首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The non-linear, unexpected and severe responses of ecosystems to the environmental changes crossing ecological thresholds or environmental limits, necessitate the regular monitoring of the human-induced pressures to the urban ecosystems. The present study aims to introduce a spatial decision support system for sustainable environmental planning and management of urban ecosystems by establishing an Urban Carrying Capacity Load Number model (UCCLN) based on carrying capacity concepts and sustainability principles .This model, by applying 30 temporal and spatial indicators continuously monitors the environmental loads on the urban ecosystems. Environmental load was represented by load number index. It was calculated in each zone of study area (urban districts). Geographical Information System (GIS) was used to establish UCCLN model and Spatial Decision Support System (SDSS). The study area was Tehran metropolis, the capital of Iran. The results showed that none of the 115 urban districts of Tehran had optimal Total Load Number (TLN) ranging from (10 to100); 7 districts (6%) had low-to-medium range of TLN (TLN = 100–200); 11 districts (9.5%) had medium-to-high range (TLN = 200–300); 57 districts (49.5%) had high-to-very high range (TLN = 300–400); 40 districts (34.7%) had the TLN range of very high-to-critical (TLN = 400–500); and none of them had the TLN of 500. Furthermore, the results revealed that Tehran has already overshot its ecological thresholds. Not only most of the 30 indicators of environmental pressure in most of the districts (85%) had high DCC and LN scores, but also most of the 115 districts obtained high DCC, and as a result LN scores. The need for developing more efficient urban planning and management strategies to cope with the increasing environmental loads in the study area is inevitable.  相似文献   

2.
The study of environmental conditions is one of the most important measures in the field of reforestation. The present study was undertaken to assess the environmental status of the mangrove forest of Alibaug, Maharashtra, India with respect to different sixteen physicochemical parameters of water using Geographical information system (GIS) for rehabilitation, conservation and development of the destructed area of the mangrove forest. The Base map of study area was prepared using topographic map and the remote sensing data of Landsat 7 ETM + for spatial analysis. The distributions of water pollutants were assigned using a GIS approach of Inverse Distance Weighted (IDW). The results showed that the amounts of EC, COD, hardness, O&G, Cl?, Na+, Ca2 +, Mg2 +, NO3? and PO43? are higher than the normal ranges in mangrove forest due to natural processes and human activity, industrial and domestic wastewater disposal, oil spillage and agricultural runoff which all eventually affect the water quality of mangrove forest of Alibaug. To identify the areas within the normal ranges of 16 studied parameter, suitability map of water was prepared through an integration of 16 suitability maps of the studied parameters. The suitability map of water classified the water to six classes of suitability in order of moderate > moderate to high > low to moderate > high > low suitable. The areas with classes of 1 and 2 were suitable for the protective measures. Classes 3 and 4 were suitable for replantation and restoration of native mangrove species as well as local communities' cooperation in the participatory protection measures. The areas of classes 5 and 0 need to be designed an urgent management and mitigation plan to reduce impact of human activities. The result of the study also proves the use of GIS as a powerful tool in addressing assessment and monitoring programs of the water quality in the mangrove ecosystems.  相似文献   

3.
Based on the two-level Logarithmic Mean Divisia Index (LMDI) method and Tapio index, this paper constructed an expanded decomposition model for decoupling elasticity and effort index of industrial carbon emissions, and further quantitatively analyzed the delinking indicators on industry growth and environmental pressures in Beijing–Tianjin–Hebei (BTH) economic band from 1996 to 2010. The results indicate that: (1) together with the rapid economic growth, industrial energy-related carbon emissions in BTH region rose from 44477.43 × 104 t in 1996 to 105602.33 × 104 t in 2006 and then declined to 64426.71 × 104 t in 2010, with an average annual growth rate of 2.94%. Our results also show that carbon emissions in BTH region were dominated by the secondary industry, which accounted for about 80% of total carbon emissions. (2) “Weak decoupling” was the main characteristic during the 9th Five-Year Plan period (1996–2000) and 11th Five-Year Plan period (2006–2010), particularly “strong decoupling” in 2007; while “weak coupling” was the main characteristic during the 10th Five-Year Plan period (2001–2005). (3) The rapid economic growth was the main factor responsible for industrial decoupling blocking. The energy structure and energy intensity made significant contributions to the industrial decoupling progress. The industrial structure effect had varied considerably over the years without showing a clear trend.  相似文献   

4.
Chlor-alkali plants are known to be major sources of Hg emissions into the air. Therefore level of this metal in their surrounding must be carefully controlled. The aim of this work was to study the impact of the chlor-alkali industry in Brzeg Dolny (SW Poland) on the length of the vegetative short shoots of the pollution tolerant Betula pendula using the concentrations of Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb and Zn in the ubiquitous, terrestrial moss Brachythecium rutabulum as the pollution indicator of the environment. This investigation showed up to 14 mg kg−1 elevated concentrations of Hg in mosses from sites the most close (0–500 m) to the chlor-alkali factory. This concentration decreased with increasing distance from the factory. Two and half km away from the factory the Hg concentration falls to values of 0.1–0.2 mg kg−1 being still higher than background concentrations of 0.03–0.04 mg kg−1. Decreasing concentrations of Co, Cr, Fe and Ni were also correlated with increasing distance from the plant. The results indicate that B. rutabulum may be a suitable ecological indicator of metal pollution by chlor-alkali industry. Higher concentration of accumulated metals by this moss corresponds with longer vegetative short shoots of B. pendula. Vegetative short shoots may be used as bioindicators of metal pollution where mosses are absent. This study demonstrates the importance of controlling the emissions of chlor-alkali industry especially if situated in the midst of densely populated areas with potential risks to the inhabitants.  相似文献   

5.
The aim of this research is to investigate changes in the annual radial increment of Scots pine (Pinus sylvestris L.) in the vicinity of intensive (3–10 km) and moderate (11–20 km) industrial pollution during different growth periods (growth promotion, inhibition, and recovery). Low level of emission was beneficial for tree growth during the growth promotion period, and the annual radial increment in the zones of intensive and moderate pollution increased by approximately 15–25% and 10%, respectively. Severe loss was reported to forests during the growth inhibition period when nitrogen and sulphur dioxide emissions were 37–40 thousand (thou.) tons per year. About 40–45% tree radial increment loss was observed in the stands closest to the pollution source, and 15–20% loss was observed for the most distant stands. The stabilization of radial growth decrease and the beginning of recovery of damaged stands began in 1988–1992, when the annual amount of industrial emissions and environmental pollution were considerably reduced. The stabilization of radial growth and the initiation of recovery after pollution reduction were high for the most damaged stands. Their radial increment was stable and close to that of the control stands in 2000–2011. Stands with less damage growing further from the pollution source were recovered earlier, and their radial increment stabilized near the control increment in 1995–1999. The results of linear regression analysis demonstrated that the impact of pollution is different for stands growing at different distances from the plant, and the impact decreases with distance (R2 = 0.78 and R2 = 0.75, respectively; p < 0.05).  相似文献   

6.
Mercury fluxes between soil and atmosphere have often been determined by using dynamic flux chambers and micrometeorological methods to assess ecological risks. However, both systems are complex, stationary, and expensive impeding measurements of Hg emissions at various field sites.The mobile, easy to handle, and cost-effective field method to determine total gaseous mercury (TGM), according to [Böhme, F., Rinklebe, J., Stärk, H.-J., Wennrich, R., Mothes, S., Neue, H.-U., 2005. A simple field method to determine mercury volatilisation from soils. Environ. Sci. Pollut. Res. (ESPR), 12: 133–135] creates a drop in air pressure that enhance the Hg emission. We optimized the sampling set-up using an air circulation system resulting in a continuous air flow over the soil surface. Thus, a drop in air pressure can be avoided and the detected TGM emissions are closer to reality. Additional benefits are an in-ground cylinder which inhibits lateral flow of gaseous mercury and the reduced size of the glass socket facilitating handling.To test the suitability of the optimized method, TGM emissions have been quantified on a set of Hg-contaminated riverine soils. Compared with non-polluted soils, mean Hg fluxes were strongly increased (between 138 and 711 ng m?2 h?1) and showed high spatial heterogeneity. Due to impacts of multiple environmental conditions that affect TGM emissions, no significant correlations have been found between Hg stocks in bulk soils and Hg fluxes.  相似文献   

7.
In this paper two methods for energy analysis and environmental accounting (Gross Energy Requirement and Emergy Synthesis) are critically discussed in order to explore their ability to provide a comprehensive evaluation of the performance and environmental sustainability of human-dominated production processes. In order to allow a quantitative comparison, two cropping systems, namely 1 ha of corn production in Italy, and 1 ha of willow production in Sweden, are investigated by means of the parallel application of both methods. The case studies are carried out by performing a quantitative inventory of both natural and economic input flows to the investigated cropping systems. Such input flows are then converted into embodied energy (MJ) as well as emergy (seJ) units. Finally, performance indicators representative for each method are calculated. Results provided by the two methods and their respective theoretical features are compared and discussed in order to point out limits and potentialities of both approaches. The study shows that the two methods account for different – although complementary – categories of input flows, use different conversion factors, and answer to different questions and concerns. Gross Energy Requirement focuses on fossil fuel use and is capable to support the development of more efficient use of commercial energy. Emergy Synthesis uses broader spatial and time frames and accounts for both natural and economic resources. In so doing, it takes into consideration different forms of energy, materials, human labor and economic services on a common basis, offering larger potentiality to explore the sustainable interplay of environment and economy.  相似文献   

8.
Environmental monitoring indicates that progress towards the goal of environmental sustainability in many cases is slow, non-existing or negative. Indicators that use environmental carrying capacity references to evaluate whether anthropogenic systems are, or will potentially be, environmentally sustainable are therefore increasingly important. Such absolute indicators exist, but suffer from shortcomings such as incomplete coverage of environmental issues, varying data quality and varying or insufficient spatial resolution. The purpose of this article is to demonstrate that life cycle assessment (LCA) can potentially reduce or eliminate these shortcomings.We developed a generic mathematical framework for the use of carrying capacity as environmental sustainability reference in spatially resolved life cycle impact assessment models and applied this framework to the LCA impact category terrestrial acidification. In this application carrying capacity was expressed as acid deposition (eq. mol H+ ha−1 year−1) and derived from two complementary pH related thresholds. A geochemical steady-state model was used to calculate a carrying capacity corresponding to these thresholds for 99,515 spatial units worldwide. Carrying capacities were coupled with deposition factors from a global deposition model to calculate characterisation factors (CF), which expresses space integrated occupation of carrying capacity (ha year) per kg emission. Principles for calculating the entitlement to carrying capacity of anthropogenic systems were then outlined, and the logic of considering a studied system environmentally sustainable if its indicator score (carrying capacity occupation) does not exceed its carrying capacity entitlement was demonstrated. The developed CFs and entitlement calculation principles were applied to a case study evaluating emission scenarios for personal residential electricity consumption supplied by production from 45 US coal fired electricity plant.Median values of derived CFs are 0.16–0.19 ha year kg−1 for common acidifying compounds. CFs are generally highest in Northern Europe, Canada and Alaska due to the low carrying capacity of soils in these regions. Differences in indicator scores of the case study emission scenarios are to a larger extent driven by variations in pollution intensities of electricity plants than by spatial variations in CFs. None of the 45 emission scenarios could be considered environmentally sustainable when using the relative contribution to GDP or the grandfathering (proportionality to past emissions) valuation principles to calculating carrying capacity entitlements. It is argued that CFs containing carrying capacity references are complementary to existing CFs in supporting decisions aimed at simultaneously reducing environmental impacts efficiently and maintaining or achieving environmental sustainability.We have demonstrated that LCA indicators can be modified from being relative to being absolute indicators of environmental sustainability. Further research should focus on quantifying uncertainties related to choices in indicator design and on reducing uncertainties effectively.  相似文献   

9.
Tar Creek is an Environmental Protection Agency (EPA) designated superfund site in Ottawa County, Oklahoma that is heavily polluted with acid mine drainage (AMD) and pollutant deposits in the form of mine tailings (chat piles). Among several residual heavy metal contaminants, zinc and lead are most prevalent in these chat piles. Approximately 50 million cubic yards or 75 million tons of chat remained in Ottawa County as a result of excessive mining in early 1900's to 1960's. This chat is in addition to the pollution that is leached from open mine shafts that drain contaminants into the groundwater, some of which flows directly into streams and creeks. This paper discusses a methodology for incorporating satellite data (MODIS NDVI) within a GIS framework to perform time series analysis in areas near Tar Creek. GIS functions in Map Algebra and Zonal Statistics were implemented to study changes in spectral reflectance due to vegetation at two locations. One of the locations is a sample plot where remedial action consisted of cleaning up of the chat pile and growing native grass. The second location is along Tar Creek and Elm Creek. The paper describes one of the methods that can be used to combine remotely sensed imagery data and spatial feature data within the GIS framework. The main advantages of combining the two datasets using the described process is that, powerful geoprocessing functions within GIS can be easily applied to remote sensing data and the analysis of vector and raster data can be performed in unison.  相似文献   

10.
Meat production puts larger demands on water and land and results in larger greenhouse gas emissions than alternative forms of food. This study uses footprint indicators, the water, land and carbon footprint, to assess natural resources use and greenhouse gas emissions for sheep and chicken meat produced in Tunisia in different farming systems in the period 1996–2005. Tunisia is a water-scarce country with large areas of pasture for sheep production. Poultry production is relatively large and based on imported feed. The farming systems considered are: the industrial system for chicken, and the agro-pastoral system using cereal crop-residues, the agro-pastoral system using barley and the pastoral system using barley for sheep. Chicken meat has a smaller water footprint (6030 litre/kg), land footprint (9 m2/kg) and carbon footprint (3 CO2-eq/kg) than sheep meat (with an average water footprint of 18900 litre/kg, land footprint of 57 m2/kg, and carbon footprint of 28 CO2-eq/kg). For sheep meat, the agro-pastoral system using cereal crop-residues is the production system with smallest water and land footprints, but the highest carbon footprint. The pastoral system using barley has larger water and land footprints than the agro-pastoral system using barley, but comparable carbon footprint.  相似文献   

11.
The life-cycle greenhouse gaseous emissions and primary exergy resources consumption associated with a horizontal subsurface flow constructed wetland (HSSF) were investigated. The subject of study was a wetland for municipal wastewater treatment with a 700-person-equivalent capacity. The effects of two types of emergent aquatic macrophytes (Phragmites australis and Schoenoplectus californicus) and seasonality on greenhouse gas (GHG) gas emissions, the environmental remediation cost (ERC) and the specific environmental remediation cost (SERC) were assessed. The results indicate that GHG emissions per capita (12–22 kgCO2eq/p.e/yr) and primary exergy resources consumed (24–27 MJ/m3) for the HSSF are lower than those of a conventional wastewater treatment plant (67.9 kgCO2eq/p.e/yr and 96 MJ/m3). The SERC varied between 176 and 216 MJ/kg biological oxygen demand (BOD5) removal, which should be further reduced by 20% for an improved BOD5 removal efficiency above 90%. The low organic matter removal efficiency is associated with a high organic load and low bacterial development. Seasonality has a marked effect on the organic removal efficiency and the SERC, but the macrophyte species does not.  相似文献   

12.
Water scarcity is a serious global problem, and accurate estimations are urgently needed. The Water stress index (WSI) is one of the most commonly used methods for global or large scale water scarcity evaluation, but this method lacks of consideration of water demand and water supply positions non-overlapped spatial distribution, tends to overestimate water stress when applied to a moderate resolution grid (e.g., 1 km). In this study, we used a non-overlapping water supply-and-demand unit approach to improve the calculation scheme and constructed a spatial unit non-overlapping WSI model (Sun-WSI model). We then applied the new model to the Yarlung Tsangpo-Brahmaputra River (TBR) and estimated monthly water stress from 2006 to 2012 with a 1 km spatial resolution. The results showed that the determination coefficient (R2) between the normalized Drought Index (DI) and water stress was mainly in the range of 0.2–0.7, accounting for 77.4% of the study area. The spatial pattern of water stress estimated by the Sun-WSI model was consistent with the DI. Further analysis showed that both overall and grid water stress estimated by the Sun-WSI model were close to the results from existing studies; however the Sun-WSI model had a higher spatial resolution. With a 1 km resolution, the Sun-WSI model performed better than the conventional WSI with respect to both overall results and spatial details. This suggests that the Sun-WSI model is suitable for evaluating regional or moderate-resolution grid water scarcity.  相似文献   

13.
Complex changes in carbon sources and sinks caused by rapid urbanization have been observed with extensive changes in the quantity, structure, and spatial pattern of land use types. Based on the modified Carnegie-Ames-Stanford Approach model and on gray relational analysis, we analyzed the influence of land use changes on carbon sinks and emissions in Guangzhou from 2000 to 2012. The aim was to identify suitable options for built-up land expansion that would allow for minimal carbon losses. The key results were as follows: (1) Built-up land increased by 118.91% in Guangzhou city over the study period, with this expansion taking the form of concentric circles extending around the old Yuexiu district. (2) Carbon emissions over the period of analysis significantly exceeded carbon sink capabilities. The total carbon sink decreased by 30.02%, from 535.40 × 103 t to 374.6 × 103 t. Total carbon emissions increased by 1.89 times, from 13.73 × 106 t to 39.67 × 106 t; 80% of carbon emissions were derived from energy consumption. (3) There were large differences in the extent of carbon sink losses at different scales of built-up land expansion and land use change. In Guangzhou, the loss of carbon sink is small when cultivated land (though not prime farmland) and water bodies are converted to built-up land on a small scale. The loss of carbon sink is much smaller when grasslands are converted to built-up land on a large scale. However, forested land, which has excellent carbon sink functions, should not be converted. (4) Changes in carbon sinks were mainly affected by natural factors and land urbanization. Changes in carbon emissions were mainly affected by population urbanization, economic urbanization, and land urbanization. (5) To achieve “economical and intensive use of land”, “urban growth boundary” and “ecological red lines” should be determined for government policies on land use management. These factors have great significance for “increasing carbon sinks and reducing carbon emissions” in urban ecological systems.  相似文献   

14.
In order to assess the level of ecological stress caused by the pollution from local disturbances in a stretch of the Garonne River, France, we applied the Abundance-Biomass Comparison (ABC) index, using fish assemblages. Data were collected in a 10-year span (1992–2002) in a reference site and in two pollution-exposed sites. The ABC index mean value in the reference site (S1) was 0.03 ± 0.002 (95% Confidence Interval – CI); for the polluted sites (S2 and S3), the values were −0.09 ± 0.002 (95% CI) and −0.12 ± 0.002 (95% CI), respectively. The ABC index showed that, besides flow variations, both downstream sites are statistically different (p < 0.05) from the reference site, but all three seem to be under moderate stress. Furthermore, we related our ABC scores to water quality and flow regime variables in the reference site and one of the polluted sites by means of a cluster analysis. The results showed that, in the reference site, the ABC scores are closely related to the flow regime, while in the polluted site, downstream a urban area, ABC is related to water quality variables such as phosphates and total phosphorous. We argue that ecological indicators can help decisions on environmental damage liability.  相似文献   

15.
Objective: Area–age–period–cohort (AAPC) model has been widely used in studying the spatial and temporal pattern of disease incidence and mortality rates. However, lack of biological plausibility and ease of interpretability on temporal components especially for age effects are generally the weakness of AAPC models. We develop a Bayesian AAPC model where carcinogenesis age effect is incorporated to explain age effects from the underlying disease process. An autoregressive prior structure and an arbitrary linear constraint are used to solve the nonidentifiability issues. Methods: Two multistage carcinogenesis models are employed to derive the hazard functions to substitute the age effects in the AAPC models. The Iowa county-wide lung cancer mortality data are used for the model fitting and Deviance Information Criteria (DIC) is used for model comparison. Results: Our study shows that conventional AAPC model (DIC = 19,231.30), AAPC model with Armitage–Doll age effect (DIC = 19,233.00) and with two-stage clonal expansion (TSCE) age effect (DIC = 19,234.70) achieved the similar DIC values which indicated consistent model fitting among three models. The spatial pattern shows that the high spatial effects are clustered in the south of Iowa and also in largely populated areas. The lung cancer mortality rate is continuously declining by birth cohorts while increasing by the calendar period until 2000–2004. The age effects show an increasing pattern over time which can be easily explained by Armitage–Doll carcinogenesis model since we assume a log-linear relationship between age and hazard function. Conclusions: Our finding suggests that the proposed Bayesian AAPC model can be used to replace the conventional AAPC model without affecting model performance while providing a more biological sound approach from the underlining disease process.  相似文献   

16.
Water and energy are closely connected and both are very important for human development. Wastewater treatment plants (WWTPs) are central to water–energy interactions as they consume energy to remove pollutants and thus reduce the human gray water footprint on the natural water environment. In this work, we quantified energy consumption in 9 different WWTPs in south China, with different treatment processes, objects, and capacities. The energy intensity in most of these WWTPs is in the range of 0.4–0.5 kWh/m3 in 2014. Footprint methodologies were used in this paper to provide insight into the environmental changes that result from WWTPs. A new indicator “gray water footprint reduction” is proposed based on the notion of gray water footprint to better assess the role of WWTPs in reducing human impacts on water resources. We find that higher capacity and appropriate technology of the WWTPs will result in higher gray water footprint reduction. On average, 6.78 m3 gray water footprint is reduced when 1 m3 domestic sewage is treated in WWTPs in China. 13.38 L freshwater are required to produce the 0.4 kWh electrical input needed for treating 1 m3 domestic wastewater, and 0.23 kg CO2 is emitted during this process. The wastewater characteristics, treatment technologies as well as management systems have a major impact on the efficiency of energy utilization in reducing gray water footprint via these WWTPs. The additional climate impact associated with wastewater treatment should be considered in China due to the enormous annual wastewater discharge. Policy suggestions are provided based on results in this work and the features of China's energy and water distribution.  相似文献   

17.
This study has used remotely sensed data of Landsat-8 for monitoring open dumps of Municipal Solid Waste (MSW) using vegetation health as a bio-indicator and thermal emissions from it. Open dump of Mahmood Booti has been found to affect the surrounding vegetation up to 800 m in dry summers and reducing to 400 m in winters, while averaging to a distance of about 650 m. Average thermal influence zone has been observed to have same radial extent of about 650 m varying between the minimum of 350 m in dry summer and maximum of 1000 m in winter. All the corresponding details of bio-indicators and temperature variations have also been discussed. In addition to this, the results and methodology of spatial analysis for Mahmood Booti dump of Lahore, Pakistan, surrounded by a heterogeneous land cover, have been compared with the main dumping facility of Faisalabad, Pakistan, which is surrounded by a homogeneous vegetation cover all around. This comparison yielded two main conclusions, first, the surrounding geography of an open MSW dump affects the severity of bio-thermal effects, in addition to waste age, characterization, pile etc. Second, GIS analysis for studying bio-thermal effects requires modification that varies for prevailing neighborhood land cover conditions of MSW open dumps. Use of remotely sensed data for monitoring dumped MSW is a good alternative but selection of proper GIS methodology, representing natural setting of phenomena is equally important as that of the accuracy of the remotely sensed data.  相似文献   

18.
Many cities in Chinese Loess Plateau have inadequate sanitation. Ecological sanitation (ecosan) is a systemic approach to solve environmental and sanitary problems. Thus, suitable ecosan technologies and systems were analyzed, and three alternative developing models of sanitation were compared, namely, centralized traditional (CT) model, centralized ecosan (CE) model, and centralized and decentralized mixed ecosan (ME) model. Their ecological-economic assessment was made in the theoretical framework of social–economic–natural complex ecological system. Main results were (1) CE and ME reduced the emission of greenhouse gases, and the maximum reduction was 96.8% of CT. (2) ME reduced the water pollutants at a comparatively lower capital and running cost, and BOD5 emission could be reduced to 85–88% of CT. (3) CE and ME reclaimed more nutrients than CT. Attributing to reclaiming nutrients, CE and ME could produce 461.4 and 809.9 Gg foods, respectively, and CT was 32.1 Gg. (4) The sequence of health risk caused by sanitation was CT > CE > ME. (5) Urban ecosan system could bring forward a maximum net benefit of 0.267 billion RMB. In addition, the bottlenecks of developing ecosan in China were also discussed in this paper.  相似文献   

19.
Rapid and periodic assessment of the impact of land cover change and climate variability on ecosystem services at regional levels is essential to understanding services and sustainability of ecosystems. This study focused on quantifying and assessing the changes in multiple ecosystem services in the Three-River Headwaters Region (TRHR), China in 2000–2012. Based on the widely used biophysical models including Integrated Valuation of Ecosystem Services and Trade-Offs (InVEST), Revised Wind Erosion Equation (RWSQ), and Carnegie-Ames-Stanford Approach (CASA) models, this study assessed the historical flow of regulating services, including soil conservation, water yield, and carbon sequestration, and provisioning service food provision. The soil conservation function of ecosystem was slightly enhanced as a whole, and water yield increased sharply, with both the soil conservation and water yield showing an increasing spatial homogenization. The net primary productivity (NPP) and food production increased substantially from 2000 to 2012. Ecosystem services are closely and complexly interlinked. The correlation analyses indicated a trade-off between the water yield and carbon sequestration, however, a synergy between soil conservation and carbon sequestration. Congruence between the three different ecosystem provisioning services, including pasture, meat, and grain, was found. There was also a synergy between food production and ecosystem carbon sequestration in the TRHR. Climatic variability and vegetation restoration are important for the ecosystem services flow. Correlation analyses showed that the increase in precipitation significantly enhanced the water yield (P < 0.01) and soil erosion (P < 0.01), while the temperature increase influenced positively the NPP (P < 0.1). The experience of ecological rehabilitation and the change in key ecosystem services in the TRHR exemplified the positive effects of environmental policies and the necessity of adopting an adaptive management approach. Thus the ecological construction and policy making should take climate variability into account, and facilitate synergies on multiple ecosystem services in order to maximize human well-being and preserve its natural ecosystems.  相似文献   

20.
The disruption of the natural post-disturbance recovery process, either by changes in disturbance regime or by another disturbance, can trigger transitions to alternative degraded states. In a scenario of high disturbance pressure on ecological systems, it is essential to detect recovery indicators to define the period when the system needs more protection as well as the period when the system supports certain use pressure without affecting its resilience. Recovery indicators can be identified by non-linear changes in structural and functional variables. Fire largely modulates the dynamic and stability of plant communities worldwide, and is this the case in northwestern (NW) Patagonia. The ultimate goal of this study is to propose a structural–functional approach based on a reference system (i.e. chronosequence) as a tool to detect post-disturbance recovery indicators in forests from NW Patagonia. In NW Patagonia (40–42°S), we sampled 25 Austrocedrus chilensis and Nothofagus spp. communities differing in post-fire age (0.3–180 years). In each community we recorded structural (woody species cover and height, solar radiation, air temperature, relative humidity) and functional (annual recruitment of woody and tree species) attributes. We modeled these attributes in function of post-fire age and analized the relationship between a functional attribute and a Structural Recovery Index (SRI). Communities varying in time-since-last-fire were structurally and functionally different. Moreover, response variables showed non-linear changes along the chronosequence, allowing the selection of recovery indicators. We suggest to use vegetation variables instead of environmental variables as structural recovery indicators. Horizontal and Vertical Vegetation Heterogeneity indices provided the information necessary to describe vegetation spatial reorganization after fire. Tree species annual recruitment was a good indicator of the functional recovery of forest communities. The relationship between a functional attribute and SRI allowed us to detect phases with high- and low-risk of degradation during post-fire succession. High-risk phases (<36 years old) had the highest horizontal vegetation heterogeneity and scarce tree seedling density (<7000 seedlings ha−1 year−1). Whereas, low-risk phases (>36 years old) had the highest vertical vegetation heterogeneity and tree species seedling density (>10,000 seedlings ha−1 year−1). Due to the low structural–functional levels, communities at high-risk phases would be more vulnerable to antropic pressure (e.g. livestock raising, logging) than communities at low-risk phases. The proposed approach contributes to the sustainable management of forest communities because it allows to estimate the minimum structural–functional levels from which forest communities could be harvested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号