首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Abstract Identification of aphid species is always difficult due to the shortage of easily distinguishable morphological characters. Aphid genus Toxoptera consists of species with similar morphology and similar to Aphis in most morphological characters except the stridulatory apparatus. DNA barcodes with 1 145 bp sequences of partial mitochondrial cytochrome‐coxidase I (COI) genes were used for accurate identification of Toxoptera. Results indicated mean intraspecific sequence divergences were 1.33%, whereas mean interspecific divergences were greater at 8.29% (0.13% and 7.79% if T. aurantii 3 and T. aurantii 4 are cryptic species). Sixteen samples were distinguished to four species correctly by COI barcodes, which implied that DNA barcoding was successful in discrimination of aphid species with similar morphology. Phylogenetic relationships among species of this genus were tested based on this portion of COI sequences. Four species of Toxoptera assembled a clade with low support in maximum‐parsimony (MP) analysis, maximum‐likelihood (ML) analysis and Bayesian phylogenetic trees, the genus Toxoptera was not monophyletic, and there were two sister groups, such as T. citricidus and T. victoriae, and two clades of T. aurantii which probably presented cryptic species in the genus.  相似文献   

2.
Bythinella is a species-rich genus of spring-snails, having a wide range in Europe and Asia Minor. The genus contains several endemic species with narrow ranges, creating interest from a conservation perspective as well as their use as a model for research into biogeographical patterns and evolutionary development. Most of the species of the genus Bythinella are difficult to distinguish by traditional methods due to their similar shell morphology. In previous studies, molecular approaches often came to conclusions that contradicted those from a morphology-based approach, hence the classification of species of Bythinella has been in dispute. Bythinella pannonica has clearly distinct shell morphological features, and consequently is one of the few species of undisputed taxonomic status within this genus. As an important step towards clarifying the systematics of this genus, we have attempted to describe the structure and spatial pattern of diversity of the mitochondrial COI marker within this species, in the hope of applying these findings generally to the whole genus. Molecular results support the monophyly of B. pannonica within the genus. The largest pairwise intraspecific COI sequence difference was almost 5 %, much larger than the value of 1.5 % previously proposed as a barcoding threshold for delimitation of Bythinella species. This finding suggests that incautious application of barcoding might lead to incorrect taxonomic conclusions. Within B. pannonica there are two deeply divergent intraspecific clades, the spatial distribution of which has been shaped by fragmentation, as well as by short and long distance dispersal events. These two clades have not been found syntopically but, as a peculiar feature of this taxon, they are able to persist in nearby habitats. We have demonstrated that the patchy distribution of suitable habitats and the restricted, but non-zero gene flow amongst the populations might play a key role in maintenance of the observed genetic structure of this species.  相似文献   

3.
4.
Fishes are one of the most intensively studied marine taxonomic groups yet cryptic species are still being discovered. An integrated taxonomic approach is used herein to delineate and describe a new cryptic seamoth (genus Pegasus) from what was previously a wide-ranging species. Preliminary mitochondrial DNA barcoding indicated possible speciation in Pegasus volitans specimens collected in surveys of the Torres Strait and Great Barrier Reef off Queensland in Australia. Morphological and meristic investigations found key differences in a number of characters between P. volitans and the new species, P. tetrabelos. Further mt DNA barcoding of both the COI and the slower mutating 16S genes of additional specimens provided strong support for two separate species. Pegasus tetrabelos and P. volitans are sympatric in northern Australia and were frequently caught together in trawls at the same depths.  相似文献   

5.
1. Stream managers need to understand relationships between multiple stressors and ecological responses. We examined responses of benthic invertebrates and algae along two land‐use‐related stressor gradients of concern in running waters. Our correlative study of the consequences of augmented deposited fine sediment and nutrient concentrations was conducted in a regional set of streams and rivers monitored by a water management authority in New Zealand and incorporated a wide range of catchment geologies and stream orders. 2. We used multiple linear regression analysis and an information‐theoretic approach to select the best predictive models for our biological response variables by testing multiple competing hypotheses that include nonlinear subsidy‐stress relationships and interactive effects between the two stressors. 3. Patterns consistent with a subsidy‐stress response to increasing dissolved inorganic nitrogen concentration were found for the relative abundances of the common invertebrate genera Pycnocentrodes and Deleatidium and for the relative abundance of total individuals in the EPT orders (Ephemeroptera, Plecoptera, Trichoptera). 4. Fine sediment seemed the more pervasive stressor, apparently counteracting and overwhelming any initial subsidy effect of increased nutrients, and accounting for more of the variance in biological response variables. Relationships with high nutrient concentrations were weaker and modelled with less certainty, probably reflecting the indirect modes of action of nutrients compared to those underlying sediment effects. Nevertheless, in several cases, the models indicated that nutrients interacted synergistically with fine sediment, lending further weight to the conclusion that managers need to address both stressors to achieve the best outcomes.  相似文献   

6.
Patch selection for cobbles covered by different food types, with and without deposited sediment, by two common New Zealand stream invertebrates, the snail Potamopyrgus antipodarum (Hydrobiidae) and the mayfly Deleatidium sp. (Leptophlebiidae), was quantified. Each taxa was exposed to cobbles covered by (1) filamentous green algae (FGA) or diatoms, and (2) diatoms or heterotrophic biofilms. Two cobbles of each food type were used in each trial, one of which was contaminated by deposited sediment. All cobbles were embedded in plaster in small basins to prevent animals hiding under them, and a known number of animals placed into each basin. The location of each animal was recorded over time, with some observations being made during darkness to see whether this influenced animal movement. More Potamopyrgus were found on cobbles covered by FGA than cobbles covered by diatoms. Sediment-contaminated cobbles covered with FGA also supported more snails than uncontaminated cobbles covered with diatoms. More Potamopyrgus were found on cobbles covered by diatoms than biofilms, and sediment reduced their preference for both these foods. More Deleatidium nymphs were found on diatom-covered cobbles than FGA-covered cobbles. Sediment reduced the preference of Deleatidium for diatoms, but more animals were found on cobbles with sediment-contaminated diatoms than uncontaminated FGA. Patch selection was similar between cobbles covered by either diatoms or biofilms, but sediment reduced the preference of both these foods to Deleatidium. More Deleatidium were recorded on bare plaster during darkness, suggesting they were more mobile at night and searching for new habitats. These results help explain the common occurrence of Potamopyrgus in streams draining developed catchments where FGA blooms and deposited sediment are common, and of Deleatidium in streams draining less developed catchments where FGA and deposited sediment are uncommon.  相似文献   

7.
Soft‐bodied marine taxa, like ribbon worms (Nemertea), often lack clear diagnostic morphological characters impeding traditional species delimitation. Therefore, recent studies concentrated on molecular genetic methods to solve taxonomic issues. Different delimitation methods were employed to explore species boundaries and the presence of cryptic species. However, the performance of the different delimitation methods needs to be tested. A particularly promising nemertean genus in this regard is the palaeonemertean genus Cephalothrix that is commonly found in European waters. In order to gain information on the number and distribution of European cephalotrichids and to test different tree‐based and non‐tree‐based delimitation methods, we analyzed a dataset comprising the barcoding region of the mitochondrial cytochrome c oxidase subunit I (COI) of 215 European Cephalothrix specimens, of which 78 were collected for this study. Our results show the presence of 12–13 European lineages of which several can be assigned to known European species. Analyzing a second dataset comprising 74 additional sequences from the Pacific and the Atlantic Oceans helped identify some of the unassigned European specimens. One resulting clade seems to represent a non‐native introduced Cephalothrix species, while another has never been recorded from Europe before. In our analysis, especially the tree‐based methods and the phylogenetic analysis proved to be a useful tool when delimiting species. It remains unclear whether the different identified clades result from cryptic speciation or from a high genetic variability of the COI gene.  相似文献   

8.
9.

Background

DNA barcoding, i.e. the use of a 648 bp section of the mitochondrial gene cytochrome c oxidase I, has recently been promoted as useful for the rapid identification and discovery of species. Its success is dependent either on the strength of the claim that interspecific variation exceeds intraspecific variation by one order of magnitude, thus establishing a "barcoding gap", or on the reciprocal monophyly of species.

Results

We present an analysis of intra- and interspecific variation in the butterfly family Lycaenidae which includes a well-sampled clade (genus Agrodiaetus) with a peculiar characteristic: most of its members are karyologically differentiated from each other which facilitates the recognition of species as reproductively isolated units even in allopatric populations. The analysis shows that there is an 18% overlap in the range of intra- and interspecific COI sequence divergence due to low interspecific divergence between many closely related species. In a Neighbour-Joining tree profile approach which does not depend on a barcoding gap, but on comprehensive sampling of taxa and the reciprocal monophyly of species, at least 16% of specimens with conspecific sequences in the profile were misidentified. This is due to paraphyly or polyphyly of conspecific DNA sequences probably caused by incomplete lineage sorting.

Conclusion

Our results indicate that the "barcoding gap" is an artifact of insufficient sampling across taxa. Although DNA barcodes can help to identify and distinguish species, we advocate using them in combination with other data, since otherwise there would be a high probability that sequences are misidentified. Although high differences in DNA sequences can help to identify cryptic species, a high percentage of well-differentiated species has similar or even identical COI sequences and would be overlooked in an isolated DNA barcoding approach.  相似文献   

10.
Pakistan is bestowed by a diversified array of wild bird species including collared doves of which the taxonomy has been least studied and reported. DNA barcoding is a geno-taxonomic tool that has been used for characterization of bird species using mitochondrial cytochrome c oxidase I gene (COI). This study aimed to identify taxonomic order of Pakistani collared dove using DNA barcoding. Purposely herein, we present a phylogenetic analysis of Pakistani collared dove based on 650 base pairs of COI gene sequences. Analysis of phylogenetic tree revealed that Pakistani collared dove shared a common clade with Eurasian collared dove (Streptopelia decaocto) and African collared dove (Streptopelia roseogrisea) which indicated a super-species group in Streptopelia genus. This is the first report of molecular classification of Pakistani collared dove using DNA barcoding.  相似文献   

11.
12.
With the global biodiversity crisis, DNA barcoding aims for fast species identification and cryptic species diversity revelation. For more than 10 years, large amounts of DNA barcode data have been accumulating in publicly available databases, most of which were conducted by distance or tree-building methods that have often been argued, especially for cryptic species revelation. In this context, overlooked cryptic diversity may exist in the available barcoding data. The character-based DNA barcoding, however, has a good chance for detecting the overlooked cryptic diversity. In this study, marine mollusk was as the ideal case for detecting the overlooked potential cryptic species from existing cytochrome c oxidase I (COI) sequences with character-based DNA barcode. A total of 1081 COI sequences of mollusks, belonging to 176 species of 25 families of Gastropoda, Cephalopoda, and Lamellibranchia, were conducted by character analysis. As a whole, the character-based barcoding results were consistent with previous distance and tree-building analysis for species discrimination. More importantly, quite a number of species analyzed were divided into distinct clades with unique diagnostical characters. Based on the concept of cryptic species revelation of character-based barcoding, these species divided into separate taxonomic groups might be potential cryptic species. The detection of the overlooked potential cryptic diversity proves that the character-based barcoding mode possesses more advantages of revealing cryptic biodiversity. With the development of DNA barcoding, making the best use of barcoding data is worthy of our attention for species conservation.  相似文献   

13.
This study examines the utility of morphology and DNA barcoding in species identification of freshwater fishes from north‐central Nigeria. We compared molecular data (mitochondrial cytochrome c oxidase subunit I (COI) sequences) of 136 de novo samples from 53 morphologically identified species alongside others in GenBank and BOLD databases. Using DNA sequence similarity‐based (≥97% cutoff) identification technique, 50 (94.30%) and 24 (45.30%) species were identified to species level using GenBank and BOLD databases, respectively. Furthermore, we identified cases of taxonomic problems in 26 (49.00%) morphologically identified species. There were also four (7.10%) cases of mismatch in DNA barcoding in which our query sequence in GenBank and BOLD showed a sequence match with different species names. Using DNA barcode reference data, we also identified four unknown fish samples collected from fishermen to species level. Our Neighbor‐joining (NJ) tree analysis recovers several intraspecific species clusters with strong bootstrap support (≥95%). Analysis uncovers two well‐supported lineages within Schilbe intermedius. The Bayesian phylogenetic analyses of Nigerian S. intermedius with others from GenBank recover four lineages. Evidence of genetic structuring is consistent with geographic regions of sub‐Saharan Africa. Thus, cryptic lineage diversity may illustrate species’ adaptive responses to local environmental conditions. Finally, our study underscores the importance of incorporating morphology and DNA barcoding in species identification. Although developing a complete DNA barcode reference library for Nigerian ichthyofauna will facilitate species identification and diversity studies, taxonomic revisions of DNA sequences submitted in databases alongside voucher specimens are necessary for a reliable taxonomic and diversity inventory.  相似文献   

14.
The snakehead fish of the genus Channa are an important food fish in China. However, the molecular identification and phylogeny of this genus is poorly understood. Here, we present the utility of partial sequences of the COI gene for use in DNA barcoding for the identification of Channa individuals, which includes four species: Channa argus, Channa maculata, Channa asiatica, and Channa striata. A total of 19 haplotypes were identified in this study. The interspecific K2P distances were higher than intraspecific distances. The lowest interspecific distance (0.091) was between C. argus and C. maculata while the highest interspecific distance (0.219) was between C. argus and C. striata. No intraspecific–interspecific distance overlaps were observed, and a distinct barcoding gap was found between intraspecific and interspecific distances in each species. Our results showed that the partial COI gene is an effective DNA barcoding marker for identifying Channa species.  相似文献   

15.
Recent molecular approaches to taxonomy have led to a steady increase in the identification of cryptic species. Within the Etheriidae, the species Etheria elliptica (freshwater oyster) is widespread and common and exists in most of the major African drainages. Within the African freshwater ecosystems, there are major threats to biodiversity and cryptic species complicate conservation strategies; unknown species exist and no conservation status has been assigned. Our objective here was to determine if E. elliptica from several locations in the Congo drainage are correctly classified as representing a single species. We analysed the genetic diversity at two mitochondrial loci (COI and 16S) and two nuclear loci (H3 and 28S), and estimated evolutionary relationships using phylogenetic and DNA barcoding techniques. Bayesian inference yielded three cryptic species of Etheria, and mismatch analysis revealed discrete differences between the cryptic species. We identified three cryptic species within these collections, and evidence indicates that the third species may resolve further with more sampling. In conclusion, the taxonomic history of E. elliptica makes finding cryptic species unsurprising. However, molecular studies such as this may finally help to resolve the number of species within this genus.  相似文献   

16.
Coastal systems are increasingly threatened by multiple local anthropogenic and global climatic stressors. With the difficulties in remediating global stressors, management requires alternative approaches that focus on local scales. We used manipulative experiments to test whether reducing local stressors (sediment load and nutrient concentrations) can improve the resilience of foundation species (canopy algae along temperate rocky coastlines) to future projected global climate stressors (high wave exposure, increasing sea surface temperature), which are less amenable to management actions. We focused on Fucoids (Cystoseira barbata) along the north-western Adriatic coast in the Mediterranean Sea because of their ecological relevance, sensitivity to a variety of human impacts, and declared conservation priority. At current levels of sediment and nutrients, C. barbata showed negative responses to the simulated future scenarios of high wave exposure and increased sea surface temperature. However, reducing the sediment load increased the survival of C. barbata recruits by 90.24% at high wave exposure while reducing nutrient concentrations resulted in a 20.14% increase in the survival and enhanced the growth of recruited juveniles at high temperature. We conclude that improving water quality by reducing nutrient concentrations, and particularly the sediment load, would significantly increase the resilience of C. barbata populations to projected increases in climate stressors. Developing and applying appropriate targets for specific local anthropogenic stressors could be an effective management action to halt the severe and ongoing loss of key marine habitats.  相似文献   

17.
Using a standard cytochrome c oxidase I sequence, DNA barcoding has been shown to be effective to distinguish known species and to discover cryptic species. Here we assessed the efficiency of DNA barcoding for the amphipod genus Gammarus from China. The maximum intraspecific divergence for widespread species, Gammarus lacustris, was 3.5%, and mean interspecific divergence reached 21.9%. We presented a conservative benchmark for determining provisional species using maximum intraspecific divergence of Gammarus lacustris. Thirty-one species possessed distinct barcode clusters. Two species were comprised of highly divergent clades with strong neighbor-joining bootstrap values, and likely indicated the presence of cryptic species. Although DNA barcoding is effective, future identification of species of Gammarus should incorporate DNA barcoding and morphological detection[Current Zoology 55(2):158-164,2009].  相似文献   

18.

Background

DNA barcodes, typically focusing on the cytochrome oxidase I gene (COI) in many animals, have been used widely as a species-identification tool. The ability of DNA barcoding to distinguish species from a range of taxa and to reveal cryptic species has been well documented. Despite the wealth of DNA barcode data for fish from many temperate regions, there are relatively few available from the Southeast Asian region. Here, we target the marine fish Family Carangidae, one of the most commercially-important families from the Indo-Malay Archipelago (IMA), to produce an initial reference DNA barcode library.

Methodology/Principal Findings

Here, a 652 bp region of COI was sequenced for 723 individuals from 36 putative species of Family Carangidae distributed within IMA waters. Within the newly-generated dataset, three described species exhibited conspecific divergences up to ten times greater (4.32–4.82%) than mean estimates (0.24–0.39%), indicating a discrepancy with assigned morphological taxonomic identification, and the existence of cryptic species. Variability of the mitochondrial DNA COI region was compared within and among species to evaluate the COI region''s suitability for species identification. The trend in range of mean K2P distances observed was generally in accordance with expectations based on taxonomic hierarchy: 0% to 4.82% between individuals within species, 0% to 16.4% between species within genera, and 8.64% to 25.39% between genera within families. The average Kimura 2-parameter (K2P) distance between individuals, between species within genera, and between genera within family were 0.37%, 10.53% and 16.56%, respectively. All described species formed monophyletic clusters in the Neighbour-joining phylogenetic tree, although three species representing complexes of six potential cryptic species were detected in Indo-Malay Carangidae; Atule mate, Selar crumenophthalmus and Seriolina nigrofasciata.

Conclusion/Significance

This study confirms that COI is an effective tool for species identification of Carangidae from the IMA. There were moderate levels of cryptic diversity among putative species within the central IMA. However, to explain the hypothesis of species richness in the IMA, it is necessary to sample the whole family across their broad geographic range. Such insights are helpful not only to document mechanisms driving diversification and recruitment in Carangidae, but also to provide a scientific framework for management strategies and conservation of commercially-important fisheries resources.  相似文献   

19.
Ting Ma  Jia Huang 《Biologia》2018,73(12):1205-1213
A new species of the genus Morellia Robineau-Desvoidy, 1830, Morellia (Morellia) trifurcata sp. n., collected from Yunnan, China is described. Four DNA sequences of the partial mitochondrial cytochrome c oxidase subunit I (mtCOI) gene of this new species are provided. In order to evaluate the availability of DNA barcoding for identifying Morellia species, 38 currently available, non-identical COI sequences of 16 Morellia species are involved in a molecular analysis using the neighbor-joining (NJ) method. The intra- and interspecific p-distances are summarized.  相似文献   

20.
Freshwater shrimp are a rich species group, with a long and problematic taxonomic history attributed to their wide distribution and similar morphological characteristics. Shrimp diversity and species identification are important cornerstones for fisheries management. However, identification based on morphological characteristics is a difficult task for a nonspecialist. Abundant freshwater shrimp species are distributed in the waters of Henan Province, but investigations of freshwater shrimp are limited in this region, especially concerning molecular features. Here, we combined morphology and DNA barcodes to reveal the species diversity of freshwater shrimp in Henan province. A total of 1,200 freshwater shrimp samples were collected from 46 sampling sites, and 222 samples were chosen for further microscopic examination and molecular delimitation. We used tree‐based methods (NJ, ML, and bPTP) and distance‐based methods (estimation of the paired genetic distances and ABGD) to delimit species. The results showed that there were nine morphospecies based on morphological characteristics; all could effectively be defined by molecular methods, among which bPTP and ABGD defined 13 and 8 MOTUs, respectively. The estimation of the paired genetic distances of K2P and the p‐distances had similar results. Mean K2P distances and p‐distances within species were both equal to 1.2%. The maximum intraspecific genetic distances of all species were less than 2%, with the exception of Palaemon modestus and M. maculatum. Various analyses have shown that P. modestus and M. maculatum have a large genetic differentiation, which may indicate the existence of cryptic species. By contrast, DNA barcoding could unambiguously discriminate 13 species and detect cryptic diversity. Our results demonstrate the high efficiency of DNA barcoding to delimit freshwater shrimp diversity and detect the presence of cryptic species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号