首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Treatment of triple‐negative breast cancer (TNBC) remains challenging due to a lack of effective targeted therapies. Dysregulated glucose uptake and metabolism are essential for TNBC growth. Identifying the molecular drivers and mechanisms underlying the metabolic vulnerability of TNBC is key to exploiting dysregulated cancer metabolism for therapeutic applications. Mitogen‐inducible gene‐6 (MIG‐6) has long been thought of as a feedback inhibitor that targets activated EGFR and suppresses the growth of tumors driven by constitutive activated mutant EGFR. Here, our bioinformatics and histological analyses uncover that MIG‐6 is upregulated in TNBC and that MIG‐6 upregulation is positively correlated with poorer clinical outcomes in TNBC. Metabolic arrays and functional assays reveal that MIG‐6 drives glucose metabolism reprogramming toward glycolysis. Mechanistically, MIG‐6 recruits HAUSP deubiquitinase for stabilizing HIF1α protein expression and the subsequent upregulation of GLUT1 and other HIF1α‐regulated glycolytic genes, substantiating the comprehensive regulation of MIG‐6 in glucose metabolism. Moreover, our mouse studies demonstrate that MIG‐6 regulates GLUT1 expression in tumors and subsequent tumor growth in vivo. Collectively, this work reveals that MIG‐6 is a novel prognosis biomarker, metabolism regulator, and molecular driver of TNBC.  相似文献   

2.
3.
Multiple-omics sequencing information with high-throughput has laid a solid foundation to identify genes associated with cancer prognostic process. Multiomics information study is capable of revealing the cancer occurring and developing system according to several aspects. Currently, the prognosis of osteosarcoma is still poor, so a genetic marker is needed for predicting the clinically related overall survival result. First, Office of Cancer Genomics (OCG Target) provided RNASeq, copy amount variations information, and clinically related follow-up data. Genes associated with prognostic process and genes exhibiting copy amount difference were screened in the training group, and the mentioned genes were integrated for feature selection with least absolute shrinkage and selection operator (Lasso). Eventually, effective biomarkers received the screening process. Lastly, this study built and demonstrated one gene-associated prognosis mode according to the set of the test and gene expression omnibus validation set; 512 prognosis-related genes (P < 0.01), 336 copies of amplified genes (P < 0.05), and 36 copies of deleted genes (P < 0.05) were obtained, and those genes of the mentioned genomic variants display close associations with tumor occurring and developing mechanisms. This study generated 10 genes for candidates through the integration of genomic variant genes as well as prognosis-related genes. Six typical genes (i.e. MYC, CHIC2, CCDC152, LYL1, GPR142, and MMP27) were obtained by Lasso feature selection and stepwise multivariate regression study, many of which are reported to show a relationship to tumor progressing process. The authors conducted Cox regression study for building 6-gene sign, i.e. one single prognosis-related element, in terms of cases carrying osteosarcoma. In addition, the samples were able to be risk stratified in the training group, test set, and externally validating set. The AUC of five-year survival according to the training group and validation set reached over 0.85, with superior predictive performance as opposed to the existing researches. Here, 6-gene sign was built to be new prognosis-related marking elements for assessing osteosarcoma cases’ surviving state.  相似文献   

4.
Reprogrammed metabolism is a hallmark of cancer. Glioblastoma (GBM) tumor cells predominantly utilize aerobic glycolysis for the biogenesis of energy and intermediate nutrients. However, in GBM, the clinical significance of glycolysis and its underlying relations with the molecular features such as IDH1 mutation and subtype have not been elucidated yet. Herein, based on glioma datasets including TCGA (The Cancer Genome Atlas), REMBRANDT (Repository for Molecular Brain Neoplasia Data) and GSE16011, we established a glycolytic gene expression signature score (GGESS) by incorporating ten glycolytic genes. Then we performed survival analyses and investigated the correlations between GGESS and IDH1 mutation as well as the molecular subtypes in GBMs. The results showed that GGESS independently predicted unfavorable prognosis and poor response to chemotherapy of GBM patients. Notably, GGESS was high in GBMs of mesenchymal subtype but low in IDH1-mutant GBMs. Furthermore, we found that the promoter regions of tumor-promoting glycolytic genes were hypermethylated in IDH1-mutant GBMs. Finally, we found that high GGESS also predicted poor prognosis and poor response to chemotherapy when investigating IDH1-wildtype GBM patients only. Collectively, glycolysis represented by GGESS predicts unfavorable clinical outcome of GBM patients and is closely associated with mesenchymal subtype and IDH1 mutation in GBMs.  相似文献   

5.
6.
7.
The PBRM1 (PB1) gene which encodes the specific subunit BAF180 of the PBAF SWI/SNF complex, is highly mutated (~ 40%) in clear cell renal cell carcinoma (ccRCC). However, its functions and impact on cell signalling are still not fully understood. Aerobic glycolysis, also known as the ‘Warburg Effect’, is a hallmark of cancer, whether PB1 is involved in this metabolic shift in clear cell renal cell carcinoma remains unclear. Here, with established stable knockdown PB1 cell lines, we performed functional assays to access the effects on 786‐O and SN12C cells. Based on the RNA‐seq data, we selected some genes encoding key glycolytic enzymes, including PFKP, ENO1, PKM and LDHA, and examined the expression levels. The AKT–mTOR signalling pathway activity and expression of HIF1α were also analysed. Our data demonstrate that PB1 deficiency promotes the proliferation, migration, Xenograft growth of 786‐O and SN12C cells. Notably, knockdown of PB1 activates AKT–mTOR signalling and increases the expression of key glycolytic enzymes at both mRNA and protein levels. Furthermore, we provide evidence that deficient PB1 and hypoxic conditions exert a synergistic effect on HIF 1α expression and lactate production. Thus, our study provides novel insights into the roles of tumour suppressor PB1 and suggests that the AKT–mTOR signalling pathway, as well as glycolysis, is a potential drug target for ccRCC patients with deficient PB1.  相似文献   

8.
9.
10.
Aerobic glycolysis and mitochondrial dysfunction are common features of aggressive cancer growth. We observed promoter methylation and loss of expression in neurofilament heavy polypeptide (NEFH) in a significant proportion of primary esophageal squamous cell carcinoma (ESCC) samples that were of a high tumor grade and advanced stage. RNA interference-mediated knockdown of NEFH accelerated ESCC cell growth in culture and increased tumorigenicity in vivo, whereas forced expression of NEFH significantly inhibited cell growth and colony formation. Loss of NEFH caused up-regulation of pyruvate kinase-M2 type and down-regulation of pyruvate dehydrogenase, via activation of the Akt/β-catenin pathway, resulting in enhanced aerobic glycolysis and mitochondrial dysfunction. The acceleration of glycolysis and mitochondrial dysfunction in NEFH-knockdown cells was suppressed in the absence of β-catenin expression, and was decreased by the treatment of 2-Deoxyglucose, a glycolytic inhibitor, or API-2, an Akt inhibitor. Loss of NEFH activates the Akt/β-catenin pathway and increases glycolysis and mitochondrial dysfunction. Cancer cells with methylated NEFH can be targeted for destruction with specific inhibitors of deregulated downstream pathways.  相似文献   

11.
12.
13.
14.
The kinetic models of metabolic pathways represent a system of biochemical reactions in terms of metabolic fluxes and enzyme kinetics. Therefore, the apparent differences of metabolic fluxes might reflect distinctive kinetic characteristics, as well as sequence-dependent properties of the employed enzymes. This study aims to examine possible linkages between kinetic constants and the amino acid (AA) composition (AAC) for enzymes from the yeast Saccharomyces cerevisiae glycolytic pathway. The values of Michaelis-Menten constant (KM), turnover number (kcat), and specificity constant (ksp = kcat/KM) were taken from BRENDA (15, 17, and 16 values, respectively) and protein sequences of nine enzymes (HXK, GADH, PGK, PGM, ENO, PK, PDC, TIM, and PYC) from UniProtKB. The AAC and sequence properties were computed by ExPASy/ProtParam tool and data processed by conventional methods of multivariate statistics. Multiple linear regressions were found between the log-values of kcat (3 models, 85.74% < Radj.2 <94.11%, p < 0.00001), KM (1 model, Radj.2 = 96.70%, p < 0.00001), ksp (3 models, 96.15% < Radj.2 < 96.50%, p < 0.00001), and the sets of AA frequencies (four to six for each model) selected from enzyme sequences while assessing the potential multicollinearity between variables. It was also found that the selection of independent variables in multiple regression models may reflect certain advantages for definite AA physicochemical and structural propensities, which could affect the properties of sequences. The results support the view on the actual interdependence of catalytic, binding, and structural residues to ensure the efficiency of biocatalysts, since the kinetic constants of the yeast enzymes appear as closely related to the overall AAC of sequences.  相似文献   

15.
As a result of ancestral whole-genome and small-scale duplication events, the genomes of Saccharomyces cerevisiae and many eukaryotes still contain a substantial fraction of duplicated genes. In all investigated organisms, metabolic pathways, and more particularly glycolysis, are specifically enriched for functionally redundant paralogs. In ancestors of the Saccharomyces lineage, the duplication of glycolytic genes is purported to have played an important role leading to S. cerevisiae''s current lifestyle favoring fermentative metabolism even in the presence of oxygen and characterized by a high glycolytic capacity. In modern S. cerevisiae strains, the 12 glycolytic reactions leading to the biochemical conversion from glucose to ethanol are encoded by 27 paralogs. In order to experimentally explore the physiological role of this genetic redundancy, a yeast strain with a minimal set of 14 paralogs was constructed (the “minimal glycolysis” [MG] strain). Remarkably, a combination of a quantitative systems approach and semiquantitative analysis in a wide array of growth environments revealed the absence of a phenotypic response to the cumulative deletion of 13 glycolytic paralogs. This observation indicates that duplication of glycolytic genes is not a prerequisite for achieving the high glycolytic fluxes and fermentative capacities that are characteristic of S. cerevisiae and essential for many of its industrial applications and argues against gene dosage effects as a means of fixing minor glycolytic paralogs in the yeast genome. The MG strain was carefully designed and constructed to provide a robust prototrophic platform for quantitative studies and has been made available to the scientific community.  相似文献   

16.
In this work, the natural piperine moiety was utilised to develop two sets of piperine-based amides (5a–i) and ureas (8a–y) as potential anticancer agents. The anticancer action was assessed against triple negative breast cancer (TNBC) MDA-MB-231, ovarian A2780CP and hepatocellular HepG2 cancer cell lines. In particular, 8q stood out as the most potent anti-proliferative analogue against TNBC MDA-MB-231 cells with IC50 equals 18.7 µM, which is better than that of piperine (IC50 = 47.8 µM) and 5-FU (IC50 = 38.5 µM). Furthermore, 8q was investigated for its possible mechanism of action in MDA-MB-231 cells via Annexin V-FITC apoptosis assay and cell cycle analysis. Moreover, an in-silico analysis has proposed VEGFR-2 as a probable enzymatic target for piperine-based derivatives, and then has explored the binding interactions within VEGFR-2 active site (PDB:4ASD). Finally, an in vitro VEGFR-2 inhibition assay was performed to validate the in silico findings, where 8q showed good VEGFR-2 inhibitory activity with IC50 = 231 nM.  相似文献   

17.
The most important etiologic agent in the pathogenesis of cervical cancers (CCs) is human papillomavirus (HPV), while the mechanisms underlying are still not well known. Glucose-6-phosphate dehydrogenase (G6PD) is reported to elevate in various tumor cells. However, no available references elucidated the correlation between the levels of G6PD and HPV-infected CC until now. In the present study, we explored the possible role of G6PD in the pathology of CC induced by HPV infection. Totally 48 patients with HPV + CC and another 63 healthy women enrolled in the clinical were employed in the present study. Overall, prevalence of cervical infection with high-risk-HPV (HR-HPV) type examined was HPV-16, followed by HPV-18. The expressions of G6PD in CC samples were also detected by immunohistochemistry (IHC), qRT-PCR, and Western blot. Regression analysis showed elevated G6PD level was positively correlated with the CC development in 30–40 aged patients with HR-HPV-16/18 infection. The HPV16 + Siha, HPV18 + Hela, and HPV-C33A cell lines were employed and transfected with G6PD deficient vectors developed in vitro. MTT and flow cytometry were also employed to determine the survival and apoptosis of CC cells after G6PD expressional inhibition. Our data revealed that G6PD down-regulation induced poor proliferation and more apoptosis of HPV18 + Hela cells, when compared with that of HPV16 + Siha and HPV-C33A cells. These findings suggest that G6PD expressions in the HR-HPV + human CC tissues and cell lines play an important role in tumor growth and proliferation.  相似文献   

18.

Purpose

This study aimed to determine the expression and clinical significance of proteins that are involved in lipid metabolism in human breast tumors.

Methods

Tumors from 476 breast cancer patients were used to construct tissue microarrays. Then, immunohistochemistry (IHC) for hormone-sensitive lipase (HSL), Perilipin 1 (PLIN1), fatty acid binding protein 4 (FABP4), carnitine palmitoyltransferase IA (CPT-1A), acyl-CoA oxidase 1 (ACOX-1), and fatty acid synthase (FASN) was performed on these microarrays.

Results

Breast tumors were classified into 4 subtypes: luminal A (n = 242; 50.8%), luminal B (n = 134; 28.2%), human epidermal growth factor receptor 2 (HER2) (n = 50; 10.5%), and triple negative breast cancer (TNBC) (n = 50; 10.5%). The expression of PLIN1 (p < 0.001), FABP4 (p = 0.029), CPT-1A (p = 0.001), ACOX-1 (p < 0.001), and FASN (p < 0.001) differed significantly among these tumor subtypes. Notably, PLIN1, CPT-1A, and FASN expression was highest in HER2 tumors and lowest in TNBC tumors. Similarly, the expression of FABP4 and ACOX-1 was highest in HER2 tumors and lowest in luminal A tumors. In addition, ACOX-1 positivity was associated with significantly shorter overall survival (p = 0.018). When tumor subtype was considered, FABP4 positivity was associated with significantly shorter disease-free survival (p = 0.005) and overall survival (p = 0.041) in TNBC.

Conclusion

Lipid metabolism-related proteins are differentially expressed in different IHC subtypes of breast cancer and some are associated with decreased survival rates.  相似文献   

19.
Dysregulation of miRNAs is a hallmark of cancer, modulating oncogenes, tumor suppressors, and drug responsiveness. The multi-kinase inhibitor sorafenib is one of the first-line drugs for advanced hepatocellular carcinoma (HCC), although the outcome for treated patients is heterogeneous. The identification of predictive biomarkers and targets of sorafenib efficacy are sorely needed. Thus, selected top upregulated miRNAs from the C19MC cluster were analyzed in different hepatoma cell lines compared to immortalized liver human cells, THLE-2 as control. MiR-518d-5p showed the most consistent upregulation among them. Thus, miR-518d-5p was measured in liver tumor/non-tumor samples of two distinct cohorts of HCC patients (n = 16 and n = 20, respectively). Circulating miR-518d-5p was measured in an independent cohort of HCC patients receiving sorafenib treatment (n = 100), where miR-518d-5p was analyzed in relation to treatment duration and patient’s overall survival. In vitro and in vivo studies were performed in human hepatoma BCLC3 and Huh7 cells to analyze the effect of miR-518d-5p inhibition/overexpression during the response to sorafenib. Compared with healthy individuals, miR-518d-5p levels were higher in hepatic and serum samples from HCC patients (n = 16) and in an additional cohort of tumor/non-tumor paired samples (n = 20). MiR-518d-5p, through the inhibition of c-Jun and its mitochondrial target PUMA, desensitized human hepatoma cells and mouse xenograft to sorafenib-induced apoptosis. Finally, serum miR-518d-5p was assessed in 100 patients with HCC of different etiologies and BCLC-stage treated with sorafenib. In BCLC-C patients, higher serum miR-518d-5p at diagnosis was associated with shorter sorafenib treatment duration and survival. Hence, hepatic miR-518d-5p modulates sorafenib resistance in HCC through inhibition of c-Jun/PUMA-induced apoptosis. Circulating miR-518d-5p emerges as a potential lack of response biomarker to sorafenib in BCLC-C HCC patients.Subject terms: Cancer epigenetics, Apoptosis, Biomarkers  相似文献   

20.
We have employed a "level crossing" strategy to study the primary effects of an enzyme polymorphism in Drosophila mercatorum. This strategy consists of following genetic differences across intervening phenotypes to possible fitness effects. In this paper, we report the steady state concentrations of the glycolytic intermediates and the adenylates (intervening phenotypes) in two genotypes (αGPD-F, αGPD-S) at two stress levels (rest, subflight). We did not detect a genotype or a genotype by stress interaction effect on glycolytic intermediate or adenylate concentrations despite the ability of the experimental design to detect a 20 to 50% difference from the mean of a control. The flux of glycolysis is adequate to maintain the energy charge in both strains under the stress levels considered. If there is a fitness difference between these αGPD variants, it is unlikely to be a result of modifications of glycolysis. Subflight stress, however, resulted in an increase in metabolic flux. The observed pattern of intermediate concentration differences is consistent with the modulation of glycolysis by the ratio of the ATP and AMP concentrations acting on phosphofructokinase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号