordination attachment of therapeutic proteins to a drug delivery system and its application in combined therapy. Proof of concept is demonstrated by the synthesis and testing of the targeted drug delivery system for cytostatics, which is based on a combination of the drug carrier Zn-porphyrin-cyclodextrin conjugates and their supramolecular coordination complexes with immunoglobulins. This system can be as readily used for a variety of therapeutic and targeting proteins including PAs, MAs, lectins, and HSA. Moreover, it allows combined photodynamic therapy, cell targeted chemotherapy and immunotherapy. When tested in a mouse model with human C32 carcinoma, the therapeutic superiority of the coordination assembly nanosystem was shown in comparison with the efficacy of building blocks used for the construction of the system.  相似文献   

6.
7.
Ligand inducible proteins that enable precise and reversible control of nuclear translocation of passenger proteins have broad applications ranging from genetic studies in mammals to therapeutics that target diseases such as cancer and diabetes. One of the drawbacks of the current translocation systems is that the ligands used to control nuclear localization are either toxic or prone to crosstalk with endogenous protein cascades within live animals. We sought to take advantage of salicylic acid (SA), a small molecule that has been extensively used in humans. In plants, SA functions as a hormone that can mediate immunity and is sensed by the nonexpressor of pathogenesis-related (NPR) proteins. Although it is well recognized that nuclear translocation of NPR1 is essential to promoting immunity in plants, the exact subdomain of Arabidopsis thaliana NPR1 (AtNPR1) essential for SA-mediated nuclear translocation is controversial. Here, we utilized the fluorescent protein mCherry as the reporter to investigate the ability of SA to induce nuclear translocation of the full-length NPR1 protein or its C-terminal transactivation (TAD) domain using HEK293 cells as a heterologous system. HEK293 cells lack accessory plant proteins including NPR3/NPR4 and are thus ideally suited for studying the impact of SA-induced changes in NPR1. Our results obtained using a stable expression system show that the TAD of AtNPR1 is sufficient to enable the reversible SA-mediated nuclear translocation of mCherry. Our studies advance a basic understanding of nuclear translocation mediated by the TAD of AtNPR1 and uncover a biotechnological tool for SA-mediated nuclear localization.  相似文献   

8.
Abstract

Efficient and site-specific delivery of therapeutic drugs is a critical challenge in clinical treatment of cancer. Nano-sized carriers such as liposomes, micelles, and polymeric nanoparticles have been investigated for improving bioavailability and pharmacokinetic properties of therapeutics via various mechanisms, for example, the enhanced permeability and retention (EPR) effect. Further improvement can potentially be achieved by conjugation of targeting ligands onto nanocarriers to achieve selective delivery to the tumour cell or the tumour vasculature. Indeed, receptor-targeted nanocarrier delivery has been shown to improve therapeutic responses both in vitro and in vivo. A variety of ligands have been investigated including folate, transferrin, antibodies, peptides and aptamers. Multiple functionalities can be incorporated into the design of nanoparticles, e.g., to enable imaging and triggered intracellular drug release. In this review, we mainly focus on recent advances on the development of targeted nanocarriers and will introduce novel concepts such as multi-targeting and multi-functional nanoparticles.  相似文献   

9.
Response of cancer cells to molecular interruption of the CK2 signal   总被引:7,自引:0,他引:7  
Protein kinase CK2 is one of the key cellular signals for cell survival, growth, and proliferation. It is has been observed to be elevated in various cancers that have been examined. Various observations suggest that moderate dysregulation of CK2 may profoundly influence the cell response. We have examined the effects of interfering with the CK2 signal in various cancer cell lines by employing antisense oligodeoxynucleotides (ODN) against the and subunits of CK2. Our results demonstrate that antisense CK2- and antisense CK2- ODNs markedly influence cell viability of these cancer cells in a dose and time-dependent manner. Antisense CK2- was slightly more effective than antisense CK2- in most of the cells tested. The efficacy of the antisense ODN seemed to vary with the cell type; however, in all cases potent induction of apoptosis was observed. Significantly, the effects of the antisense ODN on the CK2 activity in the nuclear matrix were relatively small compared to the much stronger induction of apoptosis in cells. This suggests that modest down-regulation of CK2 can evoke a much greater apoptotic response in cancer cells.  相似文献   

10.
l -Asparaginases hydrolyzing plasma l -asparagine and l -glutamine has attracted tremendous attention in recent years owing to remarkable anticancer properties. This enzyme is efficiently used for acute lymphoblastic leukemia (ALL) and lymphosarcoma and emerged against ALL in children, neoplasia, and some other malignancies. Cancer cells reduce the expression of l -asparaginase leading to their elimination. The l -asparaginase anticancerous application approach has made incredible breakthrough in the field of modern oncology through depletion of plasma l -asparagine to inhibit the cancer cells growth; particularly among children. High level of l -asparaginase enzyme production by Escherichia coli, Erwinia species, Streptomyces, and Bacillus subtilis species is highly desirable as bacterial alternative enzyme sources for anticancer therapy. Thermal or harsh conditions stability of those from the two latter bacterial species is considerable. Some enzymes from marine bacteria have conferred stability in adverse conditions being more advantageous in cancer therapy. Several side effects exerted by l -asparaginases such as hypersensitivity should be hindered or decreased through alternative therapies or use of immune-suppressor drugs. The l -asparaginase from Erwinia species has displayed remarkable traits in children with this regard. Noticeably, Erwinia chrysanthemi l -asparaginase exhibited negligible glutaminase activity representing a promising efficiency mitigating related side effects. Application of software such as RSM would optimize conditions for higher levels of enzyme production. Additionally, genetic recombination of the encoding gene would indisputably help improving enzyme traits. Furthermore, the possibility of anticancer combination therapy using two or more l -asparaginases from various sources is plausible in future studies to achieve better therapeutic outcomes with lower side effects.  相似文献   

11.
Although some studies have shown that the cell penetrating peptide (CPP) TAT can enter a variety of cell lines with high efficiency, others have observed little or no transduction in vivo or in vitro under conditions mimicking the in vivo environment. The mechanisms underlying TAT‐mediated transduction have been investigated in cell lines, but not in primary brain cells. In this study we demonstrate that transduction of a green fluorescent protein (GFP)‐TAT fusion protein is dependent on glycosaminoglycan (GAG) expression in both the PC12 cell line and primary astrocytes. GFP‐TAT transduced PC12 cells and did so with even higher efficiency following NGF differentiation. In cultures of primary brain cells, TAT significantly enhanced GFP delivery into astrocytes grown under different conditions: (1) monocultures grown in serum‐containing medium; (2) monocultures grown in serum‐free medium; (3) cocultures with neurons in serum‐free medium. The efficiency of GFP‐TAT transduction was significantly higher in the monocultures than in the cocultures. The GFP‐TAT construct did not significantly enter neurons. Experimental modulation of GAG content correlated with alterations in TAT transduction in PC12 cells and astrocyte monocultures grown in the presence of serum. In addition, this correlation was predictive of TAT‐mediated transduction in astrocyte monocultures grown in serum free medium and in coculture. We conclude that culture conditions affect cellular GAG expression, which in turn dictates TAT‐mediated transduction efficiency, extending previous results from cell lines to primary cells. These results highlight the cell‐type and phenotype‐dependence of TAT‐mediated transduction, and underscore the necessity of controlling the phenotype of the target cell in future protein engineering efforts aimed at creating more efficacious CPPs. Biotechnol. Bioeng. 2009; 104: 10–19 © 2009 Wiley Periodicals, Inc.  相似文献   

12.
Mesothelin is a protein expressed at high levels on the cell surface in a variety of cancers, with limited expression in healthy tissues. The presence of mesothelin on tumor tissue correlates with increased invasion and metastasis, and resistance to traditional chemotherapies, through mechanisms that remain poorly understood. Molecules that specifically recognize mesothelin and interrupt its contribution to tumor progression have significant potential for targeted therapy and targeted drug delivery applications. A number of mesothelin-targeting therapies are in preclinical and clinical development, although none are currently approved for routine clinical use. In this work, we report the development of a mesothelin-targeting protein based on the fibronectin type-III non-antibody protein scaffold, which offers opportunities for applications where antibodies have limitations. We engineered protein variants that bind mesothelin with high affinity and selectively initiate apoptosis in tumor cells expressing mesothelin. Interestingly, apoptosis does not occur through a caspase-mediated pathway and does not require downregulation of cell-surface mesothelin, suggesting a currently unknown pathway through which mesothelin contributes to cancer progression. Importantly, simultaneous treatment with mesothelin-binding protein and chemotherapeutic mitomycin C had a greater cytotoxic effect on mesothelin-positive cells compared to either molecule alone, underscoring the potential for combination therapy including biologics targeting mesothelin.  相似文献   

13.
14.
The generation of nitrogen fixing crops is considered a challenge that could lead to a new agricultural ‘green’ revolution. Here, we report the use of synthetic biology tools to achieve and optimize the production of active nitrogenase Fe protein (NifH) in the chloroplasts of tobacco plants. Azotobacter vinelandii nitrogen fixation genes, nifH, M, U and S, were re‐designed for protein accumulation in tobacco cells. Targeting to the chloroplast was optimized by screening and identifying minimal length transit peptides performing properly for each specific Nif protein. Putative peptidyl‐prolyl cis‐trans isomerase NifM proved necessary for NifH solubility in the stroma. Purified NifU, a protein involved in the biogenesis of NifH [4Fe‐4S] cluster, was found functional in NifH reconstitution assays. Importantly, NifH purified from tobacco chloroplasts was active in the reduction of acetylene to ethylene, with the requirement of nifU and nifS co‐expression. These results support the suitability of chloroplasts to host functional nitrogenase proteins, paving the way for future studies in the engineering of nitrogen fixation in higher plant plastids and describing an optimization pipeline that could also be used in other organisms and in the engineering of new metabolic pathways in plastids.  相似文献   

15.
The nuclear matrix (NM) contains a number of proteins that have been found to be associated with transformation. We have previously identified changes in the NM associated with prostate cancer. In this study, we examine the molecular changes that are associated with prostate cancer development in transgenic adenocarcinoma of mouse prostate (TRAMP) model by studying the differences in the NM proteins (NMPs). We collected prostates from the TRAMP males at six critical time points: 6 weeks (puberty), 11 and 19 weeks (development of mild hyperplasia), 25 weeks (development of severe hyperplasia), 31 and 37 weeks (development of neoplasia). The nuclear matrices from the prostates collected at these time points were then isolated and the NMPs were characterized by high-resolution two-dimensional gel electrophoresis. We found three NMPs (E1A, E1B, and E1C) that were present in the 6-week-old prostate and two NMPs (E2A and E2B) that were present in the 11-week-old prostate. These NMPs were absent in the 31- and 37-week-old prostate. We also found five NMPs (E3A-E3E) that were present in the 31-week-old prostate, but absent in the earlier time points. In addition, three NMPs (Le1, Le2, Le3) were present at higher expression in the 6-, 11-, 19-, and 25-weeks old TRAMP prostates, but they were expressed lower during the development of neoplasia at 31- and 37-weeks old. Identification of these NMPs permits the development of novel markers that can characterize various stages of prostate cancer development as well as potentially therapeutic targets.  相似文献   

16.
Macroautophagy/autophagy is a conserved catabolic process through which cellular excessive or dysfunctional proteins and organelles are transported to the lysosome for terminal degradation and recycling. Over the past few years increasing evidence has suggested that autophagy is not only a simple metabolite recycling mechanism, but also plays a critical role in the removal of intracellular pathogens such as bacteria and viruses. When autophagy engulfs intracellular pathogens, the pathway is called ‘xenophagy’ because it leads to the elimination of foreign microbes. Recent studies support the idea that xenophagy can be modulated by bacterial infection. Meanwhile, convincing evidence indicates that xenophagy may be involved in malignant transformation and cancer therapy. Xenophagy can suppress tumorigenesis, particularly during the early stages of tumor initiation. However, in established tumors, xenophagy may also function as a prosurvival pathway in response to microenvironment stresses including bacterial infection. Therefore, bacterial infection-related xenophagy may have an effect on tumor initiation and cancer treatment. However, the role and machinery of bacterial infection-related xenophagy in cancer remain elusive. Here we will discuss recent developments in our understanding of xenophagic mechanisms targeting bacteria, and how they contribute to tumor initiation and anticancer therapy. A better understanding of the role of xenophagy in bacterial infection and cancer will hopefully provide insight into the design of novel and effective therapies for cancer prevention and treatment.  相似文献   

17.
To reduce the adverse effects of cancer therapies and increase their efficacy, new delivery agents that specifically target cancer cells are needed. We and others have shown that aptamers can selectively deliver therapeutic oligonucleotides to the endosome and cytoplasm of cancer cells that express a particular cell surface receptor. Identifying a single aptamer that can internalize into many different cancer cell-types would increase the utility of aptamer-mediated delivery of therapeutic agents. We investigated the ability of the nucleolin aptamer (AS1411) to internalize into multiple cancer cell types and observed that it internalizes into a wide variety of cancer cells and migrates to the nucleus. To determine if the aptamer could be utilized to deliver therapeutic oligonucleotides to modulate events in the nucleus, we evaluated the ability of the aptamer to deliver splice-switching oligonucleotides. We observed that aptamer-splice-switching oligonucleotide chimeras can alter splicing in the nuclei of treated cells and are effective at lower doses than the splice switching oligonucleotides alone. Our results suggest that aptamers can be utilized to deliver oligonucleotides to the nucleus of a wide variety of cancer cells to modulate nuclear events such as RNA splicing.  相似文献   

18.
19.
This study describes the liposome-mediated delivery of toxins to a variety of cells in vitro. Gelonin, a potent inhibitor of protein synthesis from Gelonium multiflorum, was delivered to the cytoplasm of TLX5 lymphoma cells most effectively by phosphatidylserine vesicles. These liposomes were also capable of inhibiting protein synthesis in XC (transformed rat fibroblasts) and phytohaemagglutinin-stimulated CBA mouse lymphocytes. Phosphatidylcholine liposomes had no capacity to deliver their contents to the cytoplasm, but the addition of cholesterol to the vesicle membrane resulted in an increased capacity. Delivery events were enhanced further by the addition of mixed bovine brain gangliosides to the membrane in the ratio 5:5:1 phosphatidylcholine/cholesterol/gangliosides. The addition of cholesterol to phosphatidylserine vesicles failed to increase the inhibitory effects of the gelonin liposomes. The A chain of diphtheria toxin encapsulated in phosphatidylserine liposomes had no inhibitory effect on the level of protein synthesis in TLX5 or Daudi cells.  相似文献   

20.
细菌外膜囊泡(outer membrane vesicles,OMVs)是由革兰氏阴性菌分泌的纳米囊泡,主要由细菌外膜和周质成分组成,因此表面富集的病原体相关分子模式(PAMPs)使OMVs能激起强烈的免疫反应。在抗肿瘤研究中,OMVs主要被用于抗肿瘤药物的递送,不仅能增加药物的肿瘤富集还能激活免疫反应协同杀伤肿瘤;同时,OMVs也用于开发肿瘤疫苗的佐剂,可显著提高免疫响应的能力。本综述主要概括了OMVs的生物发生机理、OMVs对宿主免疫系统的影响及其在肿瘤治疗中的研究进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号