共查询到8条相似文献,搜索用时 0 毫秒
1.
《Aquatic Botany》2009,90(4):397-403
Patch dynamics of the Mediterranean slow-growing seagrass Posidonia oceanica was studied in two shallow sites (3–10 m) of the Balearic Archipelago (Spain) through repeated censuses (1–2 year−1). In the sheltered site of Es Port Bay (Cabrera Island), initial patch density (October 2001) was low: 0.05 patches m−2, and the patch size (number of shoots) distribution was bimodal: most of the patches had less than 6 shoots or between 20 and 50 shoots. Mean patch recruitment in Es Port Bay (0.006 ± 0.002 patches m−2 year−1) exceeded mean patch loss (0.001 ± 0.001 patches m−2 year−1), yielding positive net patch recruitment (0.004 ± 0.003 patches m−2 year−1) and a slightly increased patch density 3 years later (July 2004, 0.06 patches m−2). In the exposed site of S’Estanyol, the initial patch density was higher (1.38 patches m−2, August 2003), and patch size frequency decreased exponentially with size. Patch recruitment (0.26 patches m−2 year−1) and loss (0.24 patches m−2 year−1) were high, yielding a slightly increased patch density in the area 1 year later (October 2004, 1.40 patches m−2). Most recruited patches consisted of rooting vegetative fragments of 1–2 shoots. Seedling recruitment was observed in Summer 2004 at both sites. Episodic, seedling recruitment comprised 30% and 25% of total patch recruitment in Es Port Bay and S’Estanyol, respectively. Patch survival increased with patch size and no direct removal was observed among patches of 5 shoots or more. Most patches grew along the study, shifting patch distribution towards larger sizes. Within the size range studied (1–150 shoots), absolute shoot recruitment (shoots year−1) increased linearly with patch size (R2 = 0.64, p < 4 × 10−5, N = 125), while specific shoot recruitment was constant (about 0.25 ± 0.05 year−1), although its variance was large for small patches. Given the slow growth rate and the high survival of patches with 5 or more shoots, even the low patch recruitment rates reported here could play a significant role in the colonisation process of P. oceanica. 相似文献
2.
Abstract. Scaevola plumieri is an important pioneer on many tropical and subtropical sand dunes, forming a large perennial subterranean plant with only the tips of the branches emerging above accreting sand. In South Africa it is the dominant pioneer on sandy beaches along the east coast, less abundant on the south coast and absent from the southwest and west coasts. Transpiration rates (E) of S. plumieri are predictably related to atmospheric vapour pressure deficit under a wide range of conditions and can therefore be predicted from measurement of ambient temperature and relative humidity. Scaling measurements of E at the leaf level to the canopy level has been demonstrated previously. Using a geographic information system, digital maps of regional climatic variables were used to calculate digital maps of potential transpiration from mean monthly temperature and relative humidity values, effectively scaling canopy level transpiration rates to a regional level. Monthly potential transpiration was subtracted from the monthly median rainfall to produce a map of mean monthly water balance. Seasonal growth was correlated with seasonal water balance. Localities along the coast with water deficits in summer corresponded with the recorded absence of S. plumieri, which grows and reproduces most actively in the summer months. This suggests that reduced water availability during the summer growth period limits the distribution of S. plumieri along the southwest coast, where water deficits develop in summer. Temperature is also important in limiting the distribution of S. plumieri on the southwest coast of South Africa through its effects on the growth and phenology of the plant. 相似文献
3.
M. F. Ryan 《Population Ecology》1974,16(1):127-131
The spatial distribution of the eggs, larvae, pupae and adults of the wheat-bulb fly was investigated by fitting 42 sets of data comprising 1334 samples to the Poisson and negative binomial distributions, and by using the power law (S2=amb). In general, the tests indicated that all stages were aggregated and fitted the negative binomial model. 相似文献
4.
This study examined the interplay of spatial and environmental effects shaping the range margin of the red‐backed shrike (Lanius collurio) in northern Portugal. The occurrence of shrikes in 10 × 10 km UTM squares was related to three sets of explanatory variables, reflecting environmental effects (climate and habitat), large‐scale spatial trends, and neighbourhood influences (considering an autologistic term); spatial variables were used as surrogates for historical and demographic factors. Multiple logistic regression models were built for each set, and then variation partitioning based on partial regressions isolated the unique and shared components of explained variation. The environmental model revealed a dominant influence of climate effects, with the occurrence of shrikes increasing with frost and thermal amplitude, declining with insolation, and responding unimodally to rainfall. There was a weaker influence of habitat conditions, though shrikes were more likely with increasing cover by annual crops and pastures, and decreasing forest cover. Only a relatively small proportion of explained variation was due to a ‘pure’ environmental component (10.4%), as most variation explained by environmental factors appeared spatially structured (51.9%). The unique contributions of spatial variables to the overall model were also small, though the neighbourhood effects appeared relatively stronger than large‐scale trends. Taken together, results suggested that the south‐western range margin of the red‐backed shrike was largely determined by spatially structured environmental factors. Nevertheless, there were also ‘pure’ environmental factors determining some isolate occurrences irrespective of any spatial structure, and ‘pure’ spatial factors that appeared to favour the occupation of squares surrounding the core distribution areas irrespective of environmental conditions. These results add to the growing evidence that both environmental and spatial factors need to be considered in predictive modelling of species range margins. 相似文献
5.
Effect of sediment type on microphytobenthos vertical distribution: Modelling the productive biomass and improving ground truth measurements 总被引:1,自引:0,他引:1
B. Jesus C.R. Mendes D.M. Paterson 《Journal of experimental marine biology and ecology》2006,332(1):60-74
Intertidal flats are frequently colonised by microphytobenthos (MPB) assemblages that form transient biofilms at the sediment surface which are responsible for large fractions of estuarine primary production. The large spatio-temporal variability in MPB biomass distribution in concert with the fact that tidal flats can cover many km2 makes the use of remote sensing particularly useful in assessing MPB distribution. Water content, sediment type and MPB vertical migration are variables that affect the relationship between ground truth measurements and remote sensing of benthic chlorophyll. The effect of chlorophyll depth distribution (top 2 mm) on the relationship between benthic chlorophyll and several remote sensing indices (NDVI, PI, R562/R647, derivative indices and PAM fluorescence) was investigated over a 2 year sampling period at 6 sites (Tagus estuary, Portugal). Additionally, the effect of the dark adaptation time required to measure the minimum fluorescence parameter (F0) was also tested. Sediment type strongly affected MPB depth distribution with muddy sites showing a strong negative exponential decay in chlorophyll with distance from the surface while sandy sites had a homogenous distribution over the same scale (2 mm). Chlorophyll content (mass per unit mass, μg g− 1) in the top 2 mm was better correlated with remote sensing indices than concentration (mass per unit volume, mg m− 3), both for NDVI (0.72 vs. 0.45) and for PAM fluorescence (0.70 vs. 0.55). Separating the data by transect increased the correlation values in all situations. A fitted model of chlorophyll depth distribution showed that the effect of asymmetrical chlorophyll depth distribution was stronger on the correlations between chlorophyll concentration and NDVI than on chlorophyll content and NDVI (0.46-2 mm vs. 0.74-125 μm, muddy site) the same was valid for fluorescence (0.66-2 mm vs. 0.92-125 μm, muddy site). Dark adapting the samples for more than 5 min did not result in any significant difference in the relationship between F0 and chlorophyll a. The residuals from the regression of chlorophyll content on NDVI were positively correlated (0.7) with the mass per unit of mass of sediment < 63 μm and negatively (− 0.6) with chlorophyll concentration, this indicates that if no correction is performed to account for chlorophyll depth distribution both units will be strongly affected by the mass of < 63 μm particles. The results demonstrate that although expressing chlorophyll a as concentration is generally a better option for ground truth measurements care should be taken to account for chlorophyll depth distribution since strong asymmetries within the sampling depth can introduce large errors. 相似文献
6.
A persistent patch of high biomass water, associated with the Juan de Fuca Eddy, is often observed in surface chlorophyll a images off the southwest coast of Vancouver Island, Canada. Outbreaks of toxic Pseudo-nitzschia spp. along the Washington, USA, coast are believed to correlate with the transport of waters from Juan de Fuca Eddy southward to Washington beaches. A time series of Sea-viewing Wide Field-of-view Sensor (SeaWiFS) satellite ocean color images from late May 1999 of coastal waters off Washington and Vancouver Island, processed for surface chlorophyll a concentration and spectral remote sensing reflectance, captured a transport event where water from the Juan de Fuca Eddy was transported onto the Washington shelf. Strong upwelling-favorable winds appeared to deform the patch over an 8-day period and move it southward into Washington coastal waters with surface velocities of approximately 8–16 km d−1. SeaWiFS and sea surface temperature imagery showed the local phytoplankton response to wind-driven coastal upwelling restricted to a narrow (10–15 km) region along the Washington coast. Although we did not observe transport of high biomass water originating in the Juan de Fuca Eddy to Washington beaches in May 1999, transport of Pseudo-nitzschia cells could occur following a rapid shift to downwelling-favorable conditions. Tracking the trajectory of surface waters from the Juan de Fuca Eddy by remote sensing could be used to trigger conditional sampling for domoic acid along the Washington coast. 相似文献
7.
8.
Jose A. Fernandes William W. L. Cheung Simon Jennings Momme Butenschön Lee de Mora Thomas L. Frölicher Manuel Barange Alastair Grant 《Global Change Biology》2013,19(8):2596-2607
Climate change has already altered the distribution of marine fishes. Future predictions of fish distributions and catches based on bioclimate envelope models are available, but to date they have not considered interspecific interactions. We address this by combining the species‐based Dynamic Bioclimate Envelope Model (DBEM) with a size‐based trophic model. The new approach provides spatially and temporally resolved predictions of changes in species' size, abundance and catch potential that account for the effects of ecological interactions. Predicted latitudinal shifts are, on average, reduced by 20% when species interactions are incorporated, compared to DBEM predictions, with pelagic species showing the greatest reductions. Goodness‐of‐fit of biomass data from fish stock assessments in the North Atlantic between 1991 and 2003 is improved slightly by including species interactions. The differences between predictions from the two models may be relatively modest because, at the North Atlantic basin scale, (i) predators and competitors may respond to climate change together; (ii) existing parameterization of the DBEM might implicitly incorporate trophic interactions; and/or (iii) trophic interactions might not be the main driver of responses to climate. Future analyses using ecologically explicit models and data will improve understanding of the effects of inter‐specific interactions on responses to climate change, and better inform managers about plausible ecological and fishery consequences of a changing environment. 相似文献