首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability of a number of stimulants to activate an oxidative burst (OB) in oil-elicited guinea pig peritoneal exudate macrophages (MPs) was examined. The parameters of the OB were the generation and extracellular release of Superoxide anions (O2?) and hydrogen peroxide (H2O2). We found that: (1) The cocarcinogen and skin irritant phorbol myristate acetate (PMA) was the most potent OB activator—The weak cocarcinogen 4-O-methyl PMA was a proportionally less effective OB activator; (2) The lectins concanavalin A (Con A) and wheat germ agglutinin (WGA), but not soybean, Lotus, and pokeweed lectins, were also quite effective OB activators—The ability of Con A to stimulate O2? production was abolished by succinylation and could be prevented by the presence of α-methyl-D-mannoside; (3) Other stimulators of an OB in MPs were: N-formyl-methionyl peptides, opsonized zymosan, the Ca2+ ionophore A23187, phospholipase C, NaF, antimacrophage antibody, microtubule-disrupting drugs, and sodium nitroprusside—O2? generation induced by A23187 (but not that stimulated by PMA) was dependent on extracellular Ca2+; (4) The amount of O2? produced per cell was higher at low cell densities; (5) The addition of Superoxide dismutase (SOD) to the medium totally prevented the detection of O2? and augmented twice the amount of H2O2 recovered; (6) Pretreatment of MPs with the SOD inhibitor sodium diethyldithiocarbamate had no effect on the release of O2? but blocked H2O2 release in a dose-dependent manner. These data were interpreted as indicating that the bulk of H2O2 was derived by enzymatic dismutation of O2?; (7) The common mechanism by which such a variety of stimuli provoke an OB in MPs was not elucidated. No evidence was found to suggest a role for a cyclic nucleotide messenger.  相似文献   

2.
Elicited guinea pig peritoneal macrophages (MPs) respond by an oxidative burst (OB) to a variety of membrane stimulants. Evidence has recently accumulated, indicating that phospholipase A2 activation resulting in unsaturated fatty acid liberation is a prerequisite for the induction of an OB by some stimulants. We examined the effect of inhibiting adenosylmethionine-dependent phospholipid methylation on the capacity of MPs to produce superoxide (O2?) in response to membrane stimulation. We found that preincubation of MPs with the transmethylation inhibitor, 3-deazaadenosine (DZAdo), totally eliminated the induction of an OB by concanavalin A, wheat germ agglutinin, and N-formyl-l-methionyl-l-leucyl-l-phenylalanine and partially blocked O2? production in response to NaF, phospholipase C, digitonin, the ionophore A23187, and phorbol myristate acetate (PMA). The PMA-elicited OB was the most resistant to inhibition by DZAdo. Homocysteine thiolactone enhanced the blocking effect of DZAdo. These findings suggest that stimulated O2? production by guinea pig peritoneal MPs requires enzymatic methylation of an unknown substrate, most likely a membrane phospholipid.  相似文献   

3.
Tropospheric ozone concentrations (O3) are continuously increasing with harmful effects on vegetation. Ozone uptake triggers oxidative stress that may promote adverse changes in various plant physiological processes. The aim of this study was to evaluate the relationship between meteorological conditions and O3 exposure in foliar injuries, gas exchanges and antioxidant enzyme activity in Psidium guajava Paluma. Saplings of Paluma were exposed in a site contaminated by O3. Foliar injuries, gas exchanges, and the activity of superoxide dismutase (SOD), ascorbate peroxidase (APX) and glutathione reductase (GR) were evaluated weekly. Results were analyzed by multivariate analysis. The O3 exposure reduced carbon assimilation and induced the onset of foliar injuries. The enzymatic activities were more related to meteorological conditions than to O3 exposure, indicating that these enzymes are not this species’ first line of defense. However, our finding indicates that Paluma may be considered a response indicator, given its presentation of foliar injuries even at low O3 concentrations.  相似文献   

4.
Oxidative stress is highly damaging to cellular macromolecules and is also considered a main cause of the loss and impairment of neurons in several neurodegenerative disorders. Recent reports indicate that farnesene (FNS), an acyclic sesquiterpene, has antioxidant properties. However, little is known about the effects of FNS on oxidative stress-induced neurotoxicity. We used hydrogen peroxide (H2O2) exposure for 6 h to model oxidative stress. Therefore, this experimental design allowed us to explore the neuroprotective potential of different FNS isomers (α-FNS and β-FNS) and their mixture (Mix-FNS) in H2O2-induced toxicity in newborn rat cerebral cortex cell cultures for the first time. For this aim, both MTT and lactate dehydrogenase assays were carried out to evaluate cell viability. Total antioxidant capacity (TAC) and total oxidative stress (TOS) parameters were used to assess oxidative alterations. In addition to determining of 8-hydroxy-2-deoxyguanosine (8-OH-dG) levels in vitro, the comet assay was also performed for measuring the resistance of neuronal DNA to H2O2-induced challenge. Our results showed that survival and TAC levels of the cells decreased, while TOS, 8-OH-dG levels and the mean values of the total scores of cells showing DNA damage (comet assay) increased in the group treated with H2O2 alone. But pretreatment of FNS suppressed the cytotoxicity, genotoxicity and oxidative stress, which were increased by H2O2 in clear type of isomers and applied concentration-dependent manners. The order of antioxidant effectiveness for modulating H2O2-induced oxidative stress-based neurotoxicity and genotoxicity is as β-FNS > Mix-FNS > α-FNS.  相似文献   

5.
Photosynthetic Responses of Tropical Trees to Short-Term Exposure to Ozone   总被引:1,自引:0,他引:1  
Moraes  R.M.  Furlan  C.M.  Bulbovas  P.  Domingos  M.  Meirelles  S.T.  Salatino  A.  Delitti  W.B.C.  Sanz  M.J. 《Photosynthetica》2004,42(2):291-293
Saplings of the tropical trees Tibouchina pulchra (Cham.) Cogn., Caesalpinia echinata Lam., and Psidium guajava L. cv. Paluma were exposed in open-top chambers with charcoal filtered air and measurements of gas exchange and chlorophyll fluorescence were made before (t1) and after exposure to non-filtered air plus O3 (t2), simulating 6-h peaks of O3 similar to those observed in São Paulo city (SE Brazil, reaching an AOT40 of 641 nmol mol–1). After the fumigation, the net photosynthetic rate, stomatal conductance, transpiration rate, and Fv/Fm were reduced (p<0.05) for the three species. C. echinata was the most sensitive species and P. guajava cv. Paluma the most resistant.  相似文献   

6.
Rapid production of nitric oxide (NO) and reactive oxygen species (ROS) has been implicated in the regulation of innate immunity in plants. A potato calcium-dependent protein kinase (StCDPK5) activates an NADPH oxidase StRBOHA to D by direct phosphorylation of N-terminal regions, and heterologous expression of StCDPK5 and StRBOHs in Nicotiana benthamiana results in oxidative burst. The transgenic potato plants that carry a constitutively active StCDPK5 driven by a pathogen-inducible promoter of the potato showed high resistance to late blight pathogen Phytophthora infestans accompanied by HR-like cell death and H2O2 accumulation in the attacked cells. In contrast, these plants showed high susceptibility to early blight necrotrophic pathogen Alternaria solani, suggesting that oxidative burst confers high resistance to biotrophic pathogen, but high susceptibility to necrotrophic pathogen. NO and ROS synergistically function in defense responses. Two MAPK cascades, MEK2-SIPK and cytokinesis-related MEK1-NTF6, are involved in the induction of NbRBOHB gene in N. benthamiana. On the other hand, NO burst is regulated by the MEK2-SIPK cascade. Conditional activation of SIPK in potato plants induces oxidative and NO bursts, and confers resistance to both biotrophic and necrotrophic pathogens, indicating the plants may have obtained during evolution the signaling pathway which regulates both NO and ROS production to adapt to wide-spectrum pathogens.  相似文献   

7.
Molecular markers, coxII SCAR, atp6-2 SCAR and accD-U, have been used for marker-assisted selection of cytoplasmic male sterility (CMS) in pepper. However, the presence of these markers at the sub-stoichiometric level in maintainer lines affects the reliable selection of male sterile (S-) cytoplasm. This study aimed to develop a new CMS-specific molecular marker, SCAR130, for reliable identification of S-cytoplasm in pepper, while the new and three previous molecular markers were used to determine the cytoplasm types of pepper lines. Based on mitochondrial genome sequence related amplified polymorphism (SRAP) analysis of the CMS lines and the maintainer lines, SCAR130 was developed from a 10-bp deletion at the SRAP primer binding site in the CMS line (130 bp) compared with that in the maintainer line (140 bp). S-cytoplasm could be unambiguously selected from the pepper lines by the different length of the marker bands. Application of the four molecular markers to various pepper lines revealed that SCAR130 is more reliable than the other three previous markers, orf507, ψatp6-2 and accD-U. Homology alignment with BLAST showed that the marker was located between trnE and trnS in the Nicotiana tabacum mitochondrial genome. Furthermore, expression of the marker-linked gene was significantly higher at the pollen abortive stage in the CMS line (HW203A) than in the maintainer line, which indicated that the marker was closely related to male sterility. Hence, factors other than orf507 and ψatp6-2 may exist for the regulation of male sterility in pepper.  相似文献   

8.
《Plant science》1986,47(2):135-143
The activity of superoxide dismutase (SOD: E.C. 1.15.1.1) was evaluated on Nicotiana tabacum and Nicotiana glutinosa leaf tissue after Tobacco Mosaic Virus (TMV) infection. Significant increase in extracted SOD appeared to be directly related to the appearance of necrotic and systemic symptoms in hypersensitive (N. glutinosa and N. tabacum cv. Havana 425) and susceptible (N. tabacum cv. Bright BC 60) leaves, respectively. SOD activity did not change significantly during the replication of TMV in the inoculated susceptible leaves up to 4 days after inoculation. Both cyanide-insensitive (2 days after inoculation) and sensitive (3–4 days after inoculation) enzymes increased during the expression of the hypersensitivity. Only cyanide-sensitive enzyme increased in systematically infected leaves. SOD and peroxidase increased simultaneously and the enhancement of peroxidase was higher than that of SOD. The values of peroxidase greatly exceeded that of SOD only in the hypersensitive leaves during local lesion differentiation. In N. tabacum leaves 4 clear SOD bands were separated by polyacrylamide gel electrophoresis: 3 cyanide-sensitive (Cu,Zn enzyme) and 1 cyanide-insensitive, while N. glutinosa had 3 bands: 2 cyanide-sensitive and 1 cyanide-insensitive. The cyanide-insensitive band, both in N. tabacum and N. glutinosa, was sensitive to H2O2 and insensitive to chloroform-ethanol treatment and thus supposed to be Fe enzyme. The infection did not induce change in the electrophoretic pattern of SOD enzymes.In summary, our results indicate that the pathogenic alteration caused by TMV infection both in the compatible and in the incompatible combinations are characterized by an induction of SOD activity, particularly cyanide-sensitive Cu,Zn-SOD. The connection between the induction of SOD and a possible activation of O2 production in the hypersensitive tissue following TMV infection is discussed.  相似文献   

9.
Cryopreservation is a valuable technique for the long-term conservation of plant germplasm and complementary to traditional seed storage methods. However, critical factors such as seed moisture content should be optimized before using this technique as a safe strategy for storing seeds such as those of Nicotiana spp. This study aimed to determine the effect of desiccation on physiological and biochemical indicators associated with germination and vigor in cryopreserved seeds of Nicotiana tabacum cv. Sancti Spíritus 96 (SS-96). The germination and vigor of seeds with a range of moisture content were assessed using electrolyte leakage and accelerated aging tests. In addition, these physiological indicators were related to the oxidative state of the seeds, in terms of the rate of O2 ·? generation and the H2O2 content, and the activity of enzymatic antioxidants superoxide dismutase and catalase. The cryopreserved seeds of N. tabacum SS-96 with a moisture content of 2.1% exhibited higher vigor probably due to the retention of membrane integrity, reflected by lower levels of lipid peroxidation and electrolyte leakage associated with the absence of oxidative stress. The results suggest 2.1% as the optimal moisture content for the storage of seeds of this cultivar, both at cryogenic temperatures and at 5°C.  相似文献   

10.
Accruing evidences imply that circadian organization of biochemical, endocrinological, cellular and physiological processes contribute to wellness of organisms and in the development of pathologies such as malignancy, sleep and endocrine disorders. Oxidative stress is known to mediate a number of diseases and it is notable to comprehend the orchestration of circadian clock of a model organism of circadian biology, Drosophila melanogaster, under oxidative stress. We investigated the nexus between circadian clock and oxidative stress susceptibility by exposing D. melanogaster to hydrogen peroxide (H2O2) or rotenone; the reversibility of rhythms following exposure to Bacopa monnieri extract (ayurvedic medicine rich in antioxidants) was also investigated. Abolishment of 24 h rhythms in physiological response (negative geotaxis), oxidative stress markers (protein carbonyl and thiobarbituric acid reactive substances) and antioxidants (superoxide dismutase, catalase, glutathione-S-transferase and reduced glutathione) were observed under oxidative stress. Furthermore, abolishment of per mRNA rhythm in H2O2 treated wild type flies and augmented susceptibility to oxidative stress in clock mutant (cryb) flies connotes the role of circadian clock in reactive oxygen species (ROS) homeostasis. Significant reversibility of rhythms was noted following B. monnieri treatment in wild type flies than cryb flies. Our experimental approach revealed a relationship involving oxidative stress and circadian clock in fruit fly and the utility of Drosophila model in screening putative antioxidative phytomedicines prior to their use in mammalian systems.  相似文献   

11.
Background and Aims Reactive oxygen species (ROS), especially hydrogen peroxide, play a critical role in the regulation of plant development and in the induction of plant defence responses during stress adaptation, as well as in plant cell death. The antioxidant system is responsible for controlling ROS levels in these processes but redox homeostasis is also a key factor in plant cell metabolism under normal and stress situations. Thioredoxins (Trxs) are ubiquitous small proteins found in different cell compartments, including mitochondria and nuclei (Trxo1), and are involved in the regulation of target proteins through reduction of disulphide bonds, although their role under oxidative stress has been less well studied. This study describes over-expression of a Trxo1 for the first time, using a cell-culture model subjected to an oxidative treatment provoked by H2O2.Methods Control and over-expressing PsTrxo1 tobacco (Nicotiana tabacum) BY-2 cells were treated with 35 mm H2O2 and the effects were analysed by studying the growth dynamics of the cultures together with oxidative stress parameters, as well as several components of the antioxidant systems involved in the metabolism of H2O2. Analysis of different hallmarks of programmed cell death was also carried out.Key Results Over-expression of PsTrxo1 caused significant differences in the response of TBY-2 cells to high concentrations of H2O2, namely higher and maintained viability in over-expressing cells, whilst the control line presented a severe decrease in viability and marked indications of oxidative stress, with generalized cell death after 3 d of treatment. In over-expressing cells, an increase in catalase activity, decreases in H2O2 and nitric oxide contents and maintenance of the glutathione redox state were observed.Conclusions A decreased content of endogenous H2O2 may be responsible in part for the delayed cell death found in over-expressing cells, in which changes in oxidative parameters and antioxidants were less extended after the oxidative treatment. It is concluded that PsTrxo1 transformation protects TBY-2 cells from exogenous H2O2, thus increasing their viability via a process in which not only antioxidants but also Trxo1 seem to be involved.  相似文献   

12.
Potato virus Y (PVY) is one of the most important viruses affecting potato (Solanum tuberosum) production. In this study, a novel hypersensitive response (HR) gene, Ny-2, conferring resistance to PVY was mapped on potato chromosome XI in cultivar Romula. In cultivars Albatros and Sekwana, the Ny-1 gene was mapped on chromosome IX. In cv. Romula, the local lesions appeared in leaves inoculated with the PVYN-Wi isolate at 20 and 28 °C; PVY systemic infections were only occasionally observed at the higher temperature. In cvs. Albatros and Sekwana, expression of the necrotic reaction to virus infection was temperature-dependent. PVYN-Wi was localized at 20 °C; at 28 °C, the systemic, symptomless infection was observed. We developed the B11.61600 marker co-segregating with Ny-2 and the S1d11 marker specific for the Ny-1 gene. Fifty potato cultivars were tested with markers B11.6 and S1d11 and marker SC895 linked to the Ny-1 gene in cv. Rywal. These results indicated the utility of these markers for marker-assisted selection of HR-like PVY resistance in potato breeding programs.  相似文献   

13.
Stem cells with enhanced resistance to oxidative stress after in vitro expansion have been shown to have improved engraftment and regenerative capacities. Such cells can be generated by preconditioning them with exposure to an antioxidant. In this study we evaluated the effects of Tualang honey (TH), an antioxidant-containing honey, on human corneal epithelial progenitor (HCEP) cells in culture. Cytotoxicity, gene expression, migration, and cellular resistance to oxidative stress were evaluated. Immunofluorescence staining revealed that HCEP cells were holoclonal and expressed epithelial stem cell marker p63 without corneal cytokeratin 3. Cell viability remained unchanged after cells were cultured with 0.004, 0.04, and 0.4% TH in the medium, but it was significantly reduced when the concentration was increased to 3.33%. Cell migration, tested using scratch migration assay, was significantly enhanced when cells were cultured with TH at 0.04% and 0.4%. We also found that TH has hydrogen peroxide (H2O2) scavenging ability, although a trace level of H2O2 was detected in the honey in its native form. Preconditioning HCEP cells with 0.4% TH for 48 h showed better survival following H2O2-induced oxidative stress at 50 µM than untreated group, with a significantly lower number of dead cells (15.3±0.4%) were observed compared to the untreated population (20.5±0.9%, p<0.01). Both TH and ascorbic acid improved HCEP viability following induction of 100 µM H2O2, but the benefit was greater with TH treatment than with ascorbic acid. However, no significant advantage was demonstrated using 5-hydroxymethyl-2-furancarboxaldehyde, a compound that was found abundant in TH using GC/MS analysis. This suggests that the cellular anti-oxidative capacity in HCEP cells was augmented by native TH and was attributed to its antioxidant properties. In conclusion, TH possesses antioxidant properties and can improve cell migration and cellular resistance to oxidative stress in HCEP cells in vitro.  相似文献   

14.
When exposed to an acute ozone stress, cell death occurred in leaves of the O3 sensitive Populus deltoides × maximowiczii clone Eridano. After treatment (5 h fumigation and 24 h recovery), the damaged areas covered more than 50 % of the leaf surface. At cellular level, these lesions were preceded by some apoptotic hallmarks and by biochemical and physiological alterations evoked by the apoplastic O3 dissociation. The cell death pattern was highly localized and involved an increase of membrane permeability, externalization of phosphatidylserine, DNA fragmentation, callose accumulation, polyphenol production, and a biphasic oxidative burst accompanied by NO overproduction. These results indicate a process of programmed cell death that could have the biological significance of limiting the spreading the oxidative burst triggered by ozone dissociation in apoplastic environment. Moreover, materials derived from cell dismantling could be remobilized toward developing structures which can conclude their ontogenetic program after the stress.  相似文献   

15.
Although metabolic conditions associated with an increased AMP/ATP ratio are primary factors in the activation of 5′-adenosine monophosphate-activated protein kinase (AMPK), a number of recent studies have shown that increased intracellular levels of reactive oxygen species can stimulate AMPK activity, even without a decrease in cellular levels of ATP. We found that exposure of recombinant AMPKαβγ complex or HEK 293 cells to H2O2 was associated with increased kinase activity and also resulted in oxidative modification of AMPK, including S-glutathionylation of the AMPKα and AMPKβ subunits. In experiments using C-terminal truncation mutants of AMPKα (amino acids 1–312), we found that mutation of cysteine 299 to alanine diminished the ability of H2O2 to induce kinase activation, and mutation of cysteine 304 to alanine totally abrogated the enhancing effect of H2O2 on kinase activity. Similar to the results obtained with H2O2-treated HEK 293 cells, activation and S-glutathionylation of the AMPKα subunit were present in the lungs of acatalasemic mice or mice treated with the catalase inhibitor aminotriazole, conditions in which intracellular steady state levels of H2O2 are increased. These results demonstrate that physiologically relevant concentrations of H2O2 can activate AMPK through oxidative modification of the AMPKα subunit. The present findings also imply that AMPK activation, in addition to being a response to alterations in intracellular metabolic pathways, is directly influenced by cellular redox status.  相似文献   

16.
Primulina tabacum is a rare and endangered perennial herb with highly restricted limestone distribution in southern China. To enrich our scientific conservation for this species, we developed ten microsatellite markers using repetitive DNA enriched libraries. The number of alleles per microsatellite locus varied from two to six. The expected (H E) and observed (H O) heterozygosities varied from 0.4059 to 0.7294 and from 0.1364 to 0.5217, respectively. These markers will be employed in future studies of genetic structure in P. tabacum.  相似文献   

17.
The effect of salinity (200 mM NaCl, 7 d) on cellular oxidative metabolism and necrotic lesion formation were analyzed in strawberry (Fragaria × ananassa Duch., cv. Selva) leaves. It was found that NaCl-induced oxidative stress in strawberry leaves, as evidence by an H2O2/O2? accumulation, an increase in lipid peroxidation and carbonyl-groups content. Salinity visible symptoms, H2O2/O2? generation and cell death lesions formation co-occurred mainly in the rim of the leaf surface. However, DNA laddering was not evident in the leaves exposed to salinity. Leaf extracts from plants exposed to NaCl were able to reduce Fe3+ but not to chelate Fe2+, as judged by their promoting effect on deoxy-d-ribose oxidation system. Also, NaCl-treated leaf extracts were ineffective at protecting against plasmid DNA strand breakage induced by OH in a Fenton-type system. NaCl caused an accumulation in putrescine and spermidine, an oxidation of ascorbate and glutathione redox pairs and an inhibition in the activities of some ROS-metabolizing enzymes (e.g., catalase, ascorbate peroxidase, glutathione reductase). Experiments employing pharmacological agents suggested that NaCl-induced production of H2O2 was likely linked to NAD(P)H-oxidase and amine oxidase regulation and was signalled by nitric oxide (NO), salicylic acid (SA), protein kinase and Ca2+ channel activity. Further, a conceptual model for the action of NaCl-driven oxidative stress on necrotic death-like destruction is proposed.  相似文献   

18.
DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and ataxia telangiectasia mutated (ATM) are the two major kinases involved in DNA double-strand break (DSB) repair, and are required for cellular resistance to ionizing radiation. Whereas ATM is the key upstream kinase for DSB signaling, DNA-PKcs is primarily involved in DSB repair through the nonhomologous end-joining (NHEJ) mechanism. In addition to DSB repair, ATM has been shown to be involved in the oxidative stress response and could be activated directly in vitro on hydrogen peroxide (H2O2) treatment. However, the role of DNA-PKcs in cellular response to oxidative stress is not clear. We hypothesize that DNA-PKcs may participate in the regulation of ATM activation in response to oxidative stress, and that this regulatory role is independent of its role in DNA double-strand break repair. Our findings reveal that H2O2 induces hyperactivation of ATM signaling in DNA-PKcs-deficient, but not Ligase 4-deficient cells, suggesting an NHEJ-independent role for DNA-PKcs. Furthermore, DNA-PKcs deficiency leads to the elevation of reactive oxygen species (ROS) production, and to a decrease in cellular survival against H2O2. For the first time, our results reveal that DNA-PKcs plays a noncanonical role in the cellular response to oxidative stress, which is independent from its role in NHEJ. In addition, DNA-PKcs is a critical regulator of the oxidative stress response and contributes to the maintenance of redox homeostasis. Our findings reveal that DNA-PKcs is required for cellular resistance to oxidative stress and suppression of ROS buildup independently of its function in DSB repair.  相似文献   

19.
Hairy root disease is caused by infection of wounded higher plants with Agrobacterium rhizogenes. Transformation of tissues or plants with A. rhizogenes, as well as transformation with rol genes, in addition to hairy roots, may produce alterations in the plant secondary metabolism. H2O2 and other ROS are involved as signals in secondary metabolite production pathways and play a key role in plant defense reactions. In this work the effects of A. rhizogenes rol genes on nicotine content, antioxidant enzymes activity, H2O2 production, the pattern of peroxidase (POX) and superoxide dismutase (SOD) isozymes in hairy roots and regenerated Nicotiana tabacum plants were studied. The rise in SOD and POX activities in the transformed lines TRa and TRb and the resulting regenerated plants and a decreased level of H2O2 in them as compared with the untransformed lines indicates that rol gene expression decreases H2O2 level probably by increasing production of antioxidant enzymes. A decreased H2O2 content in TRc line, in spite of similarity of antioxidant enzyme activity as compared to normal roots, indicates that rol genes activate other mechanisms except SOD and POX enzymes for reducing H2O2.  相似文献   

20.
Black spot disease caused by Diplocarpon rosae is one of the most widespread diseases of roses that are very difficult to control due to the generative reproduction and complex genetic constitution of roses and up to now the control of black spot still requires intensive use of systemic fungicides. Here we report for the first time evidence of differentially virulent field isolates of D. rosae. Using a combination of fungal structures, disease symptoms and host cells protein expression pattern analysis we here provide direct biochemical evidence that tropical field isolates of D. rosae are more virulent and caused disease symptoms earlier than their temperate counterparts. The tropical fungal field isolates strongly induced an excessive accumulation of ROS and repressed activity of pathogenesis-related proteins such as peroxidases, chitinase and phenylalanine ammonia lyase compared to their temperate counterparts. These findings bring insights into a hidden pathogenic characteristic of tropical D. rosae field isolates compared to their temperate counterparts and open a novel dimension of parameters to be considered when controlling black spot disease of roses by fungicides in tropical versus temperate regions. Interestingly, we found that treatment of rose leaves with ROS (H2O2) prior to fungal inoculation promoted plant defense response regardless of the isolate virulence based on protein expression pattern analysis, suggesting that ROS (H2O2) can be efficiently incorporated into black spot disease management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号