首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A three‐dimensional (3D) multicellular tumor spheroid culture array has been fabricated using a magnetic force‐based cell patterning method, analyzing the effect of stromal fibroblast on the invasive capacity of melanoma. Formation of spheroids was observed when array‐like multicellular patterns of melanoma were developed using a pin‐holder device made of magnetic soft iron and an external magnet, which enables the assembly of the magnetically labeled cells on the collagen gel‐coated surface as array‐like cell patterns. The interaction of fibroblast on the invasion of melanoma was investigated using three types of cell interaction models: (i) fibroblasts were magnetically labeled and patterned together in array with melanoma spheroids (direct‐interaction model), (ii) fibroblasts coexisting in the upper collagen gel (indirect‐interaction model) of melanoma spheroids, and (iii) fibroblast‐sheets coexisting under melanoma spheroids (fibroblast‐sheet model). The fibroblast‐sheet model has largely increased the invasive capacity of melanoma, and the promotion of adhesion, migration, and invasion were also observed. In the fibroblast‐sheet model, the expression of IL‐8 and MMP‐2 increased by 24‐fold and 2‐fold, respectively, in real time RT‐PCR compared to the absence of fibroblasts. The results presented in this study demonstrate the importance of fibroblast interaction to invasive capacity of melanoma in the 3D in vitro bioengineered tumor microenvironment. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2013  相似文献   

2.
Life ins't flat: Taking cancer biology to the next dimension   总被引:1,自引:1,他引:0  
Classically, most cell culture experiments have been performed under adherent 2D conditions. Cells in the human body grow within an organized 3D matrix, surrounded by other cells. The behavior of individual cells is controlled through their interactions with their immediate neighbors and the extracellular matrix. The complex summation of these multiple signals determines whether a given cell undergoes differentiation, apoptosis, proliferation, or invasion. In 2D culture many of these complex interactions are lost. As a result, there are a growing number of studies which report differences in phenotype, cellular signaling, cell migration, and drug responses when the same cells are grown under 2D or 3D culture conditions. One potential application of these techniques is to anticancer drug discovery, which has long been hampered by the lack of good preclinical models. Compounds with good antitumor activity in 2D cell culture models often fail to translate into the clinic. Here we suggest that the response of cancer cells to drugs is determined in part by the 3D tumor microenvironment and discuss models to re-create the 3D tumor microenvironment in vitro. It is likely that the adoption of these and other 3D models will allow us to more closely re-create the behavior of the tumor in vivo which may lead to identifying better anticancer drug candidates at an earlier stage of development.  相似文献   

3.
AbstractThe development of new treatments for malignant melanoma, which has the worst prognosis among skin neoplasms, remains a challenge. The tumor microenvironment aids tumor cells to grow and resist to chemotherapeutic treatment. One way to mimic and study the tumor microenvironment is by using three-dimensional (3D) co-culture models (spheroids). In this study, a melanoma heterospheroid model composed of cancer cells, fibroblasts, and macrophages was produced by liquid-overlay technique using the agarose gel. The size, growth, viability, morphology, cancer stem-like cells population and inflammatory profile of tumor heterospheroids and monospheroids were analyzed to evaluate the influence of stromal cells on these parameters. Furthermore, dacarbazine cytotoxicity was evaluated using spheroids and two-dimensional (2D) melanoma model. After finishing the experiments, it was observed the M2 macrophages induced an anti-inflammatory microenvironment in heterospheroids; fibroblasts cells support the formation of the extracellular matrix, and a higher percentage of melanoma CD271 was observed in this model. Additionally, melanoma spheroids responded differently to the dacarbazine than the 2D melanoma culture as a result of their cellular heterogeneity and 3D structure. The 3D model was shown to be a fast and reliable tool for drug screening, which can mimic the in vivo tumor microenvironment regarding interactions and complexity.Graphic abstract   相似文献   

4.
Cancer progression (initiation, growth, invasion and metastasis) occurs through interactions between malignant cells and the surrounding tumor stromal cells. The tumor microenvironment is comprised of a variety of cell types, such as fibroblasts, immune cells, vascular endothelial cells, pericytes and bone-marrow-derived cells, embedded in the extracellular matrix (ECM). Cancer-associated fibroblasts (CAFs) have a pro-tumorigenic role through the secretion of soluble factors, angiogenesis and ECM remodeling. The experimental models for cancer cell survival, proliferation, migration, and invasion have mostly relied on two-dimensional monocellular and monolayer tissue cultures or Boyden chamber assays. However, these experiments do not precisely reflect the physiological or pathological conditions in a diseased organ. To gain a better understanding of tumor stromal or tumor matrix interactions, multicellular and three-dimensional cultures provide more powerful tools for investigating intercellular communication and ECM-dependent modulation of cancer cell behavior. As a platform for this type of study, we present an experimental model in which cancer cells are cultured on collagen gels embedded with primary cultures of CAFs.  相似文献   

5.
The cancer microenvironment affects cancer cell proliferation and growth. Embryonic stem (ES)-preconditioned 3-dimensional (3-D) culture of cancer cells induces cancer cell reprogramming and results in a change in cancer cell properties such as differentiation and migration in skin melanoma. However, the mechanism has not yet been clarified. Using the ES-preconditioned 3-D microenvironment model, we provide evidence showing that the ES microenvironment inhibits proliferation and anchorage-independent growth of SK-MEL-28 melanoma cells. We also found that the ES microenvironment suppresses telomerase activity and thereby induces senescence in SK-MEL-28 cells. Furthermore, we observed that gremlin, an antagonist of BMP4, is secreted from ES cells and plays an important role in cellular senescence. Knocking down gremlin in the ES microenvironment increases proliferation and anchorage-independent growth of SK-MEL-28 melanoma cells. Taken together, these results demonstrated that gremlin is a crucial factor responsible for abrogating melanoma properties in the ES-preconditioned 3-D microenvironment.  相似文献   

6.
In vitro 3D cancer models that provide a more accurate representation of disease in vivo are urgently needed to improve our understanding of cancer pathology and to develop better cancer therapies. However, development of 3D models that are based on manual ejection of cells from micropipettes suffer from inherent limitations such as poor control over cell density, limited repeatability, low throughput, and, in the case of coculture models, lack of reproducible control over spatial distance between cell types (e.g., cancer and stromal cells). In this study, we build on a recently introduced 3D model in which human ovarian cancer (OVCAR-5) cells overlaid on Matrigel spontaneously form multicellular acini. We introduce a high-throughput automated cell printing system to bioprint a 3D coculture model using cancer cells and normal fi broblasts micropatterned on Matrigel. Two cell types were patterned within a spatially controlled microenvironment (e.g., cell density, cell-cell distance) in a high-throughput and reproducible manner; both cell types remained viable during printing and continued to proliferate following patterning. This approach enables the miniaturization of an established macro-scale 3D culture model and would allow systematic investigation into the multiple unknown regulatory feedback mechanisms between tumor and stromal cells and provide a tool for high-throughput drug screening.  相似文献   

7.
Y Jiao  X Feng  Y Zhan  R Wang  S Zheng  W Liu  X Zeng 《PloS one》2012,7(7):e41591

Background

Matrix metalloproteinase-2 (MMP-2) is a key regulator in the migration of tumor cells. αvβ3 integrin has been reported to play a critical role in cell adhesion and regulate the migration of tumor cells by promoting MMP-2 activation. However, little is known about the effects of MMP-2 on αvβ3 integrin activity and αvβ3 integrin-mediated adhesion and migration of tumor cells.

Methodology/Principal Findings

Human melanoma cells were seeded using an agarose drop model and/or subjected to in vitro analysis using immunofluorescence, adhesion, migration and invasion assays to investigate the relationship between active MMP-2 and αvβ3 integrin during the adhesion and migration of the tumor cells. We found that MMP-2 was localized at the leading edge of spreading cells before αvβ3 integrin. αvβ3 integrin-mediated adhesion and migration of the tumor cells were inhibited by a MMP-2 inhibitor. MMP-2 cleaved fibronectin into small fragments, which promoted the adhesion and migration of the tumor cells.

Conclusion/Significance

MMP-2 cleaves fibronectin into small fragments to enhance the adhesion and migration of human melanoma cells mediated by αvβ3 integrin. These results indicate that MMP-2 may guide the direction of the tumor cell migration.  相似文献   

8.

Background

Three-dimensional (3D) in-vitro cultures are recognized for recapitulating the physiological microenvironment and exhibiting high concordance with in-vivo conditions. Taking the advantages of 3D culture, we have developed the in-vitro tumor model for anticancer drug screening.

Methods

Cancer cells grown in 6 and 96 well AlgiMatrix™ scaffolds resulted in the formation of multicellular spheroids in the size range of 100–300 µm. Spheroids were grown in two weeks in cultures without compromising the growth characteristics. Different marketed anticancer drugs were screened by incubating them for 24 h at 7, 9 and 11 days in 3D cultures and cytotoxicity was measured by AlamarBlue® assay. Effectiveness of anticancer drug treatments were measured based on spheroid number and size distribution. Evaluation of apoptotic and anti-apoptotic markers was done by immunohistochemistry and RT-PCR. The 3D results were compared with the conventional 2D monolayer cultures. Cellular uptake studies for drug (Doxorubicin) and nanoparticle (NLC) were done using spheroids.

Results

IC50 values for anticancer drugs were significantly higher in AlgiMatrix™ systems compared to 2D culture models. The cleaved caspase-3 expression was significantly decreased (2.09 and 2.47 folds respectively for 5-Fluorouracil and Camptothecin) in H460 spheroid cultures compared to 2D culture system. The cytotoxicity, spheroid size distribution, immunohistochemistry, RT-PCR and nanoparticle penetration data suggested that in vitro tumor models show higher resistance to anticancer drugs and supporting the fact that 3D culture is a better model for the cytotoxic evaluation of anticancer drugs in vitro.

Conclusion

The results from our studies are useful to develop a high throughput in vitro tumor model to study the effect of various anticancer agents and various molecular pathways affected by the anticancer drugs and formulations.  相似文献   

9.
Despite remarkable efforts, metastatic melanoma (MM) still presents with significant mortality. Recently, mono-chemotherapies are increasingly replenished by more cancer-specific combination therapies involving death ligands and drugs interfering with cell signaling. Still, MM remains a fatal disease because tumors rapidly develop resistance to novel therapies thereby regaining tumorigenic capacity. Although genetically engineered mouse models for MM have been developed, at present no model is available that reliably mimics the human disease and is suitable for studying mechanisms of therapeutic obstacles including cell death resistance. To improve the increasing requests on new therapeutic alternatives, reliable human screening models are demanded that translate the findings from basic cellular research into clinical applications. By developing an organotypic full skin equivalent, harboring melanoma tumor spheroids of defined sizes we have invented a cell-based model that recapitulates both the 3D organization and multicellular complexity of an organ/tumor in vivo but at the same time accommodates systematic experimental intervention. By extending our previous findings on melanoma cell sensitization toward TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) by co-application of sublethal doses of ultraviolet-B radiation (UVB) or cisplatin, we show significant differences in the therapeutical outcome to exist between regular two-dimensional (2D) and complex in vivo-like 3D models. Of note, while both treatment combinations killed the same cancer cell lines in 2D culture, skin equivalent-embedded melanoma spheroids are potently killed by TRAIL+cisplatin treatment but remain almost unaffected by the TRAIL+UVB combination. Consequently, we have established an organotypic human skin-melanoma model that will facilitate efforts to improve therapeutic outcomes for malignant melanoma by providing a platform for the investigation of cytotoxic treatments and tailored therapies in a more physiological setting.  相似文献   

10.
A characteristic of malignant cells is their capacity to invade their surrounding and to metastasize to distant organs. During these processes, proteolytic activities of tumor and stromal cells modify the extracellular matrix to produce a microenvironment suitable for their growth and migration. In recent years the family of ADAM proteases has been ascribed important roles in these processes. ADAM-9 is expressed in human melanoma at the tumor-stroma border where direct or indirect interactions between tumor cells and fibroblasts occur. To analyze the role of ADAM-9 for the interaction between melanoma cells and stromal fibroblasts, we produced the recombinant disintegrin-like and cysteine-rich domain of ADAM-9 (DC-9). Melanoma cells and human fibroblasts adhered to immobilized DC-9 in a Mn(2+)-dependent fashion suggesting an integrin-mediated process. Inhibition studies showed that adhesion of fibroblasts was mediated by several β1 integrin receptors independent of the RGD and ECD recognition motif. Furthermore, interaction of fibroblasts and high invasive melanoma cells with soluble recombinant DC-9 resulted in enhanced expression of MMP-1 and MMP-2. Silencing of ADAM-9 in melanoma cells significantly reduced cell adhesion to fibroblasts. Ablation of ADAM-9 in fibroblasts almost completely abolished these cellular interactions and melanoma cell invasion in vitro. In summary, these results suggest that ADAM-9 expression plays an important role in mediating cell-cell contacts between fibroblasts and melanoma cells and that these interactions contribute to proteolytic activities required during invasion of melanoma cells.  相似文献   

11.
Qazi H  Shi ZD  Tarbell JM 《PloS one》2011,6(5):e20348

Background

Glioma cells are exposed to elevated interstitial fluid flow during the onset of angiogenesis, at the tumor periphery while invading normal parenchyma, within white matter tracts, and during vascular normalization therapy. Glioma cell lines that have been exposed to fluid flow forces in vivo have much lower invasive potentials than in vitro cell motility assays without flow would indicate.

Methodology/Principal Findings

A 3D Modified Boyden chamber (Darcy flow through collagen/cell suspension) model was designed to mimic the fluid dynamic microenvironment to study the effects of fluid shear stress on the migratory activity of glioma cells. Novel methods for gel compaction and isolation of chemotactic migration from flow stimulation were utilized for three glioma cell lines: U87, CNS-1, and U251. All physiologic levels of fluid shear stress suppressed the migratory activity of U87 and CNS-1 cell lines. U251 motility remained unaltered within the 3D interstitial flow model. Matrix Metalloproteinase (MMP) inhibition experiments and assays demonstrated that the glioma cells depended on MMP activity to invade, and suppression in motility correlated with downregulation of MMP-1 and MMP-2 levels. This was confirmed by RT-PCR and with the aid of MMP-1 and MMP-2 shRNA constructs.

Conclusions/Significance

Fluid shear stress in the tumor microenvironment may explain reduced glioma invasion through modulation of cell motility and MMP levels. The flow-induced migration trends were consistent with reported invasive potentials of implanted gliomas. The models developed for this study imply that flow-modulated motility involves mechanotransduction of fluid shear stress affecting MMP activation and expression. These models should be useful for the continued study of interstitial flow effects on processes that affect tumor progression.  相似文献   

12.
Heparan sulfate (HS) proteoglycans are essential components of the cell‐surface and extracellular matrix (ECM) which provide structural integrity and act as storage depots for growth factors and chemokines, through their HS side chains. Heparanase (HPSE) is the only mammalian endoglycosidase known that cleaves HS, thus contributing to matrix degradation and cell invasion. The enzyme acts as an endo‐β‐D ‐glucuronidase resulting in HS fragments of discrete molecular weight size. Cell‐surface HS is known to inhibit or stimulate tumorigenesis depending upon size and composition. We hypothesized that HPSE contributes to melanoma metastasis by generating bioactive HS from the cell‐surface to facilitate biological activities of tumor cells as well as tumor microenvironment. We removed cell‐surface HS from melanoma (B16B15b) by HPSE treatment and resulting fragments were isolated. Purified cell‐surface HS stimulated in vitro B16B15b cell migration but not proliferation, and importantly, enhanced in vivo angiogenesis. Furthermore, melanoma cell‐surface HS did not affect in vitro endothelioma cell (b.End3) migration. Our results provide direct evidence that, in addition to remodeling ECM and releasing growth factors and chemokines, HPSE contributes to aggressive phenotype of melanoma by releasing bioactive cell‐surface HS fragments which can stimulate melanoma cell migration in vitro and angiogenesis in vivo. J. Cell. Biochem. 106: 200–209, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

13.
Three-dimensional (3D) tumor models have been established in various microfluidic systems for drug delivery and resistance studies in vitro. However, one of the main drawbacks of these models is non-uniform distribution of cells, leaving regions with very low cell density within the 3D structures. As a result, molecular diffusion in the cell compartments is faster than that observed in solid tumors. To solve this problem, we developed a new technique for preparation of 3D tumor models in vitro. It was based on a microfluidic device containing three parallel channels separated by narrowly spaced posts. Tumor cells were loaded into the central channel at high density. To test the system, B16.F10 melanoma cells were perfusion-cultured overnight and the resulting 3D structure was characterized in terms of viability, density, and morphology of cells as well as transport properties of small fluorescent molecules. Immediately upon loading of tumor cells, the cell density was comparable to those observed in B16.F10 tumor tissues in vivo; and the viability of tumor cells was maintained through the overnight culture. The tumor model displayed low extracellular space and high resistance to diffusion of small molecules. For membrane-permeant molecules (e.g., Hoechst 33342), the rate of interstitial penetration was extremely slow, compared to membrane-impermeant molecules (e.g., sodium fluorescein). This versatile tumor model could be applied to in vitro studies of transport and cellular uptake of drugs and genes.  相似文献   

14.
The components of the extracellular matrix (ECM) are more than just adhesion sites for migrating tumor cells: following enzymatic degradation of the ECM, the release of sequestrated growth factors increases, thus they become available for tumor cells. In a number of cancers dysfunction of epidermal growth factor receptor (EGFR) or hepatocyte growth factor receptor (c-Met) contribute to the malignant transformation that directly regulates cell proliferation, survival and motility. Furthermore, intracellular calcium level plays an important role in the regulation of the tyrosine kinase pathway. In our preclinical experiments, by administering heparin-derived oligosaccharides we influenced the interaction between human melanoma cells and ECM. In vitro cell migration was inhibited by heparin fragments. Moreover, two of the effective oligosaccharides reduced the number of lung colonies formed in SCID mice. In human melanoma cells an important element of Ca2+ homeostasis, the purinergic Ca2+ channel P2X7 proved to be an anti-apoptotic protein. EGFR and c-Met showed constitutive activity in human melanoma cells, and their inhibition in vitro caused decreased proliferation, migration and elevated apoptosis. Administration of a selective c-Met-TKI significantly decreased primary tumor growth in vivo as well as the capacity for liver colony formation in SCID mice. Selective EGFR-TKI had less inhibitory effect on metastasis formation, and had no effect on the primary tumor. Our results suggest the necessity of a rational dual-specific drug design for the purpose in the therapy of malignant melanoma.  相似文献   

15.
Stromal and cellular components within the tumor microenvironment significantly influence molecular signals mediating tumor growth and progression. We recently performed a screen to evaluate critical mediators of melanoma–endothelial communication and identified several molecular pathways associated with these cellular networks, including Notch3. Here, we evaluate the nature of melanoma–endothelial communication mediated by Notch3 and its functional significance. We find that Notch3 is specifically upregulated in melanoma–endothelial cell cocultures and is functionally associated with increased Notch signaling in melanoma cells. Furthermore, induced Notch3 signaling in melanoma cell lines leads to enhanced tumor cell migration without associated increases in tumor cell growth. Additionally, Notch3 expression is specifically associated with malignant patient samples and is not evident in benign nevi. We conclude that Notch3 mediates melanoma–endothelial cell communication and tumor cell migration and may serve as a meaningful therapeutic target for this aggressive malignancy.  相似文献   

16.
Phosphatase of regenerating liver-3 (PRL-3) has been proposed to promote the invasion of tumor cells to metastasis sites. However, the effect of PRL-3 on spontaneous metastasis has not been clearly demonstrated, and whether PRL-3 could become a new therapeutic target in malignant tumor is still unknown. In this study, we used PRL-3 siRNA as a molecular medicine to specifically reduce the expression of PRL-3 in B16-BL6 cells, a highly metastatic melanoma cell line. In vitro, PRL-3 siRNA significantly inhibited cell adhesion and migration, but had no effect on cell proliferation. In the spontaneous metastatic tumor model in vivo, PRL-3 siRNA treatment remarkably inhibited the proliferation of primary tumor, prevented tumor cells from invading the draining lymph nodes, and prolonged the life span of mice. Therefore, our results indicate that PRL-3 plays a critical role in promoting the whole process of spontaneous metastasis and tumor growth initiation, and that inhibiting PRL-3 will improve malignant tumor therapy.  相似文献   

17.
Epidemiological evidence suggests that obesity can significantly increase the risk of various cancers, although the mechanisms underlying this link are completely unknown. Here, we analyzed the effect of adipocytes on melanoma and colon cancer cells proliferation, migration, and invasion. The potential effects of conditioned media (CM) obtained from differentiated mouse 3T3-L1 cells and human adipose tissue-derived mesenchymal stem cells (hAMSC) on the proliferation, migration, and invasion of B16BL6 melanoma and colon 26-L5 cancer cells were investigated. The 3T3-L1 and hAMSC CM increased cell proliferation, migration, and invasion in both the cell lines. In addition, adipocytes CM increased matrix metalloproteinase 9 (MMP-9) and MMP-2 activity in both B16BL6 and colon 26-L5 cells. These effects were found to be associated with an increased expression of various oncogenic proteins in B16BL6 and colon 26-L5 cells. Also, adipocyte CM induced Akt and mTOR activation in both tumor cell lines, and the pharmacological inhibition of Akt and mTOR blocked the CM induced Akt as well as mTOR activation and CM-stimulated melanoma and colon cancer cell proliferation, migration, and invasion. These data suggest that adipocyte promotes melanoma and colon cancer progression through modulating the expression of diverse proteins associated with cancer growth and metastasis as well as modulation of the Akt/mTOR signaling.  相似文献   

18.
Neuroendocrine tumors (NETs) are rare tumors, with an incidence of two per 100, 000 individuals per year, and they account for 0.5% of all human malignancies.1 Other than surgery for the minority of patients who present with localized disease, there is little or no survival benefit of systemic therapy. Therefore, there is a great need to better understand the biology of NETs, and in particular define new therapeutic targets for patients with nonresectable or metastatic neuroendocrine tumors. 3D cell culture is becoming a popular method for drug screening due to its relevance in modeling the in vivo tumor tissue organization and microenvironment.2,3 The 3D multicellular spheroids could provide valuable information in a more timely and less expensive manner than directly proceeding from 2D cell culture experiments to animal (murine) models.To facilitate the discovery of new therapeutics for NET patients, we have developed an in vitro 3D multicellular spheroids model using the human NET cell lines. The NET cells are plated in a non-adhesive agarose-coated 24-well plate and incubated under physiological conditions (5% CO2, 37 °C) with a very slow agitation for 16-24 hr after plating. The cells form multicellular spheroids starting on the 3rd or 4th day. The spheroids become more spherical by the 6th day, at which point the drug treatments are initiated. The efficacy of the drug treatments on the NET spheroids is monitored based on the morphology, shape and size of the spheroids with a phase-contrast light microscope. The size of the spheroids is estimated automatically using a custom-developed MATLAB program based on an active contour algorithm. Further, we demonstrate a simple method to process the HistoGel embedding on these 3D spheroids, allowing the use of standard histological and immunohistochemical techniques. This is the first report on generating 3D spheroids using NET cell lines to examine the effect of therapeutic drugs. We have also performed histology on these 3D spheroids, and displayed an example of a single drug''s effect on growth and proliferation of the NET spheroids. Our results support that the NET spheroids are valuable for further studies of NET biology and drug development.  相似文献   

19.
Integrin alphav is required for melanoma cell survival and tumor growth in various models. To elucidate integrin alphav-mediated melanoma cell survival mechanisms, we used a three-dimensional (3D) collagen gel model mimicking the pathophysiological microenvironment of malignant melanoma in the dermis. We found that integrin alphav inactivated p53 and that suppression of p53 activity by dominant negative p53 or p53-small interfering RNA obviated the need for integrin alphav for melanoma cell survival in 3D-collagen and for tumor growth in vivo. This indicates that integrin alphav-mediated inactivation of p53 functionally controls melanoma cell survival. Furthermore, we found that melanoma cell integrin alphav was required for MAPK kinase (MEK) 1 and extracellular signal-regulated kinase (ERK)1/2 activity in 3D-collagen, whereas inhibition of MEK1 activity induced apoptosis. Surprisingly, MEK1 and ERK1/2 activities were restored in integrin alphav-negative melanoma cells by suppression of p53, whereas concomitant block of MEK1 induced apoptosis. This suggests that integrin alphav controls melanoma cell survival in 3D-collagen through a pathway involving p53 regulation of MEK1 signaling.  相似文献   

20.
The action of two Vinca alkaloids on B16 melanoma in vitro   总被引:1,自引:0,他引:1  
The difference in the effectiveness of Vincristine and Vindesine against B16 melanoma proliferation was examined by treating the tumor tissue in vitro prior to subcutaneous implantation in adult mice and by treating cells in culture with the drugs. Vindesine caused greater inhibition of tumor growth than Vincristine when the tumor tissue was incubated with 50 microM drugs for 2 h prior to implantation. At nanomolar concentrations Vindesine retarded the proliferation of cells in culture to a greater extent than Vincristine. The greater effectiveness of Vindesine was also observed when cells were incubated with micromolar concentrations of the drugs followed by removal and recovery of the cell growth in vitro or in mice. The rate of drug uptake and amount of drug retained by either tumor pieces or cells in culture were similar for both Vinca alkaloids. It appears, therefore, that differences in drug uptake and retention by the tumor cells do not explain the greater effectiveness of Vindesine in inhibiting the proliferation of B16 melanoma cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号