首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim Climate warming and increased wildfire activity are hypothesized to catalyse biogeographical shifts, reducing the resilience of fire‐prone forests world‐wide. Two key mechanisms underpinning hypotheses are: (1) reduced seed availability in large stand‐replacing burn patches, and (2) reduced seedling establishment/survival after post‐fire drought. We tested for regional evidence consistent with these mechanisms in an extensive fire‐prone forest biome by assessing post‐fire tree seedling establishment, a key indicator of forest resilience. Location Subalpine forests, US Rocky Mountains. Methods We analysed post‐fire tree seedling establishment from 184 field plots where stand‐replacing forest fires were followed by varying post‐fire climate conditions. Generalized linear mixed models tested how establishment rates varied with post‐fire drought severity and distance to seed source (among other relevant factors) for tree species with contrasting post‐fire regeneration adaptations. Results Total post‐fire tree seedling establishment (all species combined) declined sharply with greater post‐fire drought severity and with greater distance to seed sources (i.e. the interior of burn patches). Effects varied among key species groups. For conifers that dominate present‐day subalpine forests (Picea engelmannii, Abies lasiocarpa), post‐fire seedling establishment declined sharply with both factors. One exception was serotinous Pinus contorta, which did not vary with either factor. For montane species expected to move upslope under future climate change (Larix occidentalis, Pseudotsuga menziesii, Populus tremuloides) and upper treeline species (Pinus albicaulis), establishment was unrelated to either factor. Greater post‐fire tree seedling establishment on cooler/wetter aspects suggested local topographic refugia during post‐fire droughts. Main conclusions If future drought and wildfire patterns manifest as expected, post‐fire tree seedling establishment of species that currently characterize subalpine forests could be substantially reduced. Compensatory increases from lower montane and upper treeline species may partially offset these reductions, but our data suggest important near‐ to mid‐term shifts in the composition and structure of high‐elevation forests under continued climate warming and increased wildfire activity.  相似文献   

2.
Abstract. Structural and compositional changes were analysed over the course of 400+ yr of post‐fire succession in the sub‐boreal forests of west‐central British Columbia. Using a chronosequence of 57 stands ranging from 11 to 438 yr in age, we examined changes in forest structure and composition with complementary PCA and DCA ordination techniques. To determine stand ages and timing of tree recruitment, approximately 1800 trees were aged. Most early successional forests were dominated by Pinus contorta, which established rapidly following fire. Abies lasiocarpa and Picea glauca × engel‐mannii were also able to establish quickly, but continued to establish throughout the sere. Few Pinus contorta survived beyond 200 yr, resulting in major changes in forest structure. In some stands P. contorta never established, which led to considerable variation among stands less than 200 yr old. The oldest forests converged on dominance by Abies lasiocarpa. Vascular plant diversity decreased during succession whereas canopy structure became more complex as gap dynamics developed. Although these sub‐boreal forests contain few tree species, successional changes were pronounced, with structure changing more than composition across the chronosequence.  相似文献   

3.
1 The native range of the Siberian moth extends from the Pacific Ocean (Russian Far East, Japan and Northern Korea) across Siberia, Northern China and Mongolia to the Ural Mountains. At the beginning of the 21st Century, this species was documented west of the Ural Mountains in the Republic of Mari El, indicating range extension toward the west.
2 The Siberian moth has recently been suggested for regulation as a quarantine pest for European and Mediterranean Plant Protection Organization member countries. However, no specific report on European host plants for this pest has been published so far.
3 In the present study, larval host plant choice and performance was tested for the first time on coniferous tree species that are widely distributed and of commercial value in Europe.
4 Based on dual-choice tests on neonates and mortality, developmental duration and relative growth rates of the first- to sixth-instar larvae, we found European larch Larix decidua to be the most suitable host for the moth larvae, whereas European black pine Pinus nigra and Scots pine Pinus sylvestris were the poorest hosts. The remaining conifer species tested, European silver fir Abies alba , Nordmann fir Abies nordmanniana , and Norway spruce Picea abies , were intermediate host plants. Douglas-fir Pseudotsuga menziesii , originating from North America, was chosen by the larvae to the same extend as European larch, and was also highly suitable for larval development.
5 If the moth is introduced to European countries, it will become damaging in stands of European larch and Douglas-fir, mixed stands of fir and spruce; however, it will be less damaging in forests dominated by two-needle pines.
6 We predict that Dendrolimus superans sibiricus will be able to survive and develop on the main European coniferous tree species, including non-native coniferous tree species, resulting in severe damage to large areas of forests.  相似文献   

4.
美国德克萨斯州在2011年经历了史上最严重的干旱,这一事件造成约3亿多株树木死亡。在大时空尺度上(面积约9×10~6 hm~2,时间跨度近20年),基于近1800个森林样地,4次周期性调查中的约209663株树木,使用主成份分析(PCA)和广义线性混合效应模型(GLM)回归,对树木死亡的时空差异及其干旱强度与长度对树木死亡造成的中长期复杂影响进行了研究。采用树木密度、树木基面积、林地年龄、样地调查时间间隔作为树木间的竞争指标,分析了造成大旱前后周期水平和年度水平上的样地树木死亡差异的原因。综合分析了不同地理区域、树木种组、胸径大小和林地起源的4个划分标准下树木死亡对死亡率的相对贡献。结果表明:松属树木的死亡率最低(7.92%);高度低、胸径小的树木的死亡率较大,分别为29.79%和26.00%。人工林的树木死亡率(10.26%)低于天然林(13.47%);西海湾平原生态区树木的死亡率在干旱后达到最大(22.27%);西南区的树木死亡率在干旱后也达到最大(13.78%);海拔和纬度对树木死亡率影响不明显。德州东部森林整体死亡格局形成原因较为复杂,各地理区域、林地起源、树木大小和不同树种,...  相似文献   

5.
The current unprecedented outbreak of mountain pine beetle (Dendroctonus ponderosae) in lodgepole pine (Pinus contorta) forests of western Canada has resulted in a landscape consisting of a mosaic of forest stands at different stages of mortality. Within forest stands, understory communities are the reservoir of the majority of plant species diversity and influence the composition of future forests in response to disturbance. Although changes to stand composition following beetle outbreaks are well documented, information on immediate responses of forest understory plant communities is limited. The objective of this study was to examine the effects of D. ponderosae-induced tree mortality on initial changes in diversity and productivity of understory plant communities. We established a total of 110 1-m2 plots across eleven mature lodgepole pine forests to measure changes in understory diversity and productivity as a function of tree mortality and below ground resource availability across multiple years. Overall, understory community diversity and productivity increased across the gradient of increased tree mortality. Richness of herbaceous perennials increased with tree mortality as well as soil moisture and nutrient levels. In contrast, the diversity of woody perennials did not change across the gradient of tree mortality. Understory vegetation, namely herbaceous perennials, showed an immediate response to improved growing conditions caused by increases in tree mortality. How this increased pulse in understory richness and productivity affects future forest trajectories in a novel system is unknown.  相似文献   

6.
Forest compositional patterns in Yosemite National Park, California, were related to environmental factors through numerical classification of forest types, arrangement of forest types along elevational and topographic gradients, and development of regression models relating basal area of common tree species to environmental variables. The eight forest types are differentiated primarily by elevation zone and secondarily by topographic setting. Lower montane forests (1200–1900 m) were divided into the Abies concolor/Calocedrus type occurring primarily on mesic sites and the Pinus ponderosa/Calocedrus type predominantly on xeric sites. Upper montane forests (1900–2500 m) included the Abies concolor/Abies magnifica type on mesic sites, the Abies magnifica/Pinus type on somewhat more xeric sites, and Juniperus occidentalis/Pinus jeffreyi woodlands on granitic domes. Subalpine forests (2500–3300 m) embraced three types: Tsuga mertensiana/Pinus forests on mesic sites, monotypic Pinus contorta forests on drier sites, and Pinus albicaulis/Pinus contorta groves at treeline. Regression models consistently included elevation and soil magnesium content as explanatory variables of species basal area totals. The two Abies spp. were negatively correlated with soil magnesium levels, whereas other montane species (e.g. Calocedrus decurrens, Pinus lambertiana, and Pinus ponderosa) exhibited positive correlation with soil magnesium. Topography and soil physical properties were only infrequently incorporated into species regression models.Abbreviations DBH= diameter at breast height (1.4 m) - DCA= detrended correspondence analysis - TWINSPAN= two-way indicator species analysis  相似文献   

7.
8.
Aim There is increasing concern regarding sustainable management and restoration of planted forests, particularly in the Mediterranean Basin where pine species have been widely used. The aim of this study was to analyse the environmental and structural characteristics of Mediterranean planted pine forests in relation to natural pine forests. Specifically, we assessed recruitment and woody species richness along climatic, structural and perturbation gradients to aid in developing restoration guidelines. Location Continental Spain. Methods We conducted a multivariate comparison of ecological characteristics in planted and natural stands of main Iberian native pine species (Pinus halepensis, Pinus pinea, Pinus pinaster, Pinus nigra and Pinus sylvestris). We fitted species‐specific statistical models of recruitment and woody species richness and analysed the response of natural and planted stands along ecological gradients. Results Planted pine forests occurred on average on poorer soils and experienced higher anthropic disturbance rates (fire frequency and anthropic mortality) than natural pine forests. Planted pine forests had lower regeneration and diversity levels than natural pine forests, and these differences were more pronounced in mountain pine stands. The largest differences in recruitment – chiefly oak seedling abundance – and species richness between planted and natural stands occurred at low‐medium values of annual precipitation, stand tree density, distance to Quercus forests and fire frequency, whereas differences usually disappeared in the upper part of the gradients. Main conclusions Structural characteristics and patterns of recruitment and species richness differ in pine planted forests compared to natural pine ecosystems in the Mediterranean, especially for mountain pines. However, management options exist that would reduce differences between these forest types, where restoration towards more natural conditions is feasible. To increase recruitment and diversity, vertical and horizontal heterogeneity could be promoted by thinning in high‐density and homogeneous stands, while enrichment planting would be desirable in mesic and medium‐density planted forests.  相似文献   

9.
The resilience of forests to drought events has become a major natural resource sustainability concern, especially in response to climate change. Yet, little is known about the legacy effects of repeated droughts, and tree species ability to respond across environmental gradients. In this study, we used a tree-ring database (121 sites) to evaluate the overall resilience of tree species to drought events in the last century. We investigated how climate and geography affected the response at the species level. We evaluated temporal trends of resilience using a predictive mixed linear modeling approach. We found that pointer years (e.g., tree growth reduction) occurred during 11.3% of the 20th century, with an average decrease in tree growth of 66% compared to the previous period. The occurrence of pointer years was associated with negative values of the Standardized Precipitation Index (SPI, 81.6%) and Palmer Drought Severity Index (PDSI, 77.3%). Tree species differed in their resilience capacity, however, species inhabiting xeric conditions were less resistant but with higher recovery rates (e.g., Abies concolor, Pinus lambertiana, and Pinus jeffreyi). On average, tree species needed 2.7 years to recover from drought events, with extreme cases requiring more than a decade to reach pre-drought tree growth rates. The main abiotic factor related to resilience was precipitation, confirming that some tree species are better adapted to resist the effects of droughts. We found a temporal variation for all tree resilience indices (scaled to 100), with a decreasing resistance (−0.56 by decade) and resilience (−0.22 by decade), but with a higher recovery (+1.72 by decade) and relative resilience rate (+0.33 by decade). Our results emphasize the importance of time series of forest resilience, particularly by distinguishing the species-level response in the context of legacy of droughts, which are likely to become more frequent and intense under a changing climate.  相似文献   

10.
Anthropogenic and climatic stressors have affected the forests of northern Pakistan in recent decades. Several studies have been conducted to understand forest growth and its relation to the changing climate in this region, but more work needs to be done to understand this complex environment. In this study, we have collected tree core samples of three conifer species (Pinus wallichiana, Picea smithiana, and Abies pindrow) from three different sites in northern Pakistan to understand their radial growth pattern with the goal of finding a relationship between ring-width and climatic parameters (temperature, precipitation, and drought). A 610-year (AD 1406–2015), a 538-year (AD 1478–2015), and a 306-year (AD 1710–2015) long tree-ring width chronology of Pinus wallichiana, Picea smithiana, and Abies pindrow were developed, respectively, using living trees. The ring-width chronologies of these three species showed a strong positive link with the self-calibrated Palmer Drought Severity Index (scPDSI) rather than precipitation or temperature alone, indicating that soil moisture is the primary limiting climatic factor for the growth of these species in the sampling locations. The chronologies of Pinus wallichiana and Picea smithiana exhibited growth suppressions during AD 1570–1610 and the second half of 17th century while their growth was heightened from AD 1540–1560. We have found the lowest growth in Abies pindrow and Picea smithiana from AD 1900–1920, suggesting dry conditions. All three chronologies have exhibited the most rapid increase in growth during the recent decades, suggesting that this region is experiencing climate change with a strong trend towards wetter conditions.  相似文献   

11.
长白山云冷杉林幼苗幼树空间分布格局及其更新特征   总被引:5,自引:0,他引:5  
杨华  李艳丽  沈林  亢新刚  岳刚  王妍 《生态学报》2014,34(24):7311-7319
长白山云冷杉针阔混交林是我国东北主要的森林类型之一,其乔木树种幼苗幼树的结构和动态决定着未来林分的结构和生长动态。在长白山地区设置一块具有代表性的云冷杉针阔混交林幼苗幼树更新样地,统计分析幼苗幼树更新特征,绘制地径结构图、树高结构图及其空间分布图。运用点格局分析中的单变量O-ring统计方法,分析更新树种的空间分布格局;用双变量O-ring统计方法,分析更新树种种间的空间关联性。研究结果表明:(1)更新树种组成有冷杉(Abies nephrolepis)、色木槭(Acer mono)、紫椴(Tilia amurensis)、红皮云杉(Picea koraiensis)、红松(Pinus koraiensis)、蒙古栎(Quercus mongolica)、春榆(Ulmus japonica)7种,其中以冷杉、色木槭为主,更新幼苗幼树的地径近似呈倒J型分布,树高结构近似呈双峰分布;(2)所有更新树种、冷杉、色木槭在小尺度1—10 m的范围内呈聚集分布,随着尺度增加,聚集程度减弱,逐渐趋于均匀分布和随机分布,紫椴、云杉和红松在空间所有尺度上以随机分布为主;(3)更新树种之间的空间关联性在小尺度范围上正关联性比较多,较大尺度范围上负关联性比较多,随着尺度增加,空间关联性减弱。  相似文献   

12.
Disentangling the relative influence of background versus disturbance related mortality on forest demography is crucial for understanding long‐term dynamics and predicting the influence of global change on forests. Quantifying the rates and drivers of tree demography requires direct observations of tree populations over multiple decades, yet such studies are rare in old‐growth forest, particularly in the temperate zone of Europe. We use multi‐decade (1980–2020) monitoring of permanent plots, including observations of mode of mortality and disturbance events, to quantify rates and drivers of tree demography across a network of old‐growth remnants in temperate mountain forests of Slovenia. Annual rates of mortality and recruitment varied markedly among sites and over time; census intervals that captured intermediate severity canopy disturbances caused subtle peaks in annual mortality (e.g., >2%/year), while rates of background mortality in non‐disturbed intervals averaged about 1%/year. Roughly half of the trees died from modes of mortality associated with disturbance (i.e., uprooting or snapped‐alive). Results of a Bayesian multilevel model indicate that beech (Fagus sylvatica) had a higher likelihood of disturbance related mortality compared to fir (Abies alba), which mainly died standing, and there was a notable increase in the odds of disturbance mortality with increasing diameter for all species. Annual recruitment rates were consistently low at sites (<0.5%) that lacked evidence of disturbance, but often exceeded 3% on sites with higher levels of past canopy mortality. Recruitment was dominated by beech on sites with more diffuse background mortality, while the less shade tolerant maple (Acer pseudoplatanus) recruited following known disturbance events. Our study highlights the important role of stand‐scale, partial canopy disturbance for long‐term forest demography. These results suggest that subtle climate‐driven changes in the regime of intermediate severity disturbances could have an important influence on future forest dynamics and warrant attention.  相似文献   

13.
《农业工程》2023,43(1):117-124
This paper focuses on growth pattern of seedlings from tree-ring proxies and their performance at different altitudes under high disturbance regime. The disturbance is predominately anthropogenic. Four conifer species found during investigations, namely, Pinus wallichiana, Pinus roxburghii, Cedrus deodara and Abies pindrow. The parameters chosen for assessment of regeneration potential were age and growth rate. In addition, edaphic and topographic characteristics of thirty disturbed forest stands were also determined. The stands were deterministically selected because these were deteriorating with respect to tree population, biodiversity and degradation of soil. Seedling density varied in the order: P. wallichianaPinus roxburghii > C. deodara > Abies pindrow while the growth rate was exhibited in the order Pinus roxburghii > P. wallichiana > Abies pindrow > C. deodara. These findings suggest that Pinus roxburghii is the most suitable species (sub tropical species) at lower elevations (~1600–1900 a.s.l.) with regard to its regenerative ability and consequently potentially useful for the conservation of these forests. P. wallichiana showed highly significant (P < 0.01) correlations with PC1 (primarily controlled by total dissolved salts and water holding capacity) only whereas Abies pindrow was highly correlated (P < 0.001 and P < 0.01) with PC1 and PC2 respectively (function of oxidative-reductive potential and water holding capacity) while C. deodara and Pinus roxburghii did not show correlation with any of the PCA components. In the light of current findings, Pinus roxburghii was found to be effectively adapted to the environment of the study area. Growth rate of species steadily decreased in response to unfavorable conditions. The other pine species i.e. P. wallichiana (moist temperate species) also showed some degree of adaptability under the influence of predefined environmental attributes. Hence pines are most likely the species that can be able to retain forest cover in future and are the best choice for restoration of these forests. However, the other conifers i.e. C. deodara and Abies pindrow are also able to withstand the physiographic characteristics and the extent of perturbation and persisting possibly beyond their tolerance limits but they need to be preserved and retained in these forests. Conifers are still giving positive response with respect to growth rate and their adaptive compatibility to such an extent that this forest can recover if management and conservation strategies are implemented. Therefore, it is strongly recommended that seedlings and saplings should be conserved to assure future forest cover.  相似文献   

14.
The ectomycorrhizal fungal associations of Douglas fir ( Pseudotsuga menziesii D. Don) and bishop pine ( Pinus muricata D. Don) were investigated in a mixed forest stand. We identified fungi directly from field-collected ectomycorrhizal (ECM) root tips using PCR-based methods. Sixteen species of fungi were found, of which twelve associated with both hosts. Rhizopogon parksii Smith was specific to Douglas fir. Three other species colonized only one of the hosts, but were too infrequent to draw conclusions about specificity. Seventy-four percent of the biomass of ECM root tips sampled in the stand were colonized by members of the Thelephoraceae and Russulaceae. All 12 species of fungi that associated with both tree species did so within a 10×40 cm soil volume, suggesting that individual fungal genotypes linked the putatively competing tree hosts.  相似文献   

15.
Isolated forested mountains in deserts have numerous ecological and societal values, but land-management practices (e.g., fire-regime alteration) and climate change can affect forest composition. We analyzed tree overstory-understory relationships on 123 sites in the Spring Mountains within the Mojave Desert near Las Vegas, Nevada, USA to assess three hypotheses. We hypothesized that: the tree species comprising understories are less tolerant of fire than species in overstories, reflecting land-management practices of fire exclusion; mid-elevation forests have the lowest overstory:understory similarity because this zone could have maximum species mixing; and overstory:understory similarity is correlated with environmental gradients (consisting of 14 topographic and soil variables). We found that Pinus monophylla comprised greater relative canopy cover in understories of juniper (32% relative cover) and pinyon-juniper (78%) forests than it did in overstories of these forests (0% and 53%). Similarly, fire-intolerant Abies concolor had 6-fold greater understory than overstory cover in forests with overstories dominated by the fire-tolerant Pinus ponderosa. Overstory:understory S?rensen similarity averaged 43%?77% among six forest types, and there was little support for the supposition that similarity was lowest in mid-elevation forests. Distributions of individual overstory and understory species more closely corresponded with environmental gradients than did overstory:understory similarity. Results suggest that there is high potential for change in at least two of the six dominant forest types of the Spring Mountains. The direction of change (species of moist, higher elevation sites establishing in understories of drier forests) is the opposite of what would be expected for forest adaptation to the warmer, drier, more fire-prone conditions projected for the next century in the southwestern USA.  相似文献   

16.
《新西兰生态学杂志》2011,33(2):208-215
Large trees are a significant structural component of old-growth forests and are important as habitat for epiphytic biodiversity; as substantial stores of biomass, carbon and nutrient; as seed trees; and as engineers of large gap sites for regeneration. Their low density across the landscape is an impediment to accurately measuring growth and mortality, especially as infrequent tree deaths are rarely captured without long periods of monitoring. Here we present large-tree (≥ 30 cm in diameter at breast height) growth and mortality rates for six common New Zealand tree species over a 42-year period from 28 large permanent plots (0.4?0.8?ha) in the central North Island. Our goal was to examine how rates of growth and mortality varied with tree size and species. In total we sampled 1933 large trees across 11.6 ha, corresponding to a large-tree density of 167 trees?ha?1, of which we used 1542 as our six study species. Mean annual mortality rates varied more than 10-fold among species being least in Dacrydium cupressinum (0.16%) and greatest in Weinmannia racemosa (2.21%). Diameter growth rates were less variable among species and ranged from 1.8 mm?yr?1 in Ixerba brexioides to 3.3?mm?yr?1 in D.?cupressinum. Tree size influenced the rate of mortality in Beilschmiedia tawa, I. brexioides and W.?racemosa but there was no support for including tree size in models of the remaining three species. Likewise, tree size influenced growth rates in I.?brexioides and Nothofagus menziesii but not the remaining four species. These data provide robust size- and species-specific estimates of large-tree demographic rates that can be used as baselines for monitoring the impacts of management and global change in old-growth forests.  相似文献   

17.
Why do fires occur more frequently in Pinus densiflora forests in Korea, and why is the related damage more severe on such sites? We assumed that the reasons stem from characteristics of the tree species, including their combustibility, morphology and stand structure. Investigating both P. densiflora forests and the less vulnerable Quercus variabilis forests along the Korean eastern coast, we determined that, in spring, when fires are most frequent, the extremely flammable moisture content of fine fuels (6%) is not significantly different between the two types and the fine fuel load is much greater in the Q. variabilis forests. The P. densiflora forests retain more ladder fuel due to the greater coverage and density of their shrub layers in addition to their dead branches from lower on their boles and thinner barks, which enable fires to spread vertically with greater tree withering. Thus, when one considers all of these factors in combination, the following conclusions become apparent. First, in the initial ignition phase of fire, P. densiflora forests are more vulnerable due to their combustion characteristics. Second, those forests might allow flames to move vertically because of tree morphology and a stand structure that retains abundant ladder fuel. Finally, P. densiflora forests might be vulnerable to massive blazes because of their vast contiguous nature, especially in that region of Korea.  相似文献   

18.
A.K. Cajander's forest site type classification system is based on definition of plant communities typical to certain climatical and edaphical site conditions, but the structure and composition of the tree stands in Finland are considered sensitive to random variation and are therefore not used as primary classification criteria. The system has often received criticism, usually that the effects of the tree stand and successional stage of the stand have been underestimated. Most of the present-day forest stands in Finland represent young successional stages and are subjected to intensive management. This should result in an additional difficulty in the application of the forest site types in the field.The present study is based on three independent data sets representing forests on mineral soil in southern part of Finland. TWINSPAN classification, DCA ordination and canonical correspondence analysis (CCA) techniques were applied in successive stages of the data analysis. It was found that the definition of the intermediately fertile, mesic site types was clearly confused by the effects of the tree species and age of the stand. The analyses also revealed that the succession pathways on mesic forest sites are largely determined by the tree species composition. In stands dominated by Pinus sylvestris, the succession follows the competitive hierarchy model, whereas in stands dominated by Picea abies, severe shading of the tree canopy governs the development of understorey vegetation.Abbreviations CCA Canonical correspondence Analysis - DCA Detrended correspondence Analysis - TWINSPAN Two-way indicator species analysis  相似文献   

19.
We investigated saproxylic moths of the family Tineidae, a neglected group inhabiting wood-decaying fungi and dead wood, within the Bia?owie?a Primeval Forest in Poland. Study data were obtained from the collection of 280 fruiting bodies of wood-decaying fungi and the subsequent rearing of adults. Spatial and statistical distribution of saproxylic moths, relationship among species and the influence of environment reflected by interaction with tree and fungal species together with tree and stand level characteristics were studied. Fifteen species and 533 individuals of saproxylic moths were reared. The fungal species, number of fruiting bodies and standing position of a tree influenced species richness. Moth abundance was influenced by fungal species, coniferous trees, increasing tree diameter, number of fruiting bodies and brown rot. Moth abundance was also enhanced by standing dead trees located in managed forests with higher canopy closure. Analyses indicate that several moth species favor a particular rot type and that some fungi host a richer fauna than others. Furthermore, our results indicate mutually independent fungal colonization events by saproxylic moth species, and thus a possible mechanism exists for competition avoidance with other saproxylic moths. Saproxylic moths revealed complex within-group patterns that responded differently to environmental variables. Thus, potential conservation of these organisms requires various approaches including ecosystem management, especially in the context of addressing their diverse habitat requirements.  相似文献   

20.
Lichens are a key component of forest biodiversity. However, a comprehensive study analyzing lichen species richness in relation to several management types, extending over different regions and forest stages and including information on site conditions is missing for temperate European forests. In three German regions (Schwäbische Alb, Hainich-Dün, Schorfheide-Chorin), the so-called Biodiversity Exploratories, we studied lichen species richness in 631 forest plots of 400 m2 comprising different management types (unmanaged, selection cutting, deciduous and coniferous age-class forests resulting from clear cutting or shelterwood logging), various stand ages, and site conditions, typical for large parts of temperate Europe. We analyzed how lichen species richness responds to management and habitat variables (standing biomass, cover of deadwood, cover of rocks). We found strong regional differences with highest lichen species richness in the Schwäbische Alb, probably driven by regional differences in former air pollution, and in precipitation and habitat variables. Overall, unmanaged forests harbored 22% more threatened lichen species than managed age-class forests. In general, total, corticolous, and threatened lichen species richness did not differ among management types of deciduous forests. However, in the Schwäbische-Alb region, deciduous forests had 61% more lichen species than coniferous forests and they had 279% more threatened and 76% more corticolous lichen species. Old deciduous age classes were richer in corticolous lichen species than young ones, while old coniferous age-classes were poorer than young ones. Overall, our findings highlight the importance of stand continuity for conservation. To increase total and threatened lichen species richness we suggest (1) conserving unmanaged forests, (2) promoting silvicultural methods assuring stand continuity, (3) conserving old trees in managed forests, (4) promoting stands of native deciduous tree species instead of coniferous plantations, and (5) increasing the amount of deadwood in forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号