首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
SMAD4 acts as the converging point for TGFβ and BMP signaling in heart development. Here, we investigated the role of SMAD4 in heart development using a novel α skeletal muscle actin Cre recombinase (MuCre) transgenic mouse strain. Lineage tracing using MuCre/ROSA26LacZ reporter mice indicated strong Cre-recombinase expression in developing and adult heart and skeletal muscles. In heart development, significant MuCre expression was noted at E11.5 in the atrial, ventricular, outflow tract and atrioventricular canal myocardium, but not in the endocardial cushions. MuCre-driven conditional deletion of Smad4 in mice caused double outlet right ventricle (DORV), ventricular septal defect (VSD), impaired trabeculation and thinning of ventricular myocardium, and mid-gestational embryonic lethality. In conclusion, MuCre mice effectively delete genes in both heart and skeletal muscles, thus enabling the discovery that myocardial Smad4 deletion causes misalignment of the outflow tract and DORV.  相似文献   

2.

Background

The Copper Metabolism MURR1 Domain containing 1 protein COMMD1 has been associated with copper homeostasis, NF-κB signaling, and sodium transport. Recently, we identified COMMD1 as a novel protein in HIF-1 signaling. Mouse embryos deficient for Commd1 have increased expression of hypoxia/HIF-regulated genes i.e. VEGF, PGK and Bnip3. Hypoxia-inducible factors (HIFs) are master regulators of oxygen homeostasis, which control angiogenesis, erythropoiesis, glycolysis and cell survival/proliferation under normal and pathologic conditions. Although HIF activity is mainly controlled by ubiquitination and protein degradation by the von Hippel Lindau (pVHL) tumor suppressor gene other mechanisms have recently been identified that regulate HIF signaling independently of pVHL.

Principal Findings

Here we characterized the mechanism by which COMMD1 regulates HIF-1α protein degradation. We show that COMMD1 competes with the chaperone heat shock protein HSP90β for binding to the NH2-terminal DNA-binding and heterodimerization domain of HIF-1α to regulate HIF-1α stability together with HSP70. Inhibition of HSP90 activity with 17-Allylamino-17-demethoxygeldanamycin (17-AAG) increased COMMD1-mediated HIF-1α degradation independent of ubiquitin and pVHL.

Conclusion/Significance

These data reveal a novel role for COMMD1 in conjunction with HSP90β/HSP70 in the ubiquitin and O2-independent regulation of HIF-1α.  相似文献   

3.
Pyroptosis is an inflammatory cell death that regulates cardiomyocyte loss after myocardial infarction. Reports indicate that nicorandil has a strong anti-inflammatory effect and protects the myocardium from myocardial infarction. However, its relationship with pyroptosis is largely unreported. Here, we investigated to influence and mechanism of action of nicorandil on cardiomyocyte pyroptosis. Forty Sprague Dawley rats were randomly assigned to sham, MI, MI + nicorandil, and MI + nicorandil + TAK242 groups (10 per group). Myocardial infarction modeling was performed through ligation of the anterior descending branch of the left coronary artery. The function of cardiac was evaluated through echocardiography, detection of myocardial adenine nucleotides, cTnI, LDH, TTC, and HE staining. Moreover, we used qRT-PCR, immunohistochemistry, and Western blotting to examine the expression of pyroptosis-related molecules and the inflammasome pathway of TLR4/MyD88/NF-κB/NLRP3. Myocardial infarction caused the activation of GSDMD, aggravated myocardial injury, and triggered cardiac dysfunction. Myocardial infarction induced pyroptotic cell death, manifested as upregulation in mRNA and protein levels associated with pyroptosis, including caspase-1 cleavage and increased expression of IL-1β and IL-18. These changes were mitigated by nicorandil. The achieved data implicate that myocardial infarction induces pyroptosis via the TLR4/MyD88/NF-κB/NLRP3 pathway, which can be inhibited by nicorandil pretreatment. Therefore, nicorandil exerts cardioprotective effects by activating KATP channels, and at least in part through inhibition of the TLR4/MyD88/NF-κB/NLRP3 pathway to reduce myocardial infarction-induced pyroptosis. As such, it is a potential therapy for ischemic heart disease.  相似文献   

4.
The Frank–Starling mechanism is a fundamental property of the vertebrate heart, which allows the myocardium to respond to increased filling pressure with a more vigorous contraction of its lengthened fibres. In mammals, myocardial stretch increases cardiac nitric oxide (NO) release from both vascular endothelium and cardiomyocytes. This facilitates myocardial relaxation and ventricular diastolic distensibility, thus influencing the Frank–Starling mechanism.In the in vitro working heart of the eel Anguilla anguilla, we previously showed that an endogenous NO release affects the Frank–Starling response making the heart more sensitive to preload. Using the same bioassay, we now demonstrate that this effect is confirmed in the presence of the exogenous NO donor S-nitroso-N-acetyl penicillamine, is independent from endocardial endothelium and guanylate cyclase/cGMP/protein kinase G and cAMP/protein kinase A pathways, involves a PI(3)kinase-mediated activation of endothelial NO synthase and a modulation of the SR-CA2+ATPase (SERCA2a) pumps. Furthermore, we show that NO influences cardiac response to preload through S-nitrosylation of phospholamban and consequent activation of SERCA2a. This suggests that in the fish heart NO modulates the Frank–Starling response through a beat-to-beat regulation of calcium reuptake and thus of myocardial relaxation.We propose that this mechanism represents an important evolutionary step for the stretch-induced intrinsic regulation of the vertebrate heart, providing, at the same time, a stimulus for mammalian-oriented studies.  相似文献   

5.
BackgroundCeruloplasmin (Cp) is a major copper-binding protein produced in the liver and delivers copper to extrahepatic organs. Patients with myocardial infarction are often featured by an elevation of serum copper concentrations due to copper efflux from ischemic hearts. The present study was undertaken to test the hypothesis that serum copper elevation leads to up-regulation of hepatic Cp in myocardial infarction.MethodsAdult male Sprague-Dawley rats were subjected to left anterior descending (LAD) coronary artery ligation to induce myocardial infarction. Serum copper and Cp levels, as well as changes in hepatic Cp and copper-transporting P-type ATPase (Atp7b), were determined from blood and liver samples collected on day 1, 4, or 7 after the operation.ResultsSerum copper concentrations were significantly increased on day 4 after LAD ligation, accompanied by an increase in serum Cp levels and activities. Concomitantly, the protein levels of Cp and copper exporter, Atp7b, were also significantly increased in the liver. Furthermore, inhibiting the increase of serum copper by a copper chelator, triethylenetetramine (TETA), effectively abolished the elevated Cp activity after LAD ligation.ConclusionThese results indicate that serum Cp elevation in response to myocardial ischemia most likely resulted from the increased hepatic Cp production, which in turn was more responsive to serum copper elevation than inflammatory response following myocardial ischemia.  相似文献   

6.

Background

The limited effectiveness of cardiac cell therapy has generated concern regarding its clinical relevance. Experimental studies show that cell retention and engraftment are low after injection into ischemic myocardium, which may restrict therapy effectiveness significantly. Surgical aspects and mechanical loss are suspected to be the main culprits behind this phenomenon. As current techniques of monitoring intramyocardial injections are complex and time-consuming, the aim of the study was to develop a fast and simple model to study cardiac retention and distribution following intramyocardial injections. For this purpose, our main hypothesis was that macroscopic fluorescence imaging could adequately serve as a detection method for intramyocardial injections.

Methods and Results

A total of 20 mice underwent ligation of the left anterior descending artery (LAD) for myocardial infarction. Fluorescent microspheres with cellular dimensions were used as cell surrogates. Particles (5×105) were injected into the infarcted area of explanted resting hearts (Ex vivo myocardial injetions EVMI, n = 10) and in vivo into beating hearts (In vivo myocardial injections IVMI, n = 10). Microsphere quantification was performed by fluorescence imaging of explanted organs. Measurements were repeated after a reduction to homogenate dilutions. Cardiac microsphere retention was 2.78×105±0.31×105 in the EVMI group. In the IVMI group, cardiac retention of microspheres was significantly lower (0.74×105±0.18×105; p<0.05). Direct fluorescence imaging revealed venous drainage through the coronary sinus, resulting in a microsphere accumulation in the left (0.90×105±0.20×105) and the right (1.07×105±0.17×105) lung. Processing to homogenates involved further particle loss (p<0.05) in both groups.

Conclusions

We developed a fast and simple direct fluorescence imaging method for biodistribution analysis which enabled the quantification of fluorescent microspheres after intramyocardial delivery using macroscopic fluorescence imaging. This new technique showed massive early particle loss and venous drainage into the right atrium leading to substantial accumulation of graft particles in both lungs.  相似文献   

7.
Wilson’s disease, caused by a mutation in the ATP-ase 7B gene, is the only genetically characterised human disease with inhibition of biliary copper excretion and toxic copper accumulation in liver and occasionally brain. A similar copper toxicosis occurs in Bedlington terriers (CT) with liver damage only. Although CT has been associated with a defect in the COMMD1 gene (COMMD1 del/del), Bedlington terriers with CT and lacking this mutation are also recognised (non-COMMD1 del/del).A study was designed to identify any other gene polymorphisms associated with copper toxicity in Bedlington terriers employing genome wide association studies (GWAS) followed by deep sequencing of the candidate region. Blood for DNA analysis and liver for confirmation of the diagnosis was obtained from 30 non-COMMD1 del/del Bedlington terriers comprising equal numbers of CT-affected dogs and controls. DNA was initially subjected to GWAS screening and then further sequencing to target the putative mutant gene.The study has identified a significant disease association with a region on chromosome 37 containing identified SNP’s which are highly significantly associated with non-COMMD1 del/del Bedlington terrier CT. This region contains the ABCA12 gene which bears a close functional relationship to ATP-ase 7B responsible for Wilson’s disease in man.  相似文献   

8.

Objectives

Atherosclerotic lesions of the coronary arteries are the pathological basis for myocardial infarction and ischemic cardiomyopathy. Progression of heart failure after myocardial infarction is associated with cardiac remodeling, which has been studied by means of coronary ligation in mice. However, this ligation model requires excellent techniques. Recently, a new murine model, HypoE mouse was reported to exhibit atherogenic Paigen diet-induced coronary atherosclerosis and myocardial infarction; however, the HypoE mice died too early to make possible investigation of cardiac remodeling. Therefore, we aimed to modify the HypoE mouse model to establish a novel model for ischemic cardiomyopathy caused by atherosclerotic lesions, which the ligation model does not exhibit.

Methods and Results

In our study, the sustained Paigen diet for the HypoE mice was shortened to 7 or 10 days, allowing the mice to survive longer. The 7-day Paigen diet intervention starting when the mice were 8 weeks old was adequate to permit the mice to survive myocardial infarction. Our murine model, called the “modified HypoE mouse”, was maintained until 8 weeks, with a median survival period of 36 days, after the dietary intervention (male, n = 222). Echocardiography demonstrated that the fractional shortening 2 weeks after the Paigen diet (n = 14) significantly decreased compared with that just before the Paigen diet (n = 6) (31.4±11.9% vs. 54.4±2.6%, respectively, P<0.01). Coronary angiography revealed multiple diffuse lesions. Cardiac remodeling and fibrosis were identified by serial analyses of cardiac morphological features and mRNA expression levels in tissue factors such as MMP-2, MMP-9, TIMP-1, collagen-1, and TGF-β.

Conclusion

Modified HypoE mice are a suitable model for ischemic cardiomyopathy with multiple diffuse lesions and may be considered as a novel and convenient model for investigations of cardiac remodeling on a highly atherogenic background.  相似文献   

9.
10.
Zebrafish (Danio rerio) have become a popular model in cardiovascular research mainly due to identification of a large number of mutants with structural defects. In recent years, cardiomyopathies and other diseases influencing contractility of the heart have been studied in zebrafish mutants. However, little is known about the regulation of contractility of the zebrafish heart on a tissue level. The aim of the present study was to elucidate the role of trans-sarcolemmal Ca2+-flux and sarcoplasmic reticulum Ca2+-release in zebrafish myocardium. Using isometric force measurements of fresh heart slices, we characterised the effects of changes of the extracellular Ca2+-concentration, trans-sarcolemmal Ca2+-flux via L-type Ca2+-channels and Na+-Ca2+-exchanger, and Ca2+-release from the sarcoplasmic reticulum as well as beating frequency and β-adrenergic stimulation on contractility of adult zebrafish myocardium. We found an overall negative force-frequency relationship (FFR). Inhibition of L-type Ca2+-channels by verapamil (1 μM) decreased force of contraction to 22±7% compared to baseline (n=4, p<0.05). Ni2+ was the only substance to prolong relaxation (5 mM, time after peak to 50% relaxation: 73±3 ms vs. 101±8 ms, n=5, p<0.05). Surprisingly though, inhibition of the sarcoplasmic Ca2+-release decreased force development to 54±3% in ventricular (n=13, p<0.05) and to 52±8% in atrial myocardium (n=5, p<0.05) suggesting a substantial role of SR Ca2+-release in force generation. In line with this finding, we observed significant post pause potentiation after pauses of 5 s (169±7% force compared to baseline, n=8, p<0.05) and 10 s (198±9% force compared to baseline, n=5, p<0.05) and mildly positive lusitropy after β-adrenergic stimulation. In conclusion, force development in adult zebrafish ventricular myocardium requires not only trans-sarcolemmal Ca2+-flux, but also intact sarcoplasmic reticulum Ca2+-cycling. In contrast to mammals, FFR is strongly negative in the zebrafish heart. These aspects need to be considered when using zebrafish to model human diseases of myocardial contractility.  相似文献   

11.
Small-molecule inhibition of hypoxia-inducible factor prolyl 4-hydroxylases (HIF-P4Hs) is being explored for the treatment of anemia. Previous studies have suggested that HIF-P4H-2 inhibition may also protect the heart from an ischemic insult. Hif-p4h-2gt/gt mice, which have 76 to 93% knockdown of Hif-p4h-2 mRNA in endothelial cells, fibroblasts, and cardiomyocytes and normoxic stabilization of Hif-α, were subjected to ligation of the left anterior descending coronary artery (LAD). Hif-p4h-2 deficiency resulted in increased survival, better-preserved left ventricle (LV) systolic function, and a smaller infarct size. Surprisingly, a significantly larger area of the LV remained perfused during LAD ligation in Hif-p4h-2gt/gt hearts than in wild-type hearts. However, no difference was observed in collateral vessels, while the size of capillaries, but not their number, was significantly greater in Hif-p4h-2gt/gt hearts than in wild-type hearts. Hif-p4h-2gt/gt mice showed increased cardiac expression of endothelial Hif target genes for Tie-2, apelin, APJ, and endothelial nitric oxide (NO) synthase (eNOS) and increased serum NO concentrations. Remarkably, blockage of Tie-2 signaling was sufficient to normalize cardiac apelin and APJ expression and resulted in reversal of the enlarged-capillary phenotype and ischemic cardioprotection in Hif-p4h-2gt/gt hearts. Activation of the hypoxia response by HIF-P4H-2 inhibition in endothelial cells appears to be a major determinant of ischemic cardioprotection and justifies the exploration of systemic small-molecule HIF-P4H-2 inhibitors for ischemic heart disease.  相似文献   

12.

Background

Obesity is associated with diastolic dysfunction, lower maximal myocardial blood flow, impaired myocardial metabolism and increased risk of heart failure. We examined the association between obesity, left ventricular filling pressure and myocardial structure.

Methods

We performed histological analysis of non-ischemic myocardium from 57 patients (46 men and 11 women) undergoing coronary artery bypass graft surgery who did not have previous cardiac surgery, myocardial infarction, heart failure, atrial fibrillation or loop diuretic therapy.

Results

Non-obese (body mass index, BMI, ≤30 kg/m2, n=33) and obese patients (BMI >30 kg/m2, n=24) did not differ with respect to myocardial total, interstitial or perivascular fibrosis, arteriolar dimensions, or cardiomyocyte width. Obese patients had lower capillary length density (1145±239, mean±SD, vs. 1371±333 mm/mm3, P=0.007) and higher diffusion radius (16.9±1.5 vs. 15.6±2.0 μm, P=0.012), in comparison with non-obese patients. However, the diffusion radius/cardiomyocyte width ratio of obese patients (0.73±0.11 μm/μm) was not significantly different from that of non-obese patients (0.71±0.11 μm/μm), suggesting that differences in cardiomyocyte width explained in part the differences in capillary length density and diffusion radius between non-obese and obese patients. Increased BMI was associated with increased pulmonary capillary wedge pressure (PCWP, P<0.0001), and lower capillary length density was associated with both increased BMI (P=0.043) and increased PCWP (P=0.016).

Conclusions

Obesity and its accompanying increase in left ventricular filling pressure were associated with lower coronary microvascular density, which may contribute to the lower maximal myocardial blood flow, impaired myocardial metabolism, diastolic dysfunction and higher risk of heart failure in obese individuals.  相似文献   

13.
We analyzed the impact of surfactant addition on hydrocarbon mineralization kinetics and the associated population shifts of hydrocarbon-degrading microorganisms in soil. A mixture of radiolabeled hexadecane and phenanthrene was added to batch soil vessels. Witconol SN70 (a nonionic, alcohol ethoxylate) was added in concentrations that bracketed the critical micelle concentration (CMC) in soil (CMC′) (determined to be 13 mg g−1). Addition of the surfactant at a concentration below the CMC′ (2 mg g−1) did not affect the mineralization rates of either hydrocarbon. However, when surfactant was added at a concentration approaching the CMC′ (10 mg g−1), hexadecane mineralization was delayed and phenanthrene mineralization was completely inhibited. Addition of surfactant at concentrations above the CMC′ (40 mg g−1) completely inhibited mineralization of both phenanthrene and hexadecane. Denaturing gradient gel electrophoresis of 16S rRNA gene segments showed that hydrocarbon amendment stimulated Rhodococcus and Nocardia populations that were displaced by Pseudomonas and Alcaligenes populations at elevated surfactant levels. Parallel cultivation studies revealed that the Rhodococcus population can utilize hexadecane and that the Pseudomonas and Alcaligenes populations can utilize both Witconol SN70 and hexadecane for growth. The results suggest that surfactant applications necessary to achieve the CMC alter the microbial populations responsible for hydrocarbon mineralization.  相似文献   

14.

Background

Endogenous cardiac progenitor cells are a promising option for cell-therapy for myocardial infarction (MI). However, obtaining adequate numbers of cardiac progenitors after MI remains a challenge. Cardiospheres (CSs) have been proposed to have cardiac regenerative properties; however, their cellular composition and how they may be influenced by the tissue milieu remains unclear.

Methodology/Principal Finding

Using “middle aged” mice as CSs donors, we found that acute MI induced a dramatic increase in the number of CSs in a mouse model of MI, and this increase was attenuated back to baseline over time. We also observed that CSs from post-MI hearts engrafted in ischemic myocardium induced angiogenesis and restored cardiac function. To determine the role of Sca-1+CD45- cells within CSs, we cloned these from single cell isolates. Expression of Islet-1 (Isl1) in Sca-1+CD45- cells from CSs was 3-fold higher than in whole CSs. Cloned Sca-1+CD45- cells had the ability to differentiate into cardiomyocytes, endothelial cells and smooth muscle cells in vitro. We also observed that cloned cells engrafted in ischemic myocardium induced angiogenesis, differentiated into endothelial and smooth muscle cells and improved cardiac function in post-MI hearts.

Conclusions/Significance

These studies demonstrate that cloned Sca-1+CD45- cells derived from CSs from infarcted “middle aged” hearts are enriched for second heart field (i.e., Isl-1+) precursors that give rise to both myocardial and vascular tissues, and may be an appropriate source of progenitor cells for autologous cell-therapy post-MI.  相似文献   

15.
The Copper Metabolism MURR1 domain protein 1 (COMMD1) is a protein involved in multiple cellular pathways, including copper homeostasis, NF-κB and hypoxia signalling. Acting as a scaffold protein, COMMD1 mediates the levels, stability and proteolysis of its substrates (e.g. the copper-transporters ATP7B and ATP7A, RELA and HIF-1α). Recently, we established an interaction between the Cu/Zn superoxide dismutase 1 (SOD1) and COMMD1, resulting in a decreased maturation and activation of SOD1. Mutations in SOD1, associated with the progressive neurodegenerative disorder Amyotrophic Lateral Sclerosis (ALS), cause misfolding and aggregation of the mutant SOD1 (mSOD1) protein. Here, we identify COMMD1 as a novel regulator of misfolded protein aggregation as it enhances the formation of mSOD1 aggregates upon binding. Interestingly, COMMD1 co-localizes to the sites of mSOD1 inclusions and forms high molecular weight complexes in the presence of mSOD1. The effect of COMMD1 on protein aggregation is client-specific as, in contrast to mSOD1, COMMD1 decreases the abundance of mutant Parkin inclusions, associated with Parkinson’s disease. Aggregation of a polyglutamine-expanded Huntingtin, causative of Huntington’s disease, appears unaltered by COMMD1. Altogether, this study offers new research directions to expand our current knowledge on the mechanisms underlying aggregation disease pathologies.  相似文献   

16.
Copper is a trace element indispensable for life, but at the same time it is implicated in reactive oxygen species formation. Several inherited copper storage diseases are described of which Wilson disease (copper overload, mutations in ATP7B gene) and Menkes disease (copper deficiency, mutations in ATP7A gene) are the most prominent ones. After the discovery in 2002 of a novel gene product (i.e. COMMD1) involved in hepatic copper handling in Bedlington terriers, studies on the mechanism of action of COMMD1 revealed numerous non-copper related functions. Effects on hepatic copper handling are likely mediated via interactions with ATP7B. In addition, COMMD1 has many more interacting partners which guide their routing to either the plasma membrane or, often in an ubiquitination-dependent fashion, trigger their proteolysis via the S26 proteasome. By stimulating NF-κB ubiquitination, COMMD1 dampens an inflammatory reaction. Finally, targeting COMMD1 function can be a novel approach in the treatment of tumors.  相似文献   

17.

Rationale

Acute myocardial infarction (AMI) followed by ventricular remodeling is the major cause of congestive heart failure and death in western world countries.

Objective

Of relevance are reports showing that infusion of apoptotic leucocytes or anti-lymphocyte serum after AMI reduces myocardial necrosis and preserves cardiac function. In order to corroborate this therapeutic mechanism, the utilization of an immunosuppressive agent with a comparable mechanism, such as anti-thymocyte globulin (ATG) was evaluated in this study.

Methods and Results

AMI was induced in rats by ligation of the left anterior descending artery. Initially after the onset of ischemia, rabbit ATG (10 mg/rat) was injected intravenously. In vitro and in vivo experiments showed that ATG induced a pronounced release of pro-angiogenic and chemotactic factors. Moreover, paracrine factors released from ATG co-incubated cell cultures conferred a down-regulation of p53 in cardiac myocytes. Rats that were injected with ATG evidenced higher numbers of CD68+ macrophages in the ischemic myocardium. Animals injected with ATG evidenced less myocardial necrosis, showed a significant reduction of infarct dimension and an improvement of post-AMI remodeling after six weeks (infarct dimension 24.9% vs. 11.4%, p<0.01). Moreover, a higher vessel density in the peri-infarct region indicated a better collateralization in rats that were injected with ATG.

Conclusions

These data indicate that ATG, a therapeutic agent successfully applied in clinical transplant immunology, triggered cardioprotective effects after AMI that salvaged ischemic myocardium by down-regulation of p53. This might have raised the resistance against apoptotic cell death during ischemia. The combination of these mechanisms seems to be causative for improved cardiac function and less ventricular remodeling after experimental AMI.  相似文献   

18.
L Wang  H Hao  J Wang  X Wang  S Zhang  Y Du  T Lv  L Zuo  Y Li  H Liu 《Cell death & disease》2015,6(8):e1862
Cardiomyocyte death is one major factor in the development of heart dysfunction, thus, understanding its mechanism may help with the prevention and treatment of this disease. Previously, we reported that anti-β1-adrenergic receptor autoantibodies (β1-AABs) decreased myocardial autophagy, but the role of these in cardiac function and cardiomyocyte death is unclear. We report that rapamycin, an mTOR inhibitor, restored cardiac function in a passively β1-AAB-immunized rat model with decreased cardiac function and myocardial autophagic flux. Next, after upregulating or inhibiting autophagy with Beclin-1 overexpression/rapamycin or RNA interference (RNAi)-mediated expression of Beclin-1/3-methyladenine, β1-AAB-induced autophagy was an initial protective stress response before apoptosis. Then, decreased autophagy contributed to cardiomyocyte death followed by decreases in cardiac function. In conclusion, proper regulation of autophagy may be important for treating patients with β1-AAB-positive heart dysfunction.Heart dysfunction is the terminal stage of various cardiovascular diseases, and it is characterized by a complicated etiology and high mortality. Recent studies indicate that cardiomyocyte death was a leading contributor to the development of heart dysfunction.1 Because systolic and diastolic function is directly affected by myocardial cell loss, understanding how cardiomyocyte death occurs will inform treatment strategies to prevent or treat heart dysfunction.Since the 1990s, studies have revealed that diverse cardiovascular diseases are correlated to anti-β1-adrenergic receptor autoantibodies (β1-AABs).2, 3 We reported that β1-AABs were induced by myocardial remodeling in heart dysfunction,4 and that its long-term presence significantly decreased cardiac function in vivo.5 β1-AABs also caused cell death of cultured adult rat ventricular myocytes and this was attributed to apoptosis.6 Recently, work from our laboratory7 and others8 indicated that β1-AABs induced myocardial apoptosis. However, β1-AAB-induced cardiomyocyte death was not completely reversed with the caspase inhibitor Z-VAD-fmk,6 indicating that other factors were involved in β1-AAB-induced cardiomyocyte death.Presently, we observed that β1-AABs decrease myocardial autophagy that maintains cellular homeostasis.9 Deficiencies in autophagy allow the accumulation of damaged, denatured or aging proteins10 and organelles,11 and this will cause cell death. To date, the role of β1-AAB-induced changes in autophagy as related to cardiac function and cardiomyocyte death is unclear. Therefore, we characterized β1-AAB-induced changes in myocardial autophagy and identified a role for this in cardiac function and cardiomyocyte death. Our data will inform future studies of β1-AAB-positive heart dysfunction and suggest a treatment window for autophagy regulation.  相似文献   

19.
Naringin has antioxidant properties that could improve redox-sensitive myocardial ischemia reperfusion (IR) injury. This study was designed to investigate whether naringin restores the myocardial damage and dysfunction in vivo after IR and the mechanisms underlying its cardioprotective effects. Naringin (20–80 mg/kg/day, p.o.) or saline were administered to rats for 14 days and the myocardial IR injury was induced on 15th day by occluding the left anterior descending coronary artery for 45 min and subsequent reperfusion for 60 min. Post-IR rats exhibited pronounced cardiac dysfunction as evidenced by significantly decreased mean arterial pressure, heart rate, +LVdP/dt max (inotropic state), -LVdP/dt max (lusitropic state) and increased left ventricular end diastolic pressure as compared to sham group, which was improved by naringin. Further, on histopathological and ultrastructural assessments myocardium and myocytes appeared more normal in structure and the infarct size was reduced significantly in naringin 40 and 80 mg/kg/day group. This amelioration of post-IR-associated cardiac injury by naringin was accompanied by increased nitric oxide (NO) bioavailability, decreased NO inactivation to nitrotyrosine, amplified protein expressions of Hsp27, Hsp70, β-catenin and increased p-eNOS/eNOS, p-Akt/Akt, and p-ERK/ERK ratio. In addition, IR-induced TNF-α/IKK-β/NF-κB upregulation and JNK phosphorylation were significantly attenuated by naringin. Moreover, western blotting and immunohistochemistry analysis of apoptotic signaling pathway further established naringin cardioprotective potential as it upregulated Bcl-2 expression and downregulated Bax and Caspase-3 expression with reduced TUNEL positivity. Naringin also normalized the cardiac injury markers (lactate dehydrogenase and creatine kinase-MB), endogenous antioxidant activities (superoxide dismutase, reduced glutathione and glutathione peroxidase) and lipid peroxidation levels. Thus, naringin restored IR injury by preserving myocardial structural integrity and regulating Hsp27, Hsp70, p-eNOS/p-Akt/p-ERK signaling and inflammatory response.  相似文献   

20.
Cardiac injury upon myocardial infarction (MI) is the leading cause of heart failure. The present study aims to investigate the role of EndoA2 in ischemia-induced cardiomyocyte apoptosis and cardiac injury. In vivo, we established an MI mouse model by ligating the left anterior descending (LAD) coronary artery, and intramyocardial injection of adenoviral EndoA2 (Ad-EndoA2) was used to overexpress EndoA2. In vitro, we used the siRNA and Ad-EndoA2 transfection strategies. Here, we reported that EndoA2 expression was remarkably elevated in the infarct border zone of MI mouse hearts and neonatal rat cardiomyocytes (NRCMs) stimulated with oxygen and glucose deprivation (OGD) which mimicked ischemia. We showed that intramyocardial injection of Ad-EndoA2 attenuated cardiomyocyte apoptosis and reduced endoplasmic reticulum (ER) stress in response to MI injury. Using siRNA for knockdown and Ad-EndoA2 for overexpression, we validated that knockdown of EndoA2 in NRCMs exacerbated OGD-induced NRCM apoptosis, whereas overexpression of EndoA2 attenuates OGD-induced cardiomyocyte apoptosis. Mechanistically, knockdown of EndoA2 activated ER stress response, which increases ER oxidoreductase 1α (ERO1α) and inositol 1, 4, 5-trisphosphate receptor (IP3R) activity, thus led to increased intracellular Ca2+ accumulation, followed by elevated calcineurin activity and nuclear factor of activated T-cells (NFAT) dephosphorylation. Pretreatment with the IP3R inhibitor 2-Aminoethoxydiphenylborate (2-APB) attenuated intracellular Ca2+ accumulation, and pretreatment with the Ca2+ chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA) or the calcineurin inhibitor Cyclosporin A (CsA) inhibited EndoA2-knockdown-induced NRCM apoptosis. Overexpression of EndoA2 led to the opposite effects by suppressing ER-stress-mediated ERO1α/IP3R signaling pathway. This study demonstrated that EndoA2 protected cardiac function in response to MI via attenuating ER-stress-mediated ERO1α/IP3R signaling pathway. Targeting EndoA2 is a potential therapeutic strategy for the prevention of postinfarction-induced cardiac injury and heart failure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号