首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The human gastrointestinal mucosa is exposed to a diverse normal microflora and dietary Ags and is a common site of entry for pathogens. The mucosal immune system must respond to these diverse signals with either the initiation of immunity or tolerance. APCs are important accessory cells that modulate T cell responses which initiate and maintain adaptive immunity. The ability of APCs to communicate with CD4+ T cells is largely dependent on the expression of class II MHC molecules by the APCs. Using immunohistochemistry, confocal microscopy, and flow cytometry, we demonstrate that alpha-smooth muscle actin(+), CD90+ subepithelial myofibroblasts (stromal cells) constitutively express class II MHC molecules in normal colonic mucosa and that they are distinct from professional APCs such as macrophages and dendritic cells. Primary isolates of human colonic myofibroblasts (CMFs) cultured in vitro were able to stimulate allogeneic CD4+ T cell proliferation. This process was dependent on class II MHC and CD80/86 costimulatory molecule expression by the myofibroblasts. We also demonstrate that CMFs, engineered to express a specific DR4 allele, can process and present human serum albumin to a human serum albumin-specific and DR4 allele-restricted T cell hybridoma. These studies characterize a novel cell phenotype which, due to its strategic location and class II MHC expression, may be involved in capture of Ags that cross the epithelial barrier and present them to lamina propria CD4+ T cells. Thus, human CMFs may be important in regulating local immunity in the colon.  相似文献   

2.
The ability of two different human professional APCs, specifically macrophages (Mphi) and dendritic cells (DC), to stimulate primary responses in human CD8+ T lymphocytes was examined using both allogeneic and Ag-pulsed autologous APCs. CTL responses in CD8+ T lymphocytes isolated from HIV-uninfected donors were evaluated against six different HIV epitopes that are restricted by four different HLA alleles using autologous human PBMC-derived Mphi and DCs for primary stimulation. In a side-by-side experiment, immature DCs, but not Mphi, were able to prime a CTL response against the B14-restricted p24gag 298-306 epitope; mature DCs were also able to prime a response against this epitope. In addition, DCs were capable of priming CD8+ CTL responses against the B8-restricted p24gag 259-267 epitope. In contrast, Mphi were unable to prime strong CTL responses against other epitopes. Since the Ag-specific cytotoxic responses required subsequent rounds of restimulation before they could be detected, the ability of the allogeneic Mphi and DCs to directly prime CD8+ T lymphocyte responses without subsequent restimulation was examined. Similar to the aforementioned peptide-specific results, DCs were more efficient than Mphi in priming both allogeneic proliferative and cytotoxic responses in human CD8+ T lymphocytes. Collectively, these results promote an enhanced status for DCs in the primary stimulation of human CD8+ T lymphocytes.  相似文献   

3.
The efficacy of allogeneic hematopoietic stem cell transplantation is limited by graft-versus-host disease (GVHD). Host hematopoietic APCs are important initiators of GVHD, making them logical targets for GVHD prevention. Conventional dendritic cells (DCs) are key APCs for T cell responses in other models of T cell immunity, and they are sufficient for GVHD induction. However, we report in this article that in two polyclonal GVHD models in which host hematopoietic APCs are essential, GVHD was not decreased when recipient conventional DCs were inducibly or constitutively deleted. Additional profound depletion of plasmacytoid DCs and B cells, with or without partial depletion of CD11b(+) cells, also did not ameliorate GVHD. These data indicate that, in contrast with pathogen models, there is a surprising redundancy as to which host cells can initiate GVHD. Alternatively, very low numbers of targeted APCs were sufficient. We hypothesize the difference in APC requirements in pathogen and GVHD models relates to the availability of target Ags. In antipathogen responses, specialized APCs are uniquely equipped to acquire and present exogenous Ags, whereas in GVHD, all host cells directly present alloantigens. These studies make it unlikely that reagent-based host APC depletion will prevent GVHD in the clinic.  相似文献   

4.
Several APCs participate in apoptotic cell-induced immune modulation. Whether plasmacytoid dendritic cells (PDCs) are involved in this process has not yet been characterized. Using a mouse model of allogeneic bone marrow engraftment, we demonstrated that donor bone marrow PDCs are required for both donor apoptotic cell-induced engraftment and regulatory T cell (Treg) increase. We confirmed in naive mice receiving i.v. syngeneic apoptotic cell infusion that PDCs from the spleen induce ex vivo Treg commitment. We showed that PDCs did not interact directly with apoptotic cells. In contrast, in vivo macrophage depletion experiments using clodronate-loaded liposome infusion and coculture experiments with supernatant from macrophages incubated with apoptotic cells showed that PDCs required macrophage-derived soluble factors--including TGF-β--to exert their immunomodulatory functions. Overall, PDCs may be considered as the major APC involved in Treg stimulation/generation in the setting of an immunosuppressive environment obtained by apoptotic cell infusion. These findings show that like other APCs, PDC functions are influenced, at least indirectly, by exposure to blood-borne apoptotic cells. This might correspond with an additional mechanism preventing unwanted immune responses against self-antigens clustered at the cell surface of apoptotic cells occurring during normal cell turnover.  相似文献   

5.
Recognition of drugs by immune cells is usually explained by the hapten model, which states that endogenous metabolites bind irreversibly to protein to stimulate immune cells. Synthetic metabolites interact directly with protein-generating antigenic determinants for T cells; however, experimental evidence relating intracellular metabolism in immune cells and the generation of physiologically relevant Ags to functional immune responses is lacking. The aim of this study was to develop an integrated approach using animal and human experimental systems to characterize sulfamethoxazole (SMX) metabolism-derived antigenic protein adduct formation in immune cells and define the relationship among adduct formation, cell death, costimulatory signaling, and stimulation of a T cell response. Formation of SMX-derived adducts in APCs was dose and time dependent, detectable at nontoxic concentrations, and dependent on drug-metabolizing enzyme activity. Adduct formation above a threshold induced necrotic cell death, dendritic cell costimulatory molecule expression, and cytokine secretion. APCs cultured with SMX for 16 h, the time needed for drug metabolism, stimulated T cells from sensitized mice and lymphocytes and T cell clones from allergic patients. Enzyme inhibition decreased SMX-derived protein adduct formation and the T cell response. Dendritic cells cultured with SMX and adoptively transferred to recipient mice initiated an immune response; however, T cells were stimulated with adducts derived from SMX metabolism in APCs, not the parent drug. This study shows that APCs metabolize SMX; subsequent protein binding generates a functional T cell Ag. Adduct formation above a threshold stimulates cell death, which provides a maturation signal for dendritic cells.  相似文献   

6.
Regulatory T cells (Tregs) suppress immune responses against both self and non-self antigens. Tregs require activation through the T cell receptor (TCR) and IL-2 to exert their suppressive functions. However, how strength of TCR signals modulate the potency of Treg-mediated suppression of antigen-specific T cell activation remain unclear. We found that both strength of TCR signals and ratios of Tregs to target cells, either through superantigen, allogeneic antigens or HIV-specific peptides, modified the suppressive ability of Tregs. While human Tregs were able to mediate suppression in the presence of only autologous antigen-presenting cells, this was much less efficient as compared to when Tregs were activated by allogeneic dendritic cells. In another physiologically relevant system, we show that the strength of peptide stimulation, high frequency of responder CD8+ T cells or presence of high IL-2 can override the suppression of HIV-specific CD8+ T cells by Tregs. These findings suggest that ratios and TCR activation of human Tregs, are important parameters to overcome robust immune responses to pathogens or allogeneic antigens. Modulating the strength of T cell signals and selective enhancement or depletion of antigen-specific Tregs thus may have implications for designing potent vaccines and regulating immune responses during allogeneic transplantation and chronic infections.  相似文献   

7.
The mechanism of cross-presentation enables professional APCs to induce CD8 T cell-mediated immune responses against exogenous Ags. Through this mechanism, APCs can induce either immunity against infectious pathogens or tolerance against self-Ag residing in extralymphatic locations. An unanswered question in this field concerns the identity of the cross-presenting APC. All major classes of professional APCs, particularly dendritic cells, macrophages, and B cells, have previously been shown to be able to cross-present Ags in vitro. In the present study, we have created transgenic mice where MHC class I expression is driven selectively in dendritic cells and provide direct in vivo evidence that dendritic cells are sufficient to cross-present exogenous self-Ags and induce Ag-specific cell division of CD8-positive T cells.  相似文献   

8.
Vitamin D receptor (VDR) ligands, in addition to controlling calcium metabolism, exert important effects on the growth and differentiation of many cell types and possess pronounced pro-tolerogenic immunoregulatory activities. VDR ligands can act directly on T cells, but antigen-presenting cells (APCs), and in particular dendritic cells (DCs), appear to be primary targets for their tolerogenic properties. The capacity of VDR ligands to target APCs and T cells is mediated by VDR expression in both cell types and by the presence of common targets in their signal transduction pathways, such as the nuclear factor NF-kB that is down-regulated in APCs and in T cells. VDR ligands can induce in vitro and in vivo tolerogenic DCs able to enhance CD4(+)CD25(+) suppressor T cells that, in turn, inhibit Th1 cell responses. These mechanisms of action can explain some of the immunoregulatory properties of VDR ligands, and are potentially relevant for the treatment of Th1-mediated autoimmune diseases and allograft rejection.  相似文献   

9.
Recent data suggests that graft-versus-host disease (GVHD) is initiated by host APCs. Blockade of CD40:CD154 interactions between APCs and T cells in vivo induces T cell tolerance to host alloantigen and dramatically reduces GVHD. Because allogeneic cord blood (CB) transplantation results in a lower incidence and severity of acute GVHD compared with bone marrow transplantation, we have investigated whether CB T cells can express CD154 in response to stimulation by allogeneic monocyte-derived dendritic cells (MDDC) and have used 5- (and 6-)carboxyfluorescein diacetate succinimidyl ester (CFSE) labeling in combination with intracellular cytokine analysis to assess the proliferation and cytokine profiles of alloantigen-responsive cells. CB T cells stimulated with allogeneic MDDC showed stronger proliferation than adult blood T cells. Surface CD154 expression was detected in the actively dividing CFSElow populations of both the CD4+ and CD4- subsets and was brightest in cells that had divided the most. Assessment of supernatants from MDDC-stimulated CB and adult blood T cells showed no significant difference in the levels of either IFN-gamma or TNF-alpha, but CB T cell supernatants did show a significant lack of detectable IL-2. Intracellular cytokine analysis revealed that dividing CB T cells had been primed to produce IFN-gamma, TNF-alpha, and IL-2 on restimulation. Further phenotype analysis showed that 75% of CB T cells producing IFN-gamma were CD8+. These data suggest that MDDC-stimulated CB T cells express functional CD154 and provide enough costimulation for dendritic cells to prime naive CD8+ CB T cells and induce type 1 cytokine production.  相似文献   

10.
Systemic sclerosis (SSc) is an autoimmune connective tissue disease of unknown etiology in which T cell responses to various autoantigens, including DNA topoisomerase I (Topo I), have been implicated. We investigated whether dendritic cells, generally considered to be the most potent APCs for the initiation of immune responses, would present either of two forms of Topo I to T cells more efficiently than PBMC APCS: Using cells from healthy controls and SSc patients, several important observations were made. First, neither APC type was able to initiate T cell proliferative responses to full-length native Topo I unless exogenous IL-2 was added. This is in contrast to vigorous T cell proliferation in response to Topo I polypeptide fragments presented by either APC type. Second, T cell responses to the full-length form of Topo I presented by dendritic cells were considerably lower than responses to Ag presented by PBMC APCS: Finally, no secondary T cell responses were observed unless the same Ag/APC combination as that used in the primary stimulation was maintained. These data indicate that different peptides are generated based upon the form of the Topo I and the APC that processes it. Taken together, these results suggest that a very specific combination of antigenic form and APC may be involved in breaking tolerance to Topo I in the early stages of development of SSC:  相似文献   

11.
Cells expressing indoleamine 2,3-dioxygenase inhibit T cell responses   总被引:34,自引:0,他引:34  
Pharmacological inhibition of indoleamine 2,3-dioxygenase (IDO) activity during murine gestation results in fetal allograft rejection and blocks the ability of murine CD8(+) dendritic cells to suppress delayed-type hypersensitivity responses to tumor-associated peptide Ags. These observations suggest that cells expressing IDO inhibit T cell responses in vivo. To directly evaluate the hypothesis that cells expressing IDO inhibit T cell responses, we prepared IDO-transfected cell lines and transgenic mice overexpressing IDO and assessed allogeneic T cell responses in vitro and in vivo. T cells cocultured with IDO-transfected cells did not proliferate but expressed activation markers. The potency of allogeneic T cell responses was reduced significantly when mice were preimmunized with IDO-transfected cells. In addition, adoptive transfer of alloreactive donor T cells yielded reduced numbers of donor T cells when injected into IDO-transgenic recipient mice. These outcomes suggest that genetically enhanced IDO activity inhibited T cell proliferation in vitro and in vivo. Genetic manipulation of IDO activity may be of therapeutic utility in suppressing undesirable T cell responses.  相似文献   

12.
Upon specific interaction with APCs, T cells capture membrane fragments and surface molecules in a process termed trogocytosis. In this study, we demonstrate that human Ag-specific CD8(+) T cells acquire the coinhibitory molecule programmed death ligand 1 (PD-L1) from mature dendritic cells (mDC) and tumor cells in an Ag-specific manner. Immature dendritic cells were less effective in transferring surface molecules onto CD8(+) T cells than mDCs. Interestingly, trogocytosis of PD-L1 requires cell-cell contact and cannot be induced by uptake of soluble proteins obtained from mDC lysates. The transfer process is impaired by inhibition of vacuolar ATPases in T cells as well as by fixation of dendritic cells. Of importance, CD8(+) T cells that acquired PD-L1 complexes were able to induce apoptosis of neighboring programmed death 1-expressing CD8(+) T cells. In summary, our data demonstrate that human CD8(+) T cells take up functionally active PD-L1 from APCs in an Ag-specific fashion, leading to fratricide of programmed death 1-expressing, neighboring T cells. The transfer of functionally active coinhibitory molecules from APCs onto human CD8(+) T cells could have a regulatory role in immune responses.  相似文献   

13.
Corneal transplantation represents an interesting model to investigate the contribution of direct vs indirect Ag recognition pathways to the alloresponse. Corneal allografts are naturally devoid of MHC class II+ APCs. In addition, minor Ag-mismatched corneal grafts are more readily rejected than their MHC-mismatched counterparts. Accordingly, it has been hypothesized that these transplants do not trigger direct T cell alloresponse, but that donor Ags are presented by host APCs, i.e., in an indirect fashion. Here, we have determined the Ag specificity, frequency, and phenotype of T cells activated through direct and indirect pathways in BALB/c mice transplanted orthotopically with fully allogeneic C57BL/6 corneas. In this combination, only 60% of the corneas are rejected, while the remainder enjoy indefinite graft survival. In rejecting mice the T cell response was mediated by two T cell subsets: 1) CD4+ T cells that recognize alloantigens exclusively through indirect pathway and secrete IL-2, and 2) IFN-gamma-producing CD8+ T cells recognizing donor MHC in a direct fashion. Surprisingly, CD8+ T cells activated directly were not required for graft rejection. In nonrejecting mice, no T cell responses were detected. Strikingly, peripheral sensitization to allogeneic MHC molecules in these mice induced acute rejection of corneal grafts. We conclude that only CD4+ T cells activated via indirect allorecognition have the ability to reject allogeneic corneal grafts. Although alloreactive CD8+ T cells are activated via the direct pathway, they are not fully competent and cannot contribute to the rejection unless they receive an additional signal provided by professional APCs in the periphery.  相似文献   

14.
Mixed chimerism and donor-specific tolerance are achieved in mice receiving 3 Gy of total body irradiation and anti-CD154 mAb followed by allogeneic bone marrow (BM) transplantation. In this model, recipient CD4 cells are critically important for CD8 tolerance. To evaluate the role of CD4 cells recognizing donor MHC class II directly, we used class II-deficient donor marrow and were not able to achieve chimerism unless recipient CD8 cells were depleted, indicating that directly alloreactive CD4 cells were necessary for CD8 tolerance. To identify the MHC class II(+) donor cells promoting this tolerance, we used donor BM lacking certain cell populations or used positively selected cell populations. Neither donor CD11c(+) dendritic cells, B cells, T cells, nor donor-derived IL-10 were critical for chimerism induction. Purified donor B cells induced early chimerism and donor-specific cell-mediated lympholysis tolerance in both strain combinations tested. In contrast, positively selected CD11b(+) monocytes/myeloid cells did not induce early chimerism in either strain combination. Donor cell preparations containing B cells were able to induce early deletion of donor-reactive TCR-transgenic 2C CD8 T cells, whereas those devoid of B cells had reduced activity. Thus, induction of stable mixed chimerism depends on the expression of MHC class II on the donor marrow, but no requisite donor cell lineage was identified. Donor BM-derived B cells induced early chimerism, donor-specific cell-mediated lympholysis tolerance, and deletion of donor-reactive CD8 T cells, whereas CD11b(+) cells did not. Thus, BM-derived B cells are potent tolerogenic APCs for alloreactive CD8 cells.  相似文献   

15.
Although induction of T cell responses to fed Ag (oral tolerance) is thought to happen within the organized lymphoid tissue of the gut, we found that mice lacking Peyer's patches, B cells, and the specialized Ag-handling M cells had no defect in the induction of T cell responses to fed Ag, whether assayed in vitro by T cell proliferation or cytokine production, or in vivo by delayed-type hypersensitivity or bystander suppression against mycobacterial Ags in CFA. Feeding of Ag had a major influence on dendritic cells from fed wild-type or muMT mice, such that these APCs were able to elicit a different class of response from naive T cells in vitro. These results suggest that systemic immune responses to soluble oral Ags do not require an organized gut-associated lymphoid tissue but are most likely induced by gut-conditioned dendritic cells that function both to initiate the gut-oriented response and to impart the characteristic features that discriminate it from responses induced parenterally.  相似文献   

16.
Cutting edge: TIGIT has T cell-intrinsic inhibitory functions   总被引:1,自引:0,他引:1  
Costimulatory molecules regulate the functional outcome of T cell activation, and disturbance of the balance between activating and inhibitory signals results in increased susceptibility to infection or the induction of autoimmunity. Similar to the well-characterized CD28/CTLA-4 costimulatory pathway, a newly emerging pathway consisting of CD226 and T cell Ig and ITIM domain (TIGIT) has been associated with susceptibility to multiple autoimmune diseases. In this study, we examined the role of the putative coinhibitory molecule TIGIT and show that loss of TIGIT in mice results in hyperproliferative T cell responses and increased susceptibility to autoimmunity. TIGIT is thought to indirectly inhibit T cell responses by the induction of tolerogenic dendritic cells. By generating an agonistic anti-TIGIT Ab, we demonstrate that TIGIT can inhibit T cell responses directly independent of APCs. Microarray analysis of T cells stimulated with agonistic anti-TIGIT Ab revealed that TIGIT can act directly on T cells by attenuating TCR-driven activation signals.  相似文献   

17.
18.
In this study we have investigated the role of accessory cells in the development of lymphokine-activated killer cells (LAK) from highly purified human NK and small resting T cell progenitors. As accessory cells we used autologous, as well as allogeneic, monocytes, and dendritic cell enriched cells. Both NK and T cells were able to generate LAK activity, but their activation requirements were different. NK cells were activated merely by IL-2, and accessory cells did not enhance their lytic activity in the presence or absence of IL-2. Conversely, T cells were practically unresponsive to even high concentrations of IL-2 having a strict requirement for accessory cells for the development of lytic activity and proliferation. Accessory cells differed in their ability to activate T cells presumably depending on their ability to induce IL-2 synthesis, allogeneic dendritic cells being the most effective accessory cells and IL-2 synthesis stimulators. Allogeneic accessory cells could induce lytic activity in T cells even in the absence of exogenous IL-2. Thus, accessory cells play a central role in expanding the LAK effector cell population.  相似文献   

19.
Peptides that are presented by class I MHC (MHC-I) molecules derive from cytosolic Ags processed via the conventional MHC-I pathway or exogenous Ags processed via alternate MHC-I processing mechanisms. Alternate MHC-I processing by macrophages and dendritic cells allows presentation of peptides from particulate Ags, including bacteria. Despite the established phagocytic activity of neutrophils, MHC-I processing and presentation of phagocytosed Ags by neutrophils has not been investigated. Murine neutrophils from peritoneal exudates were shown to express MHC-I molecules and tested for the ability to process HB101.Crl-OVA, Escherichia coli transfected to express a fusion protein containing the 257-264 epitope of OVA. Neutrophils were found to process HB101.Crl-OVA and present OVA(257-264)-K(b) complexes to CD8OVA T hybridoma cells via a pathway that was resistant to brefeldin A, an inhibitor of anterograde endoplasmic reticulum-Golgi transport, and lactacystin, a proteasome inhibitor. These results suggest that neutrophils process phagocytosed bacteria via a vacuolar alternate MHC-I pathway that does not involve cytosolic processing. In addition, neutrophils were found to secrete or "regurgitate" processed peptide that was subsequently presented by neighboring prefixed macrophages or dendritic cells. Thus, neutrophils may influence T cell responses to bacteria, either by directly presenting peptide-MHC-I complexes or by delivering peptides to other APCs for presentation. Hypothetically, neutrophils may directly present peptide to effector T cells in vivo at sites of inflammation, inducing cytokine production, whereas dendritic cells in receipt of neutrophil-derived antigenic peptides may migrate to lymphoid organs to initiate T cell responses.  相似文献   

20.
The initiation of antitumor immunity relies on dendritic cells (DCs) to cross-present cell-associated tumor Ag to CD8(+) T cells (T(CD8+)) due to a lack of costimulatory molecules on tumor cells. Innate danger signals have been demonstrated to enhance cross-priming of T(CD8+) to soluble as well as virally encoded Ags; however, their effect on enhancing T(CD8+) cross-priming to cell genome-encoded Ags remains unknown. Furthermore, influenza A virus (IAV) has not been shown to enhance antitumor immunity. Using influenza-infected allogeneic cell lines, we show in this study that T(CD8+) responses to cell-associated Ags can be dramatically enhanced due to enhanced T(CD8+) expansion. This enhanced cross-priming in part involves TLR7- but not TLR3-mediated sensing of IAV and is entirely dependent on MyD88 and IFN signaling pathways. We also showed that the inflammasome-induced IL-1 and IFN-γ did not play a role in enhancing cross-priming in our system. We further demonstrated in our ex vivo system that CD8(+) DCs are the only APCs able to prime TCR-transgenic T(CD8+). Importantly, plasmacytoid DCs and CD8(-) DCs were both able to enhance such priming when provided in coculture. These observations suggest that IAV infection of tumor cells may facilitate improved cross-presentation of tumor Ags and may be used to augment clinical vaccine efficacy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号