首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Top-down control of prey assemblages by fish predation has been clearly demonstrated for zooplankton and macroinvertebrates. However, in the benthic communities of freshwater ecosystems, the impact of fish predation on meiofaunal assemblages is nearly unknown. In this study, the predation effects of juvenile carp (Cyprinus carpio) and gudgeon (Gobio gobio) on meiofaunal abundance, biomass, community structure, and the diversity of nematodes were examined using microcosms that were sampled repeatedly over 64 days. Significant differences in abundance and biomass were found between the two fish treatments (carp and gudgeon) and their respective controls for nematodes, oligochaetes, and crustaceans (copepods, harpacticoids, ostracods, and cladocerans), but not for rotifers. These changes were consistent with top-down control of the freshwater meiofaunal assemblages in the microcosms over time. By contrast, small-bodied meiofauna was more abundant, suggesting indirect facilitation. Neither the species richness nor the diversity of the nematode community was affected by fish predation. The results indicate that predation by juvenile freshwater fish depresses the overall abundance and biomass of meiofaunal assemblages, except for rotifers, and alters the size structure of the meiofaunal community. Therefore, the meiofaunal assemblages of freshwater ecosystems may be influenced by bottom-feeding juvenile fish, e.g., carp and gudgeon, through top-down control of meiofaunal populations.  相似文献   

2.
1. The ciliate and metazoan meiofaunal assemblages of two contrasting lowland streams in south‐east England were examined over the period of a year, using a high taxonomic resolution. Monthly samples were taken from an oligotrophic, acid stream (Lone Oak) and a circumneutral, nutrient‐rich stream (Pant) between March 2003 and February 2004. 2. We assessed the relative importance of ciliates and rotifers within the small‐sized benthic assemblage with respect to their abundance, biomass and species richness. In addition, we examined the influence of abiotic and biotic parameters and season on the assemblage composition at two levels of taxonomic resolution (species and groups). 3. Ciliates dominated the assemblages numerically, with maximum densities of over 900 000 and 6 000 000 ind. m?2 in Lone Oak and Pant respectively. Rotifers and nematodes dominated meiofaunal densities, although their contribution to total meiofaunal biomass (maxima of 71.9 mgC m?2 in Lone Oak and of 646.8 mgC m?2 in the Pant) was low and rotifer biomass equalled that of ciliates. 4. Although the two streams differed in terms of total abundance of ciliates and meiofauna and shared only 7% of species, the relative proportion of groups was similar. Sediment grain size distribution (the percentile representing the 0.5–1 mm fraction) was correlated with assemblage structure at the species level, revealing the tight coupling between these small organisms and their physical environment. Seasonal changes in the relative abundance of groups followed similar patterns in both streams, and were correlated with the abundance of cyclopoid copepods and temperature. 5. Information on these highly abundant but often overlooked faunal groups is essential for estimates of overall abundance, biomass, species richness and productivity in the benthos, and as such has important implications for several areas of aquatic research, e.g. for those dealing with trophic dynamics.  相似文献   

3.
Range expansions of species comprise a pervasive environmental problem worldwide and can cause substantial ecological and economic impact. However, the magnitude of impact may vary across habitats, highlighting the need to account for spatial heterogeneity in assessment studies. Here we compare invertebrate community structure in three habitats (littoral, sublittoral, and profundal) of boreal lakes that suffer recurring blooms of a regionally expanding, nuisance flagellate, Gonyostomum semen (Raphidophyta), with the assemblage structure in lakes were no blooms occur. We contrast community structure over a 6-year period using univariate metrics (total abundance, community evenness, species richness, and Simpson diversity) and multivariate community similarity to infer habitat-specific associations of local (alpha) diversity. We also calculated indices of multivariate dispersion to infer associations with beta diversity; i.e., whether or not habitats in bloom lakes show faunal homogenisation. Results show that the magnitude of assemblage alteration in bloom relative to bloom-free lakes varied with habitat and increased from the littoral to the profundal habitats. Littoral assemblages in bloom and bloom-free lakes shared similar alpha (taxon richness, evenness and Simpson diversity) and beta diversity characteristics, despite differing in multivariate community similarity. By contrast, alteration of assemblage structure was most severe in the profundal and manifested in reduced diversity and faunal homogenisation (i.e. decreased beta diversity) in bloom relative to bloom-free lakes. This was due to numerical dominance of the predatory phantom midge, Chaoborus flavicans, in the profundal of bloom lakes. Not only do the results highlight that spatial heterogeneity should be accounted for to assess the potential broader impact of nuisance species on biodiversity within lakes; more generally, the dominance of a single species suggests a reduced overall resilience of bloom lakes, making them more susceptible to environmental perturbation.  相似文献   

4.
The composition and abundance of the meiofauna and macrofauna were studied in a survey carried out within 6 locations in a mangrove at the Island of Santa Catarina, South Brazil. Nine meiofaunal taxa were registered with densities ranging between 77 and 1589 inds.10 cm?2. The nematodes, composed by 94 putative species (86 genera), largely dominated the meiofauna. The most abundant genera were Haliplectus (Haliplectidae), Anoplostoma (Anoplostomatidae) and Terschillingia (Linhomoidae). Contrary to the meiofauna, the macrofauna showed a low number of taxa (only 17 recorded) and abundance (up 7250 inds.m?2). The macrofauna was mainly composed by deposit feeders, and numerically dominated by oligochaetes and capitellid polychaetes. For both components, differences in the composition and abundance along the sampling sites were significant but not primarily related to the typical variations along estuaries, such as salinity. The results of the stepwise multiple regression analyses showed that the detritus biomass (ash-free dry weight) was the most important predictor of faunal densities and diversity. The clear relationship between detritus and fauna, together with the contrasting community structure of the two component of the benthos suggest that the meiofauna showed a high efficiency in exploiting the micro-habitat created by the presence of the detritus. Yet the macrofauna, potentially the main consumer of the debris, is negatively affected by their low palatability and poor nutritive value.  相似文献   

5.
Meiofauna are ubiquitous in estuaries worldwide averaging 106 m?2. Abundance and species composition are controlled primarily by three physical factors: sediment particle size, temperature and salinity. While meiofauna are integral parts of estuarine food webs, the evidence that they are biologically controlled is equivocal. Top down (predation) control clearly does not regulate meiofaunal assemblages. Meiofauna reproduce so rapidly and are so abundant that predators cannot significantly reduce population size. Food quantity (bottom up control) also does not appear to limit meiofaunal abundance; there is little data on the effect of food quality. In estuarine sediments meiofauna: (i) facilitate biomineralization of organic matter and enhance nutrient regeneration; (ii) serve as food for a variety of higher trophic levels; and (iii) exhibit high sensitivity to anthropogenic inputs, making them excellent sentinels of estuarine pollution. Generally mineralization of organic matter is enhanced and bacterial production stimulated in the presence of meiofauna. Tannins from mangrove detritus in northern Queensland appear to inhibit meiofaunal abundance and therefore the role of meiofauna in breakdown of the leaves. Meiofauna, particularly copepods, are known foods for a variety of predators especially juvenile fish and the meiofaunal copepods are high in the essential fatty acids required by fish. The copepod’s fatty acid composition is like that of the microphytobenthos they eat; bacterial eaters (nematodes?) do not have the essential fatty acids necessary for fish. Most contaminants in estuaries reside in sediments, and meiofauna are intimately associated with sediments over their entire life-cycle, thus they are increasingly being used as pollution sentinels. Australian estuarine meiofauna research has been concentrated in Queensland, the Hunter River estuarine system in New South Wales, and Victoria’s coastal lagoons. Studies in northern Queensland have primarily concentrated on the role of nematodes in mineralization of organic matter, whereas those from southern Queensland have concentrated on the role of meiofauna as food for fish and as bacterial grazers. The New South Wales studies have concentrated on the Hunter River estuary and on the structure and function of marine nematode communities. In Victoria, several fish have been shown to eat meiofauna. The Australian world of meiofaunal research has hardly been touched; there are innumerable opportunities for meiofaunal studies. In contaminated estuarine sediments reduced trophic coupling between meiofauna and juvenile fish is a basic ecological question of habitat suitability, but also a question with relevance to management of estuarine resources. Because meiofauna have short lifecycles, the effects of a contaminant on the entire life-history can be assessed within a relatively short time. The use of modern molecular biology techniques to assess genetic diversity of meiofauna in contaminated vs uncontaminated sediments is a promising avenue for future research. Much of the important meiofaunal functions take place in very muddy substrata; thus, it is imperative to retain mudflats in estuaries.  相似文献   

6.
1. The effects of eutrophication on phytoplankton, zooplankton and fish in lakes are well known. By contrast, little is known about the response of the zoobenthos to nutrient enrichment, while smaller organisms, such as the meiofauna, have for the most part been neglected. 2. In a long‐term (16 months) microcosm experiment, we assessed the effects of five levels of nutrients [total phosphorus (TP), 7–250 μg L?1; nitrate, 2–8 mg L?1] on a freshwater meiofaunal assemblage and on nematode diversity in particular. 3. Within the first 8 months, meiofaunal succession was only weakly affected, whereas, during the last 4 months, nutrient addition influenced most of the main taxa, with a concomitant change in the assemblage structure. 4. The density of the numerically dominant nematodes decreased upon nutrient enrichment, whereas ostracods became more numerous. Other taxa, including copepods, reached a maximum at intermediate nutrient levels or, in case of oligochaetes, were almost unaffected by nutrient enrichment. However, the changes in the density of the main taxa were usually insufficient to alter their biomass. Consequently, meiofaunal biomass was remarkably unresponsive to nutrient addition, while meiofaunal density displayed a unimodal relationship, with a peak at a TP concentration of 30 μg L?1. In addition, nematode species richness decreased significantly with increasing nutrient concentrations. 5. We hypothesise that the response of meiofaunal taxa to nutrients is attributable to the development of primary producers, which shifted with enrichment from low densities of edible diatoms and unicellular green algae to large standing stocks of inedible forms, such as Lemna minor and Cladophora spp.  相似文献   

7.
Competition between large and small species for the same food is common in a number of ecosystems including aquatic ones. How diversity of larger consumers affects the access of smaller competitors to a limiting resource is not well understood. We tested experimentally how species richness (0–3 spp.) of benthic deposit-feeding macrofauna changes meiofaunal ostracods’ incorporation of fresh organic matter from a stable-isotope-labeled cyanobacterial bloom, using fauna from the species-poor Baltic Sea. Presence of macrofauna mostly decreased meiofaunal incorporation of bloom material, depending on the macrofauna species present. As expected, the species identity of macrofauna influenced the incorporation of organic matter by meiofauna. Interestingly, our results show that, in addition, species richness of the macrofauna significantly reduced meiofauna incorporation of freshly settled nitrogen and carbon. With more than one macrofauna species, the reduction was always greater than expected from the single-species treatments. Field data from the Baltic Sea showed a negative correlation between macrofauna diversity and meiofaunal ostracod abundance, as expected from the experimental results. We argue that this is caused by interference competition, due to spatial niche differentiation between macrofauna species reducing the sediment volume in which ostracods can feed undisturbed by larger competitors. Interference from macrofauna significantly reduces organic matter incorporation by meiofauna, indicating that diversity of larger consumers is an important factor controlling the access of smaller competitors to a limiting food resource.  相似文献   

8.
9.
The transboundary networks of Marine Protected Areas (MPAs) project, TRANSMAP, assessed local turnover and regional biodiversity across the East African Marine Ecoregion, where inter-governmental co-operation has been working to connect local MPAs. The benthic fauna in the three most dominant habitats on this coastline??beaches, mangroves and seagrasses??were studied in two Regions (Northern Region, 10?C13°S; Southern Region, 25?C28°S). Meiofaunal taxa were used as the model faunal group owing to their diversity and abundance across habitat types and environmental conditions. Meiofaunal abundance averaged 2,500 individuals 10 cm?2 and was generally higher in mangrove and seagrass sediments than on the beaches, and was significantly different between habitats × Regions. In total, 18 taxa were recorded with highest diversity in the beach samples. Diversity indices and assemblage structure were significantly different between habitats, but also Regions. Specific granulometric 1?? size classes, shore-height and number of rain days were the factors most significantly correlating with the observed assemblage patterns. Additionally, the size of a MPA and latitude (which correlated with MPA age, but not number of rain days), were the factors fitting best with meiofaunal assemblage patterns across the beaches, the habitat for which the most comprehensive data were generated. Sample diversity was higher in the Southern Region, and although within- and across-habitats diversity were similar across the Regions, the two Regions appeared to provide complementary habitats and supported different assemblages. Within the Regions, beaches (the only habitat for which more than one location was sampled) were significantly different between Locations, supporting the establishment of multiple protected locations of the same habitat within each transboundary MPA.  相似文献   

10.
The impact on the meiofaunal assemblage of the bioturbation caused by Chilean Flamingos (Phoenicopterus chilensis) feeding on the tidal flat at Caulín, southern Chile was investigated. The flamingos walk in circles in shallow water, moving their feet up and down in order to suspend the sediment which is then filtered through the lamellae in their beaks in order to capture their prey. Which component of the benthos the flamingos are targeting has yet to be unequivocally determined. Meiofauna are one potential food source as they are extremely abundant at the site and the filtering capacity of the flamingos could potentially retain meiofauna. Two possible hypotheses concerning the impact of flamingo feeding activity on the meiofaunal assemblage were tested: hypothesis 1 that the flamingos are feeding on the meiofaunal assemblage, and hypothesis 2 that the flamingos are displacing the meiofaunal assemblage over short distances. Meiofaunal samples were collected on four occasions (autumn, winter, spring and summer) using a randomized block design to include four levels of bioturbation: centre, ring, border and undisturbed. Meiofaunal abundances increased in sediment processed by the flamingos compared with adjacent unperturbed sediment. The results support hypothesis 2 that the flamingos are displacing the meiofauna and not feeding on them. Thus, the impact of flamingo feeding activity on the meiofaunal assemblage at Caulín is to increase small scale spatial (<1?m) heterogeneity in a background distribution that is already significantly heterogeneous.  相似文献   

11.
1. Quantifying how biological diversity is distributed in the landscape is one of the central themes of conservation ecology. For this purpose, landscape classifications are being intensively used in conservation planning and biodiversity management, although there is still little information about their efficacy. 2. I used data from 158 running water sites in Hungary to examine the contribution of six a priori established habitat types to regional level diversity of fish assemblages. Three community measures [species richness, diversity (Shannon, Simpson indices), assemblage composition] were examined at two assemblage levels (entire assemblage, the native assemblage). The relative role of non‐native species was quantified to examine their contribution to patterns in diversity in this strongly human influenced landscape. 3. Additive diversity partitioning revealed the primary importance of beta diversity (i.e. among‐site factors) to patterns in species richness. Landscape‐scale patterns in species richness were best explained by between‐habitat type (beta2: 41.2%), followed by within‐habitat type (beta1: 37.7%) and finally within‐site (alpha: 21.1%) diversity. Diversity indices showed patterns different from species richness, indicating the importance of relative abundance distributions on the results. Exclusion of non‐natives from the analysis gave similar results to the entire‐assemblage level analysis. 4. Canonical analysis of principal coordinates, complemented with indicator species analysis justified the separation of fish assemblages among the habitat types, although classification error was high. Multivariate dispersion, a measure of compositional beta diversity, showed significant differences among the habitat types. Contrary to species diversity (i.e. richness, diversity indices), patterns in compositional diversity were strongly influenced by the exclusion of non‐natives from the analyses. 5. This study is the first to quantify how running water habitat types contribute to fish diversity at the landscape scale and how non‐native species influence this pattern. These results on riverine fish assemblages support the hypothesis that environmental variability (i.e. the diversity of habitat types) is an indication of biodiversity and can be used in large‐scale conservation designs. The study emphasises the joint application of additive diversity partitioning and multivariate statistics when exploring the contribution of landscape components to the overall biodiversity of the landscape mosaic.  相似文献   

12.
The composition and distribution of the benthic meiofauna assemblages of the Egyptian coasts along the Red Sea are described in relation to abiotic variables. Sediment samples were collected seasonally from three stations chosen along the Red Sea to observe the meiofaunal community structure, its temporal distribution and vertical fluctuation in relation to environmental conditions of the Red Sea marine ecosystem. The temperature, salinity, pH, dissolved oxygen, and redox potential were measured at the time of collection. The water content of the sediments, total organic matters and chlorophyll a values were determined, and sediment samples were subjected to granulometric analysis. A total of 10 meiofauna taxa were identified, with the meiofauna being primarily represented by nematodes (on annual average from 42% to 84%), harpacticoids, polycheates and ostracodes; and the meiofauna abundances ranging from 41 to 167 ind./10 cm2. The meiofaunal population density fluctuated seasonally with a peak of 192.52 ind./10 cm2 during summer at station II. The vertical zonation in the distribution of meiofaunal community was significantly correlated with interstitial water, chlorophyll a and total organic matter values. The present study indicates the existence of the well diversified meiofaunal group which can serve as food for higher trophic levels in the Red Sea interstitial environment.  相似文献   

13.
  • 1 There is a paucity of research on epigean freshwater lotic meiofauna. This may result from a previous emphasis on interstitial (groundwater and hyporheic) meiofauna and/or a reliance on sampling methodologies in lotic systems which are inappropriate for meiofauna.
  • 2 Meiofauna contribute much to the diversity of lotic ecosystems. Species lists for seven streams reveal that meiofauna contribute 58–82% of total species numbers, with rotifers and chironomids dominating most systems. The absence of taxonomic keys for most meiofaunal taxa in large areas of the world precludes a wider analysis of their contribution to lotic diversity and an assessment of biogeographical patterns and processes.
  • 3 The trophic and functional role of meiofauna in lotic ecosystems is unclear. There are few estimates of meiofaunal production in freshwaters and biomass spectra have produced conflicting results for lotic meiofauna. Present static estimates suggest that the contribution of meiofauna to lotic productivity and biomass is small to moderate, but further studies incorporating a temporal component may provide a more realistic picture of the total contribution of meiofauna to biomass size spectra.
  • 4 Meiofauna differ from macroinvertebrates in several respects apart from size and conceptual models for lotic ecosystems should include all metazoans if they are to be truly representative.
  • 5 Information on the basic ecology of certain lotic meiofauna (i.e. nematodes, tardigrades, microturbellarians) is urgently required. For those groups whose distributional patterns are better understood (e.g. microcrustaceans), the mechanisms underpinning these patterns should be explored. It is essential that the importance of meiofauna is recognised by lotic ecologists; the only realistic way forward is for greater collaboration among meiofaunal ecologists and taxonomists and other lotic scientists.
  相似文献   

14.
Collelungo beach (Maremma Park, NW Italy), was sampled quantitatively for macrofauna, meiofauna and bacteria in May 2003; several physicochemical variables and variables associated with food availability and sediment structure were also measured. Replicated samples were collected from three sites representing natural conditions, an erosion regime, and the influence of the Ombrone River, respectively, as well as from four stations each located in the surf and sublittoral zones. Both uni- and multivariate techniques were used to assess the benthic community structure and the associated environmental variables. Different diversity indices revealed no pattern; in contrast, multivariate techniques applied on the macrobenthic fauna and the polychaete taxocommunity distinguished between the sites located in natural and eroding conditions from the one located nearby the discharges of the Ombrone river. Τhe community patterns deriving from meio- and macrofauna are clearly divergent. The overall benthic faunal community appears to be influenced by both groups of organisms. The patterns of the meio- and macrofaunal communities seem to be affected synergistically by a number of environmental variables, in accordance with the multicausal environmental severity hypothesis. Meiofaunal patterns are more often correlated with bacteria and the protein concentration than are macrofaunal patterns, indicating a potential utilization of bacteria as a food source by the meiofaunal organisms. Total bacterial numbers are associated with the macrofaunal pattern under the erosion regime, probably as a consequence of competition for food between macrofauna and meiofauna.  相似文献   

15.
Meiofauna are known to live on hard substrates in association with periphytic and epiphytic algae and attached epibiota; however, the abundance, diversity and colonizing abilities of hard-substrate meiofauna have been poorly documented. We quantified meiofauna living on microalgal-covered pilings associated with a wood pier in a shallow (<2 m deep) estuarine embayment with the use of a suction sampler, and compared colonization of pier-piling and sediment-dwelling meiofauna onto collectors that capture suspended meiofauna from the water column. Collectors were small mesh pads (159 cm3) suspended at mid-water depth, and their size and structural complexity were similar to floating or drifting masses of macroalgae that may be colonized by meiofauna. Sediment was collected by coring, and copepod (to species) and nematode (to genera) colonists on mesh pads were compared with pier-piling and sediment communities. Abundance of total meiofauna averaged 124±13.6 (S.E.) on pier pilings, compared to 2092±274.6 individuals 10 cm−2 in surrounding sediment. Phytal copepods (free-living copepods with prehensile first legs and dorsoventrally and laterally compressed body forms) and copepod nauplii dominated pier-piling collections, but nematodes were dominant on faunal collectors and in sediment. Phytal copepods also were abundant on faunal collectors but were rare in sediments. Copepod and nematode diversities were similar, but species composition was largely nonoverlapping, in pier pilings and sediments. Net recruitment of meiofauna to faunal collectors averaged about 900 individuals collector−1 day−1 during the 1-week experiment. Nematode and copepod colonists on faunal collectors were both much more similar to pier-piling than to sediment assemblages. These data suggest that meiofauna are abundant and diverse on algal-covered pier pilings, and they may become more important to marine ecology as artificial hard substrates increase with increasing urbanization. Furthermore, pier-piling meiofauna appear to readily migrate into the water column and probably contribute to a rapidly dispersing pool of meiofauna in estuaries.  相似文献   

16.
In experimental mesocosms established at Solbergstrand, Oslofjord, Norway, organic enrichment was effected by the addition of powdered Ascophyllum nodosum (L.) Le Jol., in quantities equivalent to 50gC·m?2 and 200gC·m?2, to boxes of sublittoral soft sediment. After 56 days, the structure of the meiofaunal communities in these treatments was compared with that of the control boxes. At this time the meiofaunal communites at each level of organic enrichment were markedly different from each other and from that in the control sediment. The responses of the two major components of the meiofauna, however, were different. Although the abundance of nematodes was slightly reduced in the high dose treatment this was not accompanied by detectable changes in community structure. Harpacticoid copepods, on the other hand, increased significantly in abundance in the treatment boxes and showed a general trend towards increased dominance and decreased diversity with increasing levels of organic enrichment, although in the low dose treatment there was also an increase in the number of species present. It is also shown that the nematode/copepod ratio is unreliable as a biomonitoring tool and it is suggested that the differential responses in community structure between the nematode and copepod components of the meiofauna might be a better indication of stress at the community level.  相似文献   

17.
The best hope for understanding global diversity patterns is to compare local assemblages, which are mostly preserved in taphonomically-complex shell beds. The present study investigates the variability in faunal composition and diversity at the scale of a single outcrop. A total of 152 species (3315 shells) occurred in 25 samples from 5 tempestitic shell beds. Although sampling intensity was high, total species richness was not captured by far at the hierarchical levels present (outcrop, shell beds, samples) because the majority of species is rare. In contrast, sampling intensity was sufficient to cover the most abundant species, as indicated by stable evenness values. Four taxa dominate the assemblage, but their rank order differs strongly between individual shell beds and individual samples; significant differences between some shell beds are evident for faunal composition, and one shell bed differs from all others with respect to species accumulation curves. Within shell beds, rarefaction curves are generally characterized by strongly overlapping confidence intervals, but outliers occur in three of five shell beds. Patchiness is additionally indicated by a wide scatter of diversity indices in some shell beds and by a wide scatter of samples of one shell bed in an ordination on faunal composition. Most of the outcrop-scale variability in faunal composition and diversity can be related to differences between shell beds. This suggests that sampling a single shell bed of the outcrop is insufficient to characterize the local fauna and its diversity, even when sampling intensity (i.e. the number of samples and shells) within the shell bed was high. Similarly, a single sample from such a shell bed may not be sufficient to characterize its diversity, even when the number of counted shells was high. It is therefore confirmed that sampling strategy and sampling intensity are crucial to confidently characterize the shelly assemblages at such a small spatial scale and that dispersed sampling effort with many small replicate samples will characterize a local assemblage and its diversity better than a few large samples. Diversity comparisons of individual samples between localities must account for the high variability present at the smaller spatial scale, as observed in our study.  相似文献   

18.
福建沿岸红树林湿地多毛类生态分布   总被引:1,自引:0,他引:1  
林俊辉  郑凤武  何雪宝  王建军 《生态学报》2014,34(17):4910-4919
根据2009年至2012年在福建沿岸5块典型红树林湿地所作的调查资料,分析了福建沿岸红树林湿地多毛类的物种多样性、生态分布特点以及与环境因子的关系。研究区域春、秋两季共记录多毛类动物45种,其中沙蚕科、海稚虫科和小头虫科3个科种类最为丰富,种类属性为低盐或广盐性种类。多毛类平均密度和生物量分别为190个/m2和2.17 g/m2,样地×季节双因素方差分析表明,密度在不同样地间差异显著,密度和生物量的季节变化均为春季显著高于秋季。此外,林外光滩的多毛类数量要高于林内,不同样地的摄食群组成各异。红树林断面的平均种类数和多样性指数H'与沉积物粘土含量呈显著负相关,与多毛类类群的大尺度空间分布特征关联最为紧密的因子为地理纬度。  相似文献   

19.
Timber tree plantations are considered for rehabilitating forest biodiversity in the tropics, but knowledge on determinants of faunal diversity patterns in such human-modified forest landscapes is scarce. We quantified the composition of beetle assemblages on three native timber species (Anacardium excelsum, Cedrela odorata and Tabebuia rosea) planted on former pasture to assess effects of tree species identity, tree species diversity, and insecticide treatment on a speciose group of animals in tropical plantations. The beetle assemblage parameters ‘abundance’, ‘species richness’, ‘Chao1 estimated species richness’ and ‘Shannon diversity’ were significantly reduced by insecticide treatment for each tree species. Shannon diversity increased with stand diversification for T. rosea but not for A. excelsum and C. odorata. Species similarity was highest (lowest species turnover) between beetle assemblages on T. rosea, and it was lowest (highest species turnover) for assemblages on insecticide-treated trees of all timber species. Considering trophic guilds, herbivorous beetles dominated on all tree species and in all planting schemes. Herbivores were significantly more dominant on T. rosea and C. odorata than on A. excelsum, suggesting that tree species identity affects beetle guild structure on plantation trees. Insecticide-treated stands harbored less herbivores than untreated stands, but exhibited a high abundance of predator beetle species. Our study revealed that even young pasture-afforestations can host diverse beetle assemblages and thus contribute to biodiversity conservation in the tropics. The magnitude of this contribution, however, may strongly depend on management measures and on the selected tree species.  相似文献   

20.
As part of studies investigating the influence of grazers on reef meiofauna, we assessed the density, composition and richness of meiofauna (retained on a 100-μm sieve) on the leeward reef slope of Heron Reef, GBR, Australia using an airlift vacuum sampling device. Estimates of meiofauna densities ranged between 40 individuals 10 cm−2 and 290 individuals 10 cm−2, which is considerably lower than many estimates from carbonate sediments and hard substrates from other reefs and marine habitats. The 17 taxa of meiofauna were dominated by harpacticoid copepods (40%) and nematodes (32%). Varying sediment load within algal turfs explained 37% of variation of meiofauna density. A model is proposed in which increased shelter afforded by high living coral cover reduces meiofaunal losses from grazing and increases sediment loads, balanced by areas of low coral cover in which sedimentation rates are lower and grazing rates higher. At none of the four sites did major differences in abundance occur between November and March sampling events. Together these observations suggest that epilithic meiofaunal communities are generally spatially and temporally predictable at small scales in this reef system, indicating that their ecological services are similarly conservative. Handling editor: I. Nagelkerken  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号