首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An RNA-dependent RNA polymerase activity has been found copurifying with measles virus infectivity and complement-fixing antigen in three Vero cell-grown variants of measles virus: the attenuated Edmonston B strain, the natural non-attenuated Edmonston strain, and a subacute sclerosing panencephalitis isolate, IP-3. Incubation of purified measles virions with immunoglobulin G derived from sera of monkeys hyperimmunized against measles specifically removes activity sedimenting in the density region of measles virions. The requirements of the reaction, which is RNase sensitive, are similar to those reported for other paramyxovirus-associated activities, including detergent, divalent cation, ribonucleoside triphosphates, and a reducing agent. The size classes of RNA synthesized correspond to those found in measles-infected cells, including 50, 35, and 16 to 20S. The product RNA of the Edmonston B virus-stimulated reaction was rendered RNase resistant by annealing with RNA extracted from purified Edmonston B virions. RNA from uninfected Vero cells was ineffective in the annealing reaction.  相似文献   

2.
The NS5B RNA-dependent RNA polymerase encoded by hepatitis C virus (HCV) plays a key role in viral replication. Reported here is evidence that HCV NS5B polymerase acts as a functional oligomer. Oligomerization of HCV NS5B protein was demonstrated by gel filtration, chemical cross-linking, temperature sensitivity, and yeast cell two-hybrid analysis. Mutagenesis studies showed that the C-terminal hydrophobic region of the protein was not essential for its oligomerization. Importantly, HCV NS5B polymerase exhibited cooperative RNA synthesis activity with a dissociation constant, K(d), of approximately 22 nM, suggesting a role for the polymerase-polymerase interaction in the regulation of HCV replicase activity. Further functional evidence includes the inhibition of the wild-type NS5B polymerase activity by a catalytically inactive form of NS5B. Finally, the X-ray crystal structure of HCV NS5B polymerase was solved at 2.9 A. Two extensive interfaces have been identified from the packing of the NS5B molecules in the crystal lattice, suggesting a higher-order structure that is consistent with the biochemical data.  相似文献   

3.
We propose a reference model of the kinetics of a viral RNA-dependent RNA polymerase (vRdRp) activities and its regulation during infection of eucaryotic cells. After measles virus infects a cell, mRNAs from all genes immediately start to accumulate linearly over the first 5 to 6 h and then exponentially until approximately 24 h. The change from a linear to an exponential accumulation correlates with de novo synthesis of vRdRp from the incoming template. Expression of the virus nucleoprotein (N) prior to infection shifts the balance in favor of replication. Conversely, inhibition of protein synthesis by cycloheximide favors the latter. The in vivo elongation speed of the viral polymerase is approximately 3 nucleotides/s. A similar profile with fivefold-slower kinetics can be obtained using a recombinant virus expressing a structurally altered polymerase. Finally, virions contain only encapsidated genomic, antigenomic, and 5'-end abortive replication fragment RNAs.  相似文献   

4.
5.
High-throughput screening has identified 1-methyl-3-(trifluoromethyl)-N-[4-(pyrrolidinylsulfonyl)phenyl]-1H-pyrazole-5-carboxamide 16677 as a novel and potent (IC(50)=35-145 nM) inhibitor against multiple primary isolates of diverse measles virus (MV) genotypes currently circulating worldwide. The synthesis of 16677 and several analogs together with effects on MV replication is described. The most potent analog displays nanomolar inhibition against the MV and a selectivity ratio (CC(50)/IC(50)) of ca. 16,500.  相似文献   

6.
Giardia lamblia, a parasitic protozoan, can contain a double-stranded RNA (dsRNA) virus, GLV (1). We have identified an RNA polymerase activity present specifically in cultures of GLV infected cells. This RNA polymerase activity is present in crude whole cell lysates as well as in lysates from GLV particles purified from the culture medium. The RNA polymerase has many characteristics common to other RNA polymerases (e.g. it requires divalent cations and all four ribonucleoside triphosphates), yet it is not inhibited by RNA polymerase inhibitors such as alpha-amanitin or rifampicin. The RNA polymerase activity synthesizes RNAs corresponding to one strand of the GLV genome, although under the present experimental conditions, the RNA products of the reaction are not full length viral RNAs. The in vitro products of the RNA polymerase reaction co-sediment through sucrose gradients with viral particles; and purified GLV viral particles have RNA polymerase activity. The RNA polymerase activities within and outside of infected cells closely parallel the amount of virus present during the course of viral infection. The similarities between the RNA polymerase of GLV and the polymerase associated with the dsRNA virus system of yeast are discussed.  相似文献   

7.
8.
The enzymatic activity of hepatitis C virus (HCV) RNA-dependent RNA polymerase NS5B is modulated by the molar ratio of NS5B enzyme and RNA template. Depending on the ratio, either template or enzyme can inhibit activity. Inhibition of NS5B activity by RNA template exhibited characteristics of substrate inhibition, suggesting the template binds to a secondary site on the enzyme forming an inactive complex. Template inhibition was modulated by primer. Increasing concentrations of primer restored NS5B activity and decreased the affinity of template for the secondary site. Conversely, increasing template concentration reduced the affinity of primer binding. The kinetic profiles suggest template inhibition results from the binding of template to a site that interferes with primer binding and the formation of productive replication complexes.  相似文献   

9.
Inhibition of measles virus replication and RNA synthesis by actinomycin D   总被引:2,自引:0,他引:2  
Measles virus replication and RNA synthesis in Vero cells are inhibited by actinomycin at concentrations which inhibit cellular RNA synthesis. Drug present from the 2nd to the 24th hr post infection inhibited infectivity but not hemagglutinating activity or cell fusion. Infectivity was much less sensitive to drug added during the second 24-hr period, and 52S RNA was labeled and incorporated into virions during this later time interval.  相似文献   

10.
11.
12.
The effect of normal growth (hypertrophy) on myocardial nuclear activity was investigated using male Wistar rats at 21, 50, and 100 days of age. Cardiac mass increased sevenfold during this age range. The concentration of RNA (mg X g-1) was the highest at 21 days and decreased 48% by 50 days of age and 68% after 100 days of development. RNA synthesis, corrected for alterations in the specific activity of the cytoplasmic nucleotide pool, was the highest at 21 days of age. After 50 days of growth, uridine incorporation was decreased fivefold. With continual growth (100 days), RNA synthesis was still reduced compared with the 21-day animals. RNA polymerase activity in myocyte nuclei showed little change in activity from 21 to 100 days of age. However, in the nonmyocyte fraction, RNA polymerase decreased threefold after 50 days of development. Collectively, these data suggest that the large decrease in myocardial RNA synthesis cannot be accounted for by a change in nuclear RNA polymerase activity and that an alteration in chromatin template capacity may be involved during this form of cardiac growth.  相似文献   

13.
14.
15.
The hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp) initiates RNA synthesis in vivo by a de novo mechanism. In vitro, however, the HCV RdRp can initiate de novo or extend from a primed template. A novel beta-loop near the RdRp active site was previously found to prevent the use of primed templates. We found that, in addition to the beta-loop, the C-terminal tail of the HCV RdRp and the de novo initiation GTP are required to exclude the use of primed-templates. GTP binding to the NTPi site of the HCV RdRp orchestrates the participation of other structures. The interactions of the beta-loop, C-terminal tail, and GTP provide an elegant solution to ensure de novo initiation of HCV RNA synthesis.  相似文献   

16.
17.
Generation of measles virus with a segmented RNA genome   总被引:3,自引:0,他引:3       下载免费PDF全文
  相似文献   

18.
The minimal RNA synthesis machinery of non-segmented negative-strand RNA viruses comprises a genomic RNA encased within a nucleocapsid protein (N-RNA), and associated with the RNA-dependent RNA polymerase (RdRP). The RdRP is contained within a viral large (L) protein, which associates with N-RNA through a phosphoprotein (P). Here, we define that vesicular stomatitis virus L initiates synthesis via a de-novo mechanism that does not require N or P, but depends on a high concentration of the first two nucleotides and specific template requirements. Purified L copies a template devoid of N, and P stimulates L initiation and processivity. Full processivity of the polymerase requires the template-associated N protein. This work provides new mechanistic insights into the workings of a minimal RNA synthesis machine shared by a broad group of important human, animal and plant pathogens, and defines a mechanism by which specific inhibitors of RNA synthesis function.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号