首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
T cell activation is triggered by signal molecules on the surface of antigen‐presenting cells (APC) and subsequent exertion of cellular forces. Deciphering the biomechanical and biochemical signals in this complex process is of interest and will contribute to an improvement in immunotherapy strategies. To address underlying questions, coculture and biomimetic models are established. Mature dendritic cells (mDC) are first treated with cytochalasin B (CytoB), a cytoskeletal disruption agent known to lower apparent cellular stiffness and reduction in T cell proliferation is observed. It is attempted to mimic mDC and T cell interactions using polyacrylamide (PA) gels with defined stiffness corresponding to mDC (0.2–25 kPa). Different ratios of anti‐CD3 (aCD3) and anti‐CD28 (aCD28) antibodies are immobilized onto PA gels. The results show T cell proliferation is triggered by both aCD3 and aCD28 in a stiffness‐dependent manner. Cells cultured on aCD3 immobilized on gels has significantly enhanced proliferation and IL‐2 secretion, compared to aCD28. Furthermore, ZAP70 phosphorylation is enhanced in stiffer substrate a in a aCD3‐dependent manner. The biosystem provides an approach to study the reduction of T cell proliferation observed on CytoB‐treated mDC. Overall, the biosystem allows distinguishing the impact of biophysical and biochemical signals of APC and T cell interactions in vitro.  相似文献   

2.
3.
    
The spleen contains multiple subsets of myeloid and dendritic cells (DC). DC are important antigen presenting cells (APC) which induce and control the adaptive immune response. They are cells specialized for antigen capture, processing and presentation to naïve T cells. However, DC are a heterogeneous population and each subset differs subtly in phenotype, function and location. Similarly, myeloid cell subsets can be distinguished which can also play an important role in the regulation of immunity. This review aims to characterize splenic subsets of DC and myeloid cells to better understand their individual roles in the immune response.  相似文献   

4.
    
A rapidly growing body of evidence highlighted that histamine, a small biogenic amine, is implicated in the regulation of DC (dendritic cell) functions. It is well established that DCs represent the most potent antigen-presenting cells of the body, linking innate and acquired immunity and regulating the outcome of immune responses. Signals, associated with ongoing inflammation and uptake of foreign antigens, promote maturation of DCs and activation of T-cell responses in secondary lymphatic organs. These bone marrow-derived cells patrol continuously all over the body. During their persistent migration, several mediators may influence the behaviour and functions of DCs. Histamine, produced by mast cells, basophils or DCs themselves, may have an important role in the life cycle of DCs. From the differentiation, through their never-ending circulation, until the induction of T-cell response, histamine is present and influences the life cycle of DCs. Here, we summarize recent progress in histamine research with respect to DC functions. We also point out some controversial aspects of histamine action on DCs.  相似文献   

5.
    
Recent findings, notably on adipokines and adipose tissue inflammation, have revised the concept of adipose tissues being a mere storage depot for body energy. Instead, adipose tissues are emerging as endocrine and immunologically active organs with multiple effects on the regulation of systemic energy homeostasis. Notably, compared with other metabolic organs such as liver and muscle, various inflammatory responses are dynamically regulated in adipose tissues and most of the immune cells in adipose tissues are involved in obesity-mediated metabolic complications, including insulin resistance. Here, we summarize recent findings on the key roles of innate (neutrophils, macrophages, mast cells, eosinophils) and adaptive (regulatory T cells, type 1 helper T cells, CD8 T cells, B cells) immune cells in adipose tissue inflammation and metabolic dysregulation in obesity. In particular, the roles of natural killer T cells, one type of innate lymphocyte, in adipose tissue inflammation will be discussed. Finally, a new role of adipocytes as antigen presenting cells to modulate T cell activity and subsequent adipose tissue inflammation will be proposed.  相似文献   

6.
    
T‐cell antigen receptors (TcRs) are heterodimeric cell‐surface receptors that play a pivotal role in the cellular immune response. The TcR interacts specifically with a peptide‐laden major histocompatability complex (pMHC). A human TcR has been characterized that interacts with an immunodominant epitope, FLRGRAYGL, from the Epstein–Barr virus, a ubiquitous human pathogen, in complex with HLA‐B8. Despite the vast TcR repertoire, this TcR is found in up to 10% of the total T‐cell population in seropositive HLA‐B8+ individuals. In this report, this highly selected TcR is characterized by expressing in Escherichia coli, refolding, purifying and crystallizing the receptor. In addition, the HLA‐B8–FLRGRAYGL complex has been expressed in E. coli, refolded and shown to be functionally active. Using native gel electrophoresis, the refolded TcR is shown to be capable of binding specifically to the refolded HLA‐B8–FLRGRAYGL and this TcR has been crystallized in complex with the pMHC. The crystals of the unliganded and liganded TcR diffract to 1.5 and 2.5 Å, respectively.  相似文献   

7.
    
《Molecular cell》2021,81(22):4709-4721.e9
  1. Download : Download high-res image (103KB)
  2. Download : Download full-size image
  相似文献   

8.
    
Over the years, the unique capacity of dendritic cells (DC) for efficient activation of naive T cells has led to their extensive use in cancer immunotherapy protocols. In order to be able to fulfil their role as antigen-presenting cells, the antigen of interest needs to be efficiently introduced and subsequently correctly processed and presented by the DC. For this purpose, a variety of both viral and non-viral antigen-delivery systems have been evaluated. Amongst those, HIV-1-derived lentiviral vectors have been used successfully to transduce DC.This review considers the use of HIV-1-derived lentiviral vectors to transduce human and murine DC for cancer immunotherapy. Lentivirally transduced DC have been shown to present antigenic peptides, prime transgene-specific T cells in vitro and elicit a protective cytotoxic T-lymphocyte (CTL) response in animal models. Different parameters determining the efficacy of transduction are considered. The influence of lentiviral transduction on the DC phenotype and function is described and the induction of immune responses by lentivirally transduced DC in vitro and in vivo is discussed in detail. In addition, direct in vivo administration of lentiviral vectors aiming at the induction of antigen-specific immunity is reviewed. This strategy might overcome the need for ex vivo generation and antigen loading of DC. Finally, future perspectives towards the use of lentiviral vectors in cancer immunotherapy are presented.  相似文献   

9.
Summary During the course of studies involving the in vitro manipulation of channel catfish peripheral blood leukocytes, spontaneous proliferation was observed with unexpectedly high frequency. Propagation of these spontaneously proliferating cells has resulted in the development of long-term (>11 mo.) cell lines which stain positively for nonspecific esterase and peroxidase, are phagocytic for latex beads, and morphologically resemble mammalian monocytes or macrophages. These long-term cell lines also exhibit two important additional functional features. First, induction with lipopolysaccharide results in the secretion of relatively high levels of catfish high and low molecular weight species of interleukin-1 active on channel catfish and mouse T cells, respectively. Second, these cell lines are efficient antigen-presenting cells to autologous peripheral blood leukocytes for antigen specific in vitro proliferative and antibody responses. This antigen-presenting function is blocked by inhibitors known to prevent antigen processing and presentation by mammalian monocytes. Allogeneic mixtures of cell line (used as antigen-presenting cells) and responding peripheral blood leukocytes, however, resulted in strong mixed leukocyte reaction but not in specific antibody responses. The availability of such cell lines should facilitate further studies on accessory cell functions in fish immune responses. This work was supported in part by grant 5-R37-AI-19530 from the National Institutes of Health, Bethesda, MD.  相似文献   

10.
Antigen-specific interactions between B cells and T cells are essential for the generation of an efficient immune response. Since this requires peptide–MHC class II complexes (pMHC-II) on the B cell to interact with TCR on antigen-specific T cells, we have examined the mechanisms regulating the persistence, loss, and secretion of specific pMHC-II complexes on activated B cells. Using a mAb that recognizes specific pMHC-II, we found that activated B cells degrade approximately 50% of pMHC-II every day and release 12% of these pMHC-II from the cell on small membrane vesicles termed exosomes. These exosomes directly stimulate primed, but not naïve, CD4 T cells. Interestingly, engagement of antigen-loaded B cells with specific CD4 T cells stimulates exosome release in a manner that can be mimicked by pMHC-II crosslinking. Biochemical studies revealed that the pMHC-II released on exosomes was previously expressed on the plasma membrane of the B cells, suggesting that regulated exosome release from activated B cells is a mechanism to allow pMHC-II to escape intracellular degradation and decorate secondary lymphoid organs with membrane-associated pMHC-II complexes.  相似文献   

11.
Invariant natural killer T (iNKT) cells are innate T cells with powerful immune regulatory functions that recognize glycolipid antigens presented by the CD1D protein. While iNKT cell-activating glycolipids are currently being explored for their efficacy to improve immunotherapy against infectious diseases and cancer, little is known about the mechanisms that control CD1D antigen presentation and iNKT cell activation in vivo. CD1D molecules survey endocytic pathways to bind lipid antigens in MHC class II-containing compartments (MIICs) before recycling to the plasma membrane. Autophagosomes intersect with MIICs and autophagy-related proteins are known to support antigen loading for increased CD4+ T cell immunity. Here, we report that mice with dendritic cell (DC)-specific deletion of the essential autophagy gene Atg5 showed better CD1D1-restricted glycolipid presentation in vivo. These effects led to enhanced iNKT cell cytokine production upon antigen recognition and lower bacterial loads during Sphingomonas paucimobilis infection. Enhanced iNKT cell activation was independent of receptor-mediated glycolipid uptake or costimulatory signals. Instead, loss of Atg5 in DCs impaired clathrin-dependent internalization of CD1D1 molecules via the adaptor protein complex 2 (AP2) and, thus, increased surface expression of stimulatory CD1D1-glycolipid complexes. These findings indicate that the autophagic machinery assists in the recruitment of AP2 to CD1D1 molecules resulting in attenuated iNKT cell activation, in contrast to the supporting role of macroautophagy in CD4+ T cell stimulation.  相似文献   

12.
We established several immortalized human T cell lines by cotransfecting primary lymphocytes derived from breast cancer patients with human c-myc and human c-Ha-ras oncogenes. A CD8 positive (CD8+) killer T cell line, FT-8, exhibitedin vitro specific cytotoxicity to a human breast cancer cell line, MCF-7. The FT-8 cells suppressed the growth of MCF-7 cells transplanted to athymic mice. The cytotoxic reaction was caused via T cell antigen receptor (TCR) on MCF-7 cells, because monoclonal antibodies against the TCR inhibited the cytotoxicity of FT-8 cells. The TCR() cDNA of FT-8 was cloned by using a PCR amplification technique and expressed by a cell-freein vitro translation system. The TCR() protein recognized a target antigen of 32 KDa on MCF-7 cells.Abbreviations FCS fetal calf serum - FITC fluorescein isothiocynate - MAb monoclonal antibody - PE phycoerythrin - TCR T cell recepter - TCR() chain of TCR - TPBS PBS containing Tween 20  相似文献   

13.
    
Cytotoxic CD8(+) T lymphocytes kill infected cells that display major histocompatibility complex (MHC) class I molecules presenting peptides processed from pathogen proteins. In general, the peptides are proteolytically processed from newly made endogenous antigens in the cytosol and require translocation to the endoplasmic reticulum (ER) for MHC class I loading. This last task is performed by the transporters associated with antigen processing (TAP). Sampling of suspicious pathogen-derived proteins reaches beyond the cytosol, and MHC class I loading can occur in other secretory or endosomal compartments besides the ER. Peptides processed from exogenous antigens can also be presented by MHC class I molecules to CD8(+) T lymphocytes, in this case requiring delivery from the extracellular medium to the processing and MHC class I loading compartments. The endogenous or exogenous antigen can be processed before or after its transport to the site of MHC class I loading. Therefore, mechanisms that allow the full-length protein or processed peptides to cross several subcellular membranes are essential. This review deals with the different intracellular pathways that allow the traffic of antigens to compartments proficient in processing and loading of MHC class I molecules for presentation to CD8(+) T lymphocytes and highlights the need to molecularly identify the transporters involved.  相似文献   

14.
The recent discovery of two proteasome homologous genes,LMP2 andLMP7, in the class II region of the human MHC, has implicated this multi-subunit protease in an early step of the immune response; the degradation of intracellular and viral proteins. Short peptides produced by the proteasome are transported into the ER by the product of another set of MHC class II genes,TAP1 andTAP2, where they bind and stabilise HLA class I molecules. Antigenic peptides displayed at the cell surface by HLA class I molecules mark cells for destruction by cytotoxic T lymphocytes. The role of the proteasome in antigen processing was questioned when mutant cells, which lack theLMP genes, were able to process and present antigens normally. The discovery that two proteasome -subunits, delta andMB1, highly homologous toLMP2 andLMP7 and expressed in reciprocal manner, is now consistent with a role for the proteasome in antigen processing. The incorporation of different -subunits into the proteasome may be a mechanism to modulate catalytic activity of the proteasome complex, allowing production of peptides that are more suitable to enter into the ER by the TAP transporters and to bind HLA class I molecules. But, in the absence of the LMPs, the other subunits permit processing of most antigens reasonably efficiently.Abbreviations ABC ATP-binding cassete - 2m 2-microglobulin - ER endoplasmic reticulum - IFN interferon - LMP low molecular weight peptide - MHC major histocompatibility complex - TAP transporter associated with antigen processing  相似文献   

15.
Tumor antigen-specific T helper cells in cancer immunity and immunotherapy   总被引:9,自引:4,他引:9  
Historically, cancer-directed immune-based therapies have focused on eliciting a cytotoxic T cell (CTL) response, primarily due to the fact that CTL can directly kill tumors. In addition, many putative tumor antigens are intracellular proteins, and CTL respond to peptides presented in the context of MHC class I which are most often derived from intracellular proteins. Recently, increasing importance is being given to the stimulation of a CD4+ T helper cell (Th) response in cancer immunotherapy. Th cells are central to the development of an immune response by activating antigen-specific effector cells and recruiting cells of the innate immune system such as macrophages and mast cells. Two predominant Th cell subtypes exist, Th1 and Th2. Th1 cells, characterized by secretion of IFN- and TNF-, are primarily responsible for activating and regulating the development and persistence of CTL. In addition, Th1 cells activate antigen-presenting cells (APC) and induce limited production of the type of antibodies that can enhance the uptake of infected cells or tumor cells into APC. Th2 cells favor a predominantly humoral response. Particularly important during Th differentiation is the cytokine environment at the site of antigen deposition or in the local lymph node. Th1 commitment relies on the local production of IL-12, and Th2 development is promoted by IL-4 in the absence of IL-12. Specifically modulating the Th1 cell response against a tumor antigen may lead to effective immune-based therapies. Th1 cells are already widely implicated in the tissue-specific destruction that occurs during the pathogenesis of autoimmune diseases, such as diabetes mellitus and multiple sclerosis. Th1 cells directly kill tumor cells via release of cytokines that activate death receptors on the tumor cell surface. We now know that cross-priming of the tumor-specific response by potent APC is a major mechanism of the developing endogenous immune response; therefore, even intracellular proteins can be presented in the context of MHC class II. Indeed, recent studies demonstrate the importance of cross-priming in eliciting CTL. Many vaccine strategies aim to stimulate the Th response specific for a tumor antigen. Early clinical trials have shown that focus on the Th effector arm of the immune system can result in significant levels of both antigen-specific Th cells and CTL, the generation of long lasting immunity, and a Th1 phenotype resulting in the development of epitope spreading.  相似文献   

16.
    
This report examines how sensing of substrate topography can be used to modulate T cell activation, a key coordinating step in the adaptive immune response. Inspired by the native T cell–antigen presenting cell interface, micrometer scale pits with varying depth are fabricated into planar substrates. Primary CD4+ T cells extend actin‐rich protrusions into the micropits. T cell activation, reflected in secretion of cytokines interleukin‐2 and interferon gamma, is sensitive to the micropit depth. Surprisingly, arrays of micropits with 4 μm depth enhance activation compared to flat substrates but deeper micropits are less effective at increasing cell response, revealing a biphasic dependence in activation as a function of feature dimensions. Inhibition of cell contractility abrogates the enhanced activation associated with the micropits. In conclusion, this report demonstrates that the 3D, microscale topography can be used to enhance T cell activation, an ability that most directly can be used to improve production of these cells for immunotherapy.  相似文献   

17.
摘要 目的:通过对CAR结构的ScFv单链可变区进行改造,构建并筛选具有更强杀伤肿瘤细胞功能的新型靶向人源B细胞成熟抗原(BCMA)的嵌合抗原受体 (CAR)-T细胞。方法:构建靶向人源BCMA的CAR分子,用逆转录病毒载体包装成功后转导健康志愿者的T细胞,制备Anti-BCMA-CAR-T细胞。将Anti-BCMA-CAR-T细胞作为观察组,普通T细胞作为对照组,将其与RPMI-8226细胞共培养,采用CFSE染色的T细胞增殖实验观察两组体外增殖能力。采用荧光素酶化学发光实验检测两组细胞在不同效靶比(1:8、1:4、1:2、1:1、2:1、4:1)对RPMI-8226细胞的杀伤效率,采用流式细胞术检测两组细胞在不同效靶比(1:4、1:2、1:1、2:1、4:1)对RPMI-8226细胞的杀伤效率。结果:CFSE检测结果显示,与对照组比较,观察组FITC信号明显左移,表明T细胞增殖能力越强。流式细胞术检测结果显示,相同效靶比时,观察组对RPMI-8226细胞的杀伤效率均高于对照组(P均<0.05);荧光素酶化学发光实验结果显示,相同效靶比时,观察组对RPMI-8226细胞的杀伤效率均高于对照组(P均<0.05)。在效靶比为4:1时,CAR170-T(未经改造的传统的ScFv)细胞和CAR174-T(经改造的ScFv)细胞的杀伤效率分别达到了88.5±0.3 %和98.5±0.7 %。结论:通过对CAR结构的ScFv单链可变区进行改造后成功构建出的新型靶向BCMA的CAR-T细胞,它能保持较强的增殖活性且具有更强的杀伤肿瘤细胞的能力。  相似文献   

18.
Introduction: Our immune system discriminates self from non-self by examining the peptide cargo of human leukocyte antigen (HLA) molecules displayed on the cell surface. Successful recognition of HLA-bound non-self peptides can induce T cell responses leading to, for example, the destruction of infected cells. Today, largely due to advances in technology, we have an unprecedented capability to identify the nature of these presented peptides and unravel the true complexity of antigen presentation.

Areas covered: In addition to conventional linear peptides, HLA molecules also present post-translationally modified sequences comprising a wealth of chemical and structural modifications, including a novel class of noncontiguous spliced peptides. This review focuses on these emerging themes in antigen presentation and how mass spectrometry in particular has contributed to a new view of the antigenic landscape that is presented to the immune system.

Expert Commentary: Advances in the sensitivity of mass spectrometers and use of hybrid fragmentation technologies will provide more information-rich spectra of HLA bound peptides leading to more definitive identification of T cell epitopes. Coupled with improvements in sample preparation and new informatics workflows, studies will access novel classes of peptide antigen and allow interrogation of rare and clinically relevant samples.  相似文献   


19.
Expression of the cancer-testis antigen Taxol resistance–associated gene-3 (TRAG-3) protein is associated with acquired paclitaxel (Taxol) resistance, and is expressed in various cancer types; e.g., breast cancer, leukemia, and melanoma. Thus, TRAG-3 represents an attractive target for immunotherapy of cancer. To identify HLA-A*02.01–restricted epitopes from TRAG-3, we screened cancer patients for spontaneous cytotoxic T-cell responses against TRAG-3–derived peptides. The TRAG-3 protein sequence was screened for 9mer and 10mer peptides possessing HLA-A*02.01–binding motifs. Of 12 potential binders, 9 peptides were indeed capable of binding to the HLA-A*02.01 molecule, with binding affinities ranging from strong to weak binders. Subsequently, lymphocytes from cancer patients (9 breast cancer patients, 12 melanoma patients, and 13 patients with hematopoietic malignancies) were analyzed for spontaneous reactivity against the panel of peptides by ELISpot assay. Spontaneous immune responses were detected against 8 epitope candidates in 7 of 9 breast cancer patients, 7 of 12 melanoma patients, and 5 of 13 patients with hematopoietic malignancies. In several cases, TRAG-3–specific CTL responses were scattered over several epitopes. Hence, no immunodominance of any single peptide was observed. Furthermore, single-peptide responses were detected in 2 of 12 healthy HLA-A2+ donors, but no responses were detectable in 9 HLA-A2 healthy donors or 4 HLA-A2 melanoma patients. The identified HLA-A*02.01–restricted TRAG-3–derived epitopes are targets for spontaneous immune responses in breast cancer, hematopoietic cancer, and melanoma patients. Hence, these epitopes represent potential target structures for future therapeutic vaccinations against cancer, possibly appropriate for strategies that combine vaccination and chemotherapy; i.e., paclitaxel treatment.  相似文献   

20.
热休克蛋白家族中的许多成员如gp96,HSP90,HSP70等具有排斥和治疗肿瘤及传染性疾病的免疫原性,进一步研究发现热休克蛋白作为分子伴侣可结合细胞中的肽库,它本身没有抗原性,抗原性由结合的短肽所决定。热休克蛋白将结合的短肽呈递给I类MHC分子,进而激活特异性CTL和记忆性T细胞,引发机体细胞免疫反应。据最新发现gp96还可能有与MHC一样的功能,可直接将结合的多肽抗原呈递给T细胞。近年来对哺乳动物的二种主要热休克蛋白gp96和HSP70的免疫机制和作为治疗性疫苗的优越性进行了详细研究,这为乙型肝炎和乙肝继发性肝癌的免疫治疗提供了新思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号