首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability to accumulate S-adenosylmethionine (SAM) of 572 yeast strains isolated from environmental sources were surveyed. An S-adenosylmethionine enriching strain S42-12, identified asCandida sp., was chose to develop a SAM-accumulating mutant successfully. The final SAM-accumulating mutant strain YQ-5 was isolated by UV radiation or by NTG treatment using ethionine selection and nystatin selection method. The mutant strain YQ-5 accumulated 112.1 mg per gram biomass, was 3.14-fold higher than the original strain S42-12. When cultivated in the optimal medium with a favourable fermentation conditions, SAM content of the mutant strain reached at 1740 mg L?1. Trend of SAM and ergosterol contents and methionine adenosyltransferase activity of SAM-accumulating mutants during fermentation were analysed. The results suggested that one of the reasons why the mutants accumulated SAM in significantly high amounts may be the lower consumption of SAM for ergosterol biosynthesis, other than improvement of methionine adenosyltransferase activity.  相似文献   

2.
ABSTRACT

The radical S-adenosylmethionine (SAM) superfamily currently comprises more than 2800 proteins with the amino acid sequence motif CxxxCxxC unaccompanied by a fourth conserved cysteine. The charcteristic three-cysteine motif nucleates a [4Fe–4S] cluster, which binds SAM as a ligand to the unique Fe not ligated to a cysteine residue. The members participate in more than 40 distinct biochemical transformations, and most members have not been biochemically characterized. A handful of the members of this superfamily have been purified and at least partially characterized. Significant mechanistic and structural information is available for lysine 2,3-aminomutase, pyruvate formate-lyase, coproporphyrinogen III oxidase, and MoaA required for molybdopterin biosynthesis. Biochemical information is available for spore photoproduct lyase, anaerobic ribonucleotide reductase activation subunit, lipoyl synthase, and MiaB involved in methylthiolation of isopentenyladenine-37 in tRNA. The radical SAM enzymes biochemically characterized to date have in common the cleavage of the [4Fe–4S]1 + –SAM complex to [4Fe–4S]2 +–Met and the 5′ -deoxyadenosyl radical, which abstracts a hydrogen atom from the substrate to initiate a radical mechanism.  相似文献   

3.
强化表达SAM合成酶促进SAM在毕赤酵母中累积   总被引:14,自引:0,他引:14  
S 腺苷甲硫氨酸 (S adenosyl L methionine ,SAM)是生物体硫代谢的重要中间代谢物质 ,在体内起着转甲基、转硫基、转氨丙基的作用 ,具有重要的药用和保健价值。将酿酒酵母来源的SAM合成酶 2基因置于GAP启动子调控下 ,构建胞内组成型表达质粒 ,并电转化至毕赤酵母菌株GS115。经Zeocin抗性和培养筛选到一株高产SAM的重组菌。对重组菌表达工艺的研究表明 ,碳源、氮源、pH和溶解氧对SAM的累积有较大影响。在优化条件下 ,重组细胞培养 3天 ,SAM累积量可达 2 .49g/L。  相似文献   

4.
Streptomyces rimosus CN08 isolated from Tunisian soil produced 8.6 mg l−1 of oxytetracycline (OTC) under submerged fermentation (SmF). Attempts were made for enhancing OTC production after irradiation-induced mutagenesis of Streptomyces rimosus CN08 with Co60-γ rays. 125 OTC-producing colonies were obtained after screening on kanamycin containing medium. One mutant called Streptomyces rimosus γ-45 whose OTC production increased 19-fold (165 mg l−1) versus wild-type strain was selected. γ-45 mutant was used for OTC production under solid-state fermentation (SSF). Wheat bran (WB) was used as solid substrate and process parameters influencing OTC production were optimized. Solid-state fermentation increased the yield of antibiotic production (257 mg g−1) when compared with submerged fermentation. Ammonium sulphate as additional nitrogen source enhanced OTC level to 298 mg g−1. Interestingly, OTC production by γ-45 mutant was insensitive to phosphate which opens the way to high OTC production even in medium containing phosphate necessary for optimal mycelia growth.  相似文献   

5.
6.
The filtration in 1,3-propanediol (1,3-PD) downstream process is influenced by the large amounts of capsular polysaccharides (CPS) produced by Klebsiella pneumoniae CGMCC 1.6366. The morphological and fermentation properties were investigated with the CPS-deficient mutant K. pneumoniae CGMCC 1.6366 CPS. Similar biomass was obtained with CGMCC 1.6366, and the mutant strain in batch cultures indicating the cell growth was slightly inhibited by CPS defection. The viscosity of fermentation broth by mutant strain decreased by 27.45%. The flux with ceramic membrane filter was enhanced from 168.12 to 303.6 l h−1 m−2, exhibiting the great importance for downstream processing of 1,3-PD fermentation. The products spectrum of mutant isolate changed remarkably regarding to the concentration of fermentation products. The synthesis of important 1,3-PD and 2,3-butanediol was enhanced from 9.73 and 4.06 g l−1 to 10.37 and 4.77 g l−1 in batch cultures. The noncapsuled K. pneumoniae provided higher 1,3-PD yield of 0.54 mol mol−1 than that of encapsuled wild parent in batch cultures. The fed-batch fermentation of mutant strain resulted in 1,3-PD concentration, yield, and productivity of 78.13 g l−1, 0.53 mol mol−1, and 1.95 g l−1 h−1, respectively.  相似文献   

7.
王正  王石垒  吴群  徐岩 《微生物学通报》2021,48(11):4167-4177
[背景] 在白酒发酵过程中,原料中的谷物蛋白可为微生物的生长提供氮源等营养物质,进而形成多种代谢产物。谷物蛋白可分为清蛋白、球蛋白、醇溶蛋白和谷蛋白。然而,谷物蛋白对微生物多样性及其代谢产物多样性的调控尚不明确。[目的] 揭示白酒发酵过程中与微生物多样性及其代谢产物多样性显著相关的关键谷物蛋白种类及其调控作用。[方法] 通过Osborne法测定不同品种高粱中谷物蛋白的组成;采用多组学联用技术解析4种高粱在发酵过程中的微生物菌群多样性及代谢产物多样性;通过模拟发酵揭示原料中影响微生物群落及其代谢多样性的关键蛋白。[结果] 4种高粱中的谷物蛋白组成存在显著差异(ANOSIM:R=0.85,P=0.001);4种高粱在发酵第5天时,S4高粱的细菌多样性显著(P<0.05)高于其他3种高粱,S3高粱中微生物的代谢产物多样性显著(P<0.05)高于其他3种高粱;清蛋白和球蛋白含量与发酵第5天的优势细菌多样性(R2=0.34,P<0.05;R2=0.58,P<0.05)和代谢产物多样性呈显著正相关(R2=0.58,P<0.05;R2=0.36,P<0.05),被定义为关键蛋白;模拟发酵实验验证了优势细菌多样性和代谢产物多样性可随着2种关键蛋白即清蛋白和球蛋白含量的升高而升高。当清蛋白含量在3.0 g/L时,优势细菌多样性及代谢产物多样性可分别达到0.72和0.65;当球蛋白含量在3.0 g/L时,优势细菌多样性及代谢产物多样性可分别达到0.66和0.81。[结论] 研究揭示了酿造原料中的清蛋白和球蛋白对发酵过程中细菌多样性及代谢产物多样性的调控作用,为提高白酒发酵的可控性及质量提供了依据。  相似文献   

8.
9.
An engineered Pichia pastoris GS115 with a FIP-glu gene was mutated using ultraviolet (UV) radiation, and a high-throughput screening method was established for screening of high-yield strains. Meanwhile, a preliminary study was conducted to determine the bioactivity of the rFIP-glu. Based on OD600 value and the mortality of engineered P. pastoris GS115, the best UV irradiation time was determined. Bradford method and SDS-PAGE method were employed to analyze the concentration and yield of rFIP-glu. Melanoma B16 cells were employed to evaluate the biological activities of rFIP-glu in vitro. Results showed that the protein yield of the best mutant #4-336 screened from 3680 mutant strains increased from 242 to 469 μg ml−1. In vitro assays of biological activity indicated that rFIP-glu had significant toxicity and possessed the ability to affect melanin content and enhance tyrosinase activity in B16 cells. In conclusion, an effective high-throughput screening approach was established for screening mutant strains. The screened mutant possesses a good ability to enhance the production of rFIP-glu, and recombinant proteins display a better biological activity on melanoma B16 cells. The engineered P. pastoris mutant seems promising as a potential source for industrial production of rFIP-glu and should be a candidate industrial strain for further study.  相似文献   

10.
利用重组Pichia pastoris生产腺苷甲硫氨酸   总被引:33,自引:0,他引:33  
为改造甲醇利用型酵母Pichia pastoris来生产腺苷甲硫氨酸(SAM,S-adenosyl-L-methionine),我们将一个带有SAM合成酶基因的胞内表达质粒转化入Pichia pastoris菌株GS115,经过G418抗性筛选得到一株有两个基因拷贝的转化子。该菌在含有甲醇和甲硫氨酸的培养基中生长5d后,其细胞内的SAM的产量比原始菌株提高了30余倍。对该菌生产SAM的培养基中的碳源与氮源进行了优化,结果显示碳源的控制对该菌SAM产量的影响很大。在试管水平,该菌在含有0.75%的L-methionine并且碳源和有机氮源经过一定程度优化的培养基中,生长6d后SAM产量达到1.58g/L。  相似文献   

11.
The dynamics of bacterial communities play an important role in solid-state fermentation (SSF). Poly-γ-glutamic acid (γ-PGA) was produced by Bacillus amyloliquefaciens C1 in SSF using dairy manure compost and monosodium glutamate production residuals as basic substrates. The production of γ-PGA reached a maximum of 0.6% after 20 days fermentation. Real-time polymerase chain reaction showed the amount of total bacteria reached 3.95 × 109 16S rDNA copies/g sample after 30 days, which was in good accordance with the 4.80 × 109 CFU/g obtained by plate counting. Denaturing gradient gel electrophoresis profile showed a reduction of microbial diversity during fermentation, while the inoculum, B. amyloliquefaciens C1, was detected as the dominant organism through the whole process. In the mesophilic phase of SSF, Proteobacteria was the dominant microbial, which was replaced by Firmicutes and Actinobacteria in the thermophilic phase. The molecular analysis of the bacterial diversity has significant potential for instructing the maturing process of SSF to produce γ-PGA at a large-scale level, which could be a benefit in the production of high quality and stable SSF products.  相似文献   

12.
龙燕  刘然  梁恒宇  刘天罡 《微生物学报》2018,58(7):1298-1308
【目的】乳酸链球菌素(nisin)是一种天然生物活性抗菌肽,对包括食品腐败菌和致病菌在内的许多革兰氏阳性菌具有强烈的抑制作用,而用作食品的防腐剂。本研究通过建立高通量筛选方法,实现高效快速省力的高产菌株筛选,为工业上筛选高产菌株提供研究方案。【方法】通过对Lactococcus lactis ATCC11454菌株进行紫外诱变,获得2511株突变株。利用Biomek FXP自动工作站建立96微孔板的高通量筛选方法,突变株经高通量挑选、菌种培养及菌液稀释后,加入到生长至对数中期的藤黄微球菌中,采用改进后的比浊法快速检测nisin生物活性。用此方法对突变株进行初筛、复筛后可得到nisin高产菌株,并通过摇瓶发酵评估高通量筛选方法。【结果】确定比浊法检测的条件为:nisin活性稀释在10–25 IU/m L范围内,与藤黄微球菌反应2 h后检测藤黄微球菌的菌体量(OD600)。2511株突变株经过2轮高通量筛选,最终获得约50株产量提升的菌株,对其中8株进行摇瓶精确测量,显示产量均有提高,并且其中一株产量提升了30%,成功建立了高通量筛选nisin高产菌株的方法。【结论】利用比浊检测法,在其基础上成功建立高通量筛选高产nisin菌的方法,经过初筛复筛,整个周期由1人耗时5 d即可完成2511株突变株的筛选工作。相较于传统的选育方法,高通量筛选具有快速、稳定、高效的特点,提高了筛选效率,缩短了选育周期,是工业上筛选高产nisin菌的有效手段。  相似文献   

13.
Genome shuffling is an efficient approach for the rapid improvement of industrially important microbial phenotypes. This report describes optimized conditions for protoplast preparation, regeneration, inactivation, and fusion using the Saccharomyces cerevisiae W5 strain. Ethanol production was confirmed by TTC (triphenyl tetrazolium chloride) screening and high-performance liquid chromatography (HPLC). A genetically stable, high ethanol-producing strain that fermented xylose and glucose was obtained following three rounds of genome shuffling. After fermentation for 84 h, the high ethanol-producing S. cerevisiae GS3-10 strain (which utilized 69.48 and 100% of the xylose and glucose stores, respectively) produced 26.65 g/L ethanol, i.e., 47.08% higher than ethanol production by S. cerevisiae W5 (18.12 g/L). The utilization ratios of xylose and glucose were 69.48 and 100%, compared to 14.83 and 100% for W5, respectively. The ethanol yield was 0.40 g/g (ethanol/consumed glucose and xylose), i.e., 17.65% higher than the yield by S. cerevisiae W5 (0.34 g/g).  相似文献   

14.
Viperin is an interferon‐induced protein with a broad antiviral activity. This evolutionary conserved protein contains a radical S‐adenosyl‐l ‐methionine (SAM) domain which has been shown in vitro to hold a [4Fe‐4S] cluster. We identified tick‐borne encephalitis virus (TBEV) as a novel target for which human viperin inhibits productionof the viral genome RNA. Wt viperin was found to require ER localization for full antiviral activity and to interact with the cytosolic Fe/S protein assembly factor CIAO1. Radiolabelling in vivo revealed incorporation of 55Fe, indicative for the presence of an Fe‐S cluster. Mutation of the cysteine residues ligating the Fe‐S cluster in the central radical SAM domain entirely abolished both antiviral activity and incorporation of 55Fe. Mutants lacking the extreme C‐terminal W361 did not interact with CIAO1, were not matured, and were antivirally inactive. Moreover, intracellular removal of SAM by ectopic expression of the bacteriophage T3 SAMase abolished antiviral activity. Collectively, our data suggest that viperin requires CIAO1 for [4Fe‐4S] cluster assembly, and acts through an enzymatic, Fe‐S cluster‐ and SAM‐dependent mechanism to inhibit viral RNA synthesis.  相似文献   

15.
In this work, a defined medium was developed and optimized for the mutant strain Staphylococcus gallinarum ΔP, which produces pregallidermin (PGDM), a nontoxic precursor of the lantibiotic gallidermin (GDM). The availability of a defined medium is a prerequisite for a rational process development and the investigation of medium effects on final product concentration, yield, and volumetric productivity. We identified four vitamins and three metal ions as essential for growth and PGDM production with S. gallinarum ΔP. The strain was capable of growing without any added amino acids, but the addition of proline had a strong growth-stimulatory effect. The concentrations of all essential compounds were balanced in a continuous culture using a medium-shift technique. Based on this balanced medium, a fed-batch process was developed in which S. gallinarum ΔP was grown up to a biomass concentration of 67 g l−1 and produced 1.95 g l−1 PGDM, equivalent to 0.57 mM. In the fermentation broth, we identified other GDM precursors in addition to those with a 12 or 14-amino-acid-long leader peptide that had been observed previously. Including those precursors with shorter leader sequences, the final concentration would correspond to 0.69 mM. In molar terms, this represents a roughly fourfold or fivefold increase, respectively, over established, complex medium-based gallidermin production processes (Kempf et al. 2000). With the same medium and feed protocol, the maximum concentration of mature GDM produced by wild-type S. gallinarum Tü 3928 was only 0.08 mM.  相似文献   

16.
Serrawettin W1 produced by Serratia marcescens is a surface-active exolipid resulting in a lot foam formation during the 2,3-butanediol (2,3-BD) fermentation process. In order to avoid excessive addition of antifoam agent and microbial contamination, S. marcescens mutants deficient in serrawettin W1 formation were successfully constructed through insertional inactivation of the swrW gene coding for serrawettin W1 synthase. The shake flask and batch experiments suggested that disruption of the swrW gene led to significant reduction of the foam formation and improved 2,3-BD production a little. Ultimately, fed-batch culturing of the mutant afforded a maximum 2,3-BD concentration of 152 g l−1 with a productivity of 2.67 g l−1 h−1 and a yield of 92.6% at 57 h.  相似文献   

17.
The objectives of this study were to evaluate the potential of gabiroba Campomanesia pubescens (DC) O. Berg in the production of a beverage fermented using selected and wild yeasts from indigenous fermentation, analyze the volatile compounds profile present during the process of fermentation, and evaluate the sensory quality of the final beverage produced. Throughout the process of fermentation, when Saccharomyces cerevisiae UFLA CA 1162 was inoculated, there were stable viable populations around 9 log cells ml−1. During indigenous fermentation, yeast population increased from 3.7 log CFU ml−1 to 8.1 log CFU ml−1 after 14 days. The diversity and dynamics of the yeast population during indigenous fermentation observed by PFGE analysis showed five different karyotyping profiles in the first days of fermentation. After the seventh day, there was a higher frequency of a similar S. cerevisiae profile. The yeast non-Saccharomyces were identified by sequencing of the ITS region as Candida quercitrusa and Issatchenkia terricola. Inoculated fermentations yielded a higher amount of alcohol than indigenous ones, indicating the efficiency of selected strains. There was also a greater concentration of higher alcohols, which are usually responsible for the flavor found in alcoholic beverages. Based on the characteristics of the pulp and acceptance in the sensory analysis, gabiroba fruits showed good potential for use in the production of fermented beverage.  相似文献   

18.
A fed-batch fermentation process for the production of organophosphorus hydrolase (OPH) (EC 3.1.8.1) by E. coli pET812 was developed in this research. With batch fermentation, the maximum OPH concentrations attained by batch fermentation were as low as 4 × 105 U/l because cell growth and OPH production were inhibited by a high initial concentration of glucose. To develop a fed-batch fermentation process for obtaining higher concentrations of OPH, highly concentrated glucose solution (500 g/l) was added intermittently or continuously to increase the carbon source concentration. Eventually, 3.2 × 106 U/l of OPH was produced with fed-batch fermentation in 24 h. This was eight times higher than the yield with conventional batch fermentation. A total concentration of 399–441 mg of OPH was produced/l, which was four times higher than that reported when using E. coli. Nearly half (44%) of the produced OPH was secreted into the culture solution.  相似文献   

19.
In this paper, in order to obtain some industrial strains with high yield of l-(+)-lactic acid, the wild type strain Lactobacillus casei CICC6028 was mutated by nitrogen ions implantation. By study, it was found that the high positive mutation rate was obtained when the output power was 10 keV and the dose of N+ implantation was 50 × 2.6 × 1013 ions/cm2. In addition, the initial screening methods were also studied, and it was found that the transparent halos method was unavailable, for some high yield strains of l-(+)-lactic acid were missed. Then a mutant strain which was named as N-2 was isolated, its optimum fermentation temperature was 40°C and the l-(+)-lactic acid yield was 136 g/l compared to the original strain whose optimum fermentation temperature was 34°C and l-(+)-lactic acid production was 98 g/l. Finally, High Performance Liquid Chromatography method was used to analyze the purity of l-(+)-lactic acid that was produced by the mutant N-2, and the result showed the main production of N-2 was l-(+)-lactic acid.  相似文献   

20.
By disruption of the pullulan synthetase gene (pul) of Aureobasidium pullulans IMS822 KCTC11179BP, we constructed a mutant strain, A. pullulans NP1221, which produced a pure β-glucan exopolysaccharide. The mutant NP1221 was white, whereas the wild-type strain produced a black dye. When we compared fermentation kinetics between wide-type and mutant strains, the mutant NP1221 did not produce pullulan. Substrate uptake rate and β-glucan production were similar in both strains. However, the biomass yield of mutant NP1221 was 2.3-fold (9.2 g l−1) greater than that of wild-type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号