首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The development of epilithic cyanobacteria communities in a Mediterranean calcareous stream in the province of Murcia (SE Spain) was studied during the course of one year in an attempt to clarify the environmental variables that influence the production of microcystins. The predominant cyanobacteria were species of Rivularia, which formed conspicuous colonies throughout the year. Seasonally, other species were abundant: Schizothrix fasciculata, Tolypothrix distorta and Phormidium splendidum. All the species collected produced microcystins to a varying degree (up to five varieties), while the benthic community as a whole produced concentrations as high as 20.45 mg m−2. At the same time, the presence of microcystins dissolved in water was confirmed. Among environmental variables, air temperature and silicate content were positively and strongly correlated with total microcystins, while nitrite, nitrate, orthophosphate, calcium and flow were negatively correlated with them. Dissolved microcystins were negatively correlated with microcystin LR, P.A.R. and total phosphorus and positively with rainfall. The production of microcystin YR seems to be regulated by different factors from those regulating the other main varieties (microcystin LR and microcystin RR). The data obtained indicate that all the tested benthic cyanobacteria produced microcystins in this shallow calcareous stream, which may contribute to their predominance in the prevailing conditions. The accumulation of microcystins in mucilaginous colonies of other groups of algae poses new questions concerning the possible ecological function of these compounds and needs further study.  相似文献   

2.
1. Neutral community models are derived from the proposition that basic probabilities of species loss (extinction, emigration) and gain (immigration, speciation) explain biological community structure, such that species with many individuals are very likely to be widespread. Niche models on the other hand assume that interactions between species and differential resource use mediate species coexistence, thus invoking environmental factors to explain community patterns. 2. In this study, we compared neutral and niche models to test how much of the spatial variability of assemblages of heterotrophic bacteria and phytoplankton in 13 lakes they could explain. Analysis of phytoplankton was restricted to cyanobacteria, so that they could be studied with the same molecular fingerprinting method, automated ribosomal intergenic spaces analysis (ARISA), as heterotrophic bacteria. We determined local biotic and abiotic lake variables as well as lake age, glacial history and distance between sites. 3. The neutral community model had a good fit to the community composition of heterotrophic bacteria (R2 = 0.69), whereas it could not produce a significant model for the community composition of cyanobacteria. 4. The community composition of cyanobacteria was instead correlated to environmental variables. The best model, a combination of total organic carbon, biomass of eukaryotic phytoplankton, pH and conductivity, could explain 8% of the variation. In contrast, variation in the community composition of heterotrophic bacteria was not predicted by any of the environmental variables. Historical and spatial variables were not correlated to the community composition of either group. 5. The pattern found for heterotrophic bacteria suggests that stochastic processes are important. The correlation of cyanobacteria with local environmental variables alone is consistent with the niche model. We suggest that cyanobacteria, a group of organisms containing bloom‐forming species, may be less likely to fit a neutral community model, since these blooms are usually triggered by a particular combination of environmental conditions.  相似文献   

3.
Cyanobacterial species composition of fresh water and terrestrial ecosystems and chemical environment of water in Schirmacher Oasis in Continental Antarctica was investigated. Over 35 species of cyanobacteria were recorded. Diazotrophic species both heterocystous and unicellular contributed more than half to the count except in lake ecosystem. The species composition varied among the fresh water as well as terrestrial ecosystems. The physico-chemical analyses of water revealed its poor nurient content which might have supported the growth of diazotrophic cyanobacteria in an Antarctic environment. Among the cyanobacteria Oscillatoria, Phormidium and Nostoc commune were the dominant flora in most of the habitats. The physiological characteristics of isolated cyanobacteria strains indicated that N2-fixation, nitrate uptake, nitrate-reduction, ammonium-uptake, GS-transferase activity and photosynthesis was unaffected at low temperature (5 degrees C) which indicated low temperature adaptation for Antarctic cyanobacteria. This phenomenon was not evident in different strains of tropical origin. The temperature optima for N2-fixation for the different Antarctic cyanobacterial strains was in the range of 15-25 degrees C, nearly 10 degrees C lower than their respective reference strains of tropical origin. Similar results were obtained for cyanobacteria-moss association. The low endergonic activation energy exhibited by the above metabolic activities supported the view that cyanobacteria were adapted to Antarctic ecosystem.  相似文献   

4.
Early stages of biofilm succession in a lentic freshwater environment   总被引:1,自引:0,他引:1  
Sekar  R.  Venugopalan  V.P.  Nandakumar  K.  Nair  K.V.K.  Rao  V.N.R. 《Hydrobiologia》2004,512(1-3):97-108
Initial events of biofilms development and succession were studied in a freshwater environment at Kalpakkam, East Coast of India. Biofilms were developed by suspending Perspex (Plexiglass) panels for 15 days at bimonthly intervals from January 1996 to January 1997. Changes in biofilm thickness, biomass, algal density, chlorophyll a concentration and species composition were monitored. The biofilm thickness, biomass, algal density and chlorophyll a concentration increased with biofilms age and colonization was greater during summer (March, May and July) than other months. The initial colonization was mainly composed of Chlorella vulgaris, Chlorococcum humicolo (green algae), Achnanthes minutissima, Cocconeis scutellum, C. placentula (diatoms) and Chroococcus minutus (cyanobacteria) followed by colonial green algae such as Pediastrum tetras, P. boryanumand Coleochaete scutata, cyanobacteria (Gloeocapsa nigrescens), low profile diatoms (Amphora coffeaeformis, Nitzschia amphibia, and Gomphonema parvulum) and long stalked diatoms (Gomphoneis olivaceumand Gomphonema lanceolatum). After the 10th day, the community consisted of filamentous green algae (Klebshormidium subtile, Oedogonium sp., Stigeoclonium tenue and Ulothrix zonata) and cyanobacteria (Calothrix elenkinii, Oscillatoria tenuis and Phormidium tenue). Based on the percentage composition of different groups in the biofilm, three phases of succession could be identified: the first phase was dominated by green algae, the second by diatoms and the third phase by cyanobacteria. Seasonal variation in species composition was observed but the sequence of colonization was similar throughout the study period.  相似文献   

5.
黄土高原不同侵蚀类型区生物结皮中蓝藻的多样性   总被引:1,自引:0,他引:1  
杨丽娜  赵允格  明姣  王爱国 《生态学报》2013,33(14):4416-4424
蓝藻是生物土壤结皮的重要组成部分,具有许多重要的生态功能.迄今为止,黄土高原地区生物结皮中藻类的种类组成及分布鲜有报道.通过野外调查、采样和室内观察、培养、鉴定,对黄土高原水蚀区、水蚀风蚀交错区、风蚀区的生物结皮中蓝藻的多样性及优势种进行了研究.结果表明,黄土高原3个侵蚀类型区生物结皮中蓝藻门植物共发现4科10属54种,其中丝状种类约占87%,占绝对优势;Shannon-Weiner多样性指数水蚀风蚀交错区最高,水蚀区次之,风蚀区最低,依次为2.22,2.20和2.14.水蚀风蚀交错区和水蚀区蓝藻多样性指数差异不显著,但均与风蚀区差异显著.3个侵蚀类型区的生物结皮中蓝藻的种类组成及优势种均有所差异,但均以颤藻科(Oscillatoriaceae)为优势科.水蚀风蚀交错区蓝藻种类最多(39种),以阿氏鞘丝藻(Lyngbya allorgei)为第一优势种;水蚀区次之(26种),以含钙席藻(Phormidum calciola)为第一优势种;风蚀区最少(20种),以颗粒颤藻(Oscillatoria granulata)为第一优势种.黄土高原不同侵蚀类型区生物结皮中蓝藻的多样性差异可能与土壤质地、土壤pH值、气候环境等有关.  相似文献   

6.
The main goal of this study was to evaluate short-term interactions between increased CO2, UVR and inorganic macronutrients (N, P and Si) on summer phytoplankton assemblages in the Ria Formosa coastal lagoon (SW Iberia), subjected to intense anthropogenic pressures and highly vulnerable to climate change. A multifactorial experiment using 20 different nutrient-enriched microcosms exposed to different spectral and CO2 conditions was designed. Before and after a 24-h in situ incubation, phytoplankton abundance and composition were analysed. Impacts and interactive effects of high CO2, UVR and nutrients varied among different functional groups. Increased UVR had negative effects on diatoms and cyanobacteria and positive effects on cryptophytes, whereas increased CO2 inhibited cyanobacteria but increased cryptophyte growth. A positive synergistic interaction between CO2 and UVR was observed for diatoms; high CO2 counteracted the negative effects of UVR under ambient nutrient concentrations. Nutrient enrichments suppressed the negative effects of high CO2 and UVR on cyanobacteria and diatoms, respectively. Beneficial effects of CO2 were observed for diatoms and cryptophytes under combined additions of nitrate and ammonium, suggesting that growth may be limited by DIC availability when the primary limitation by nitrogen is alleviated. Beneficial effects of high CO2 and UVR in diatoms were also induced or intensified by ammonium additions.  相似文献   

7.
Macroinvertebrate assemblages are structured by a number of abiotic and biotic factors interacting simultaneously. We investigated macroinvertebrate assemblages along gradients of human disturbance and morphometric characteristics in five lakes connected by the same stream. We aimed to assess the relative effects of environmental gradients on macroinvertebrate assemblages and to investigate whether water quality effects on the assemblages were correlated with buffer land use. There were significant differences in macroinvertebrate community compositions among lakes, and our results indicated that oligochaetes (mainly Limnodrilus) and insects (mainly Chironomus) contributed highly to the differences. We used redundancy analysis with variation partitioning to quantify the independent and combined anthropogenic effects of water quality and land use gradients on the macroinvertebrate community. The independent effect of water quality was responsible for 17% of the total variance in macroinvertebrate community composition, the independent effect of buffer land use accounted for 6% of variation, and the combined variation between land use change and water quality accounted for 12%. Our study indicated that both the independent effects of land use and within‐lake water quality can explain the influence in macroinvertebrate assemblages, with significant interactions between the two. This is rather important to notice that changes in buffer land use generally may alter nutrient inputs and thus severely affect abiotic conditions encountered by macroinvertebrate. Our study demonstrates that considering buffer zone effects explicitly may be significant in the selection and application of conservation and management strategies.  相似文献   

8.
The impact of agricultural land use on the composition and structure of aquatic insect assemblages (i.e., taxa of Ephemeroptera, Plecoptera, Trichoptera, and Coleoptera (EPTC)) was investigated in tributary streams of the Garonne river basin, southern France. The self-organizing map (SOM) method was applied to compare both instream environmental conditions and EPTC assemblages between forest and agricultural streams. According to the SOM model, the study sites were classified into three main clusters corresponding to distinct EPTC assemblages. The SOM cluster associated with most of the agricultural sites had lower EPTC species richness and diversity. This cluster was also characterized by high levels of total dissolved solids, nitrate (NO3), and chemical oxygen demand. Overall, our study shows that agricultural streams when compared with forest streams had lower biological integrity. In accordance with the European Water Framework Directive, our results indicate that the sites most impacted by agricultural land use should be restored and that the least-impacted forest sites could serve as reference conditions.  相似文献   

9.
Coral reefs are now subject to global threats and influences from numerous anthropogenic sources. Foraminifera, a group of unicellular shelled organisms, are excellent indicators of water quality and reef health. Thus we studied a set of samples taken in 1992 to provide a foraminiferal baseline for future studies of environmental change. Our study provides the first island-wide analysis of shallow benthic foraminifera from around Moorea (Society Archipelago). We analyzed the composition, species richness, patterns of distribution and abundance of unstained foraminiferal assemblages from bays, fringing reefs, nearshore and back- and fore-reef environments. A total of 380 taxa of foraminifera were recorded, a number that almost doubles previous species counts. Spatial patterns of foraminiferal assemblages are characterized by numerical abundances of individual taxa, cluster groups and gradients of species richness, as documented by cluster, Fisher α, ternary plot and Principal Component Analyses (PCA). The inner bay inlets are dominated by stress-tolerant, mostly thin-shelled taxa of Bolivina, Bolivinella, Nonionoides, Elongobula, and Ammonia preferring low-oxygen and/or nutrient-rich habitats influenced by coastal factors such as fresh-water runoff and overhanging mangroves. The larger symbiont-bearing foraminifera (Borelis, Amphistegina, Heterostegina, Peneroplis) generally live in the oligotrophic, well-lit back- and fore-reef environments. Amphisteginids and peneroplids were among the few taxa found in the bay environments, probably due to their preferences for phytal substrates and tolerance to moderate levels of eutrophication. The fringing reef environments along the outer bay are characterized by Borelis schlumbergeri, Heterostegina depressa, Textularia spp. and various miliolids which represent a hotspot of diversity within the complex reef-lagoon system of Moorea. The high foraminiferal Fisher α and species richness diversity in outer bay fringing reefs is consistent with the disturbance-mosaic (microhabitat heterogeneity) hypothesis.Calculations of the FORAM Index (FI), a single metric index to assess reef vitality, indicate that all fore- and most back-reef environments support active carbonate accretion and provide habitat suitability for carbonate producers dependent on algal symbiosis. Lowest suitability values were recorded within the innermost bays, an area where natural and increasing anthropogenic influences continue to impact the reefs. The presence of habitat specific assemblages and numerical abundance values of individual taxa show that benthic foraminifera are excellent recorders of environmental perturbations and good indicators useful in modern and ancient ecological and environmental studies.  相似文献   

10.
11.
Identifying and making use of ecological indicators becomes an essential task in the conservation of tropical systems, mainly in fragmented landscapes where land use intensification and habitat loss are confounding factors in the detection of species’ responses to human-caused disturbance. We aimed to analyze the importance of anthropogenic land use and fragmentation-related effects on dung beetle (Coleoptera: Scarabaeinae) persistence according to the interior–exterior non-linear gradient (forest + matrix) in a fragmented Atlantic Forest landscape used to sugar cane production and cattle ranching/farming. We offer scores for a comprehensive set of community-level attributes, from beetle abundance to taxonomic and ecological composition (i.e. species body size), including a list of indicator species of different forest habitats and adjacent matrix. Dung beetles were surveyed by traps across forest interiors (i.e. core forest areas) and edges of a primary forest, small fragments, sugar cane fields and pastures in a total of 60 sites. Indicator analyses were conducted across the landscape, using two well-established methods (IndVal and SIMPER). Our results suggest that (1) cross-habitat taxonomic distinctness is associated with the presence of indicator species, (2) some species benefit or are dependent of open habitats created by human-disturbances, such as forest edges (e.g. Canthon nigripennis) and matrices (e.g. Canthon aff. piluliformis, Dichotomius nisus and Trichilum externepunctatum), (3) although landscape habitats exhibit reduced beta diversity, dung beetle assemblages are spatially organized in response to the presence of both forest habitats and matrix and fragment area, (4) forest interior supports beetle assemblages biased toward large-bodied species, (5) accordingly forest interior, forest edges and matrix support taxonomically distinct assemblages, both contributing to the bulk of species richness at landscape level, (6) the response of dung beetles to the interior–exterior non-linear gradient (i.e. forest edge + matrix) reveals a similar pattern regardless of the nature of the matrix, and (7) there is no within-habitat variation in beetle abundance and species richness associated with distance from forest edge. Given that there is a high number of forest-dependent or forest-interior specialist species (e.g. Aphengium aff. sordidum, Ateuchus aff. alipioi, Dichotomius mormon, Ontherus aff. erosus and Onthophagus aff. clypeatus) dung beetle persistence in human-modified landscape is highly dependent on the presence of core areas, although edge-affected and matrix habitats may be complementary. This information is essential to permit a better prospect for dung beetle persistence in human-modified landscapes as they continue to move toward edge-dominated landscapes with intensively managed matrices.  相似文献   

12.
In the present study, the impact of low fluence rate of UV-B (0.045 W.m?2) on biomass production, photosynthetic pigments (chlorophyll a, carotenoids, and phycobiliproteins), chlorophyll fluorescence, nonenzymatic antioxidants: proline, ascorbate, cysteine, and nonprotein thiols, total phenolic contents, and antioxidant potential (radical scavenging activity) was investigated in three cyanobacteria, viz. Nostoc muscorum, Phormidium foveolarum, and Arthrospira platensis. Selected fluence rate of UV-B caused enhancing effect on these parameters; however, the increased values of these attributes were greater in A. platensis followed by P. foveolarum and N. muscorum. Results indicate that UV-B (at selected fluence rate) could be used as technique that may modify cyanobacterial system for efficient and economic production of natural food supplements and/or natural pharmaceuticals.  相似文献   

13.
This study compares the relative influences of physiography and anthropogenic pressures on river biota at catchment, riparian corridor, and reach scales. Environmental data, catchment and riparian corridor land use, anthropogenic modifications and biological data were compiled for 301 French sites sampled from 2005 to 2008. First, relationships between anthropogenic pressures and fish and macroinvertebrate assemblages were analysed using redundancy analysis. Second, the influences of physiography and the three scales of human pressures on biological assemblages were measured using variance partitioning. Distributions of fish and macroinvertebrate taxa along the pressure gradients agreed with bio-ecological knowledge. At the reach scale, assemblage variability among the 301 French sites was related to the presence of an impoundment and to poor water quality, while at larger scales it was linked to a gradient from forest to agricultural covers. In addition, a large proportion of the explained variability in assemblage composition was related to complex interactions among factors (~40%) and to physiographic variables (~30%). Furthermore, our results highlight that catchment land use better reflects local water quality impairments than hydromorphological degradations. Finally, this study supports the idea that human pressure effects on river communities are linked at several spatial scales and must be considered jointly.  相似文献   

14.
In Europe peatlands are wetlands of postglacial origin. Because of climatic changes and agricultural activities (i.e. drainage and peat extraction), they are one of the most endangered ecosystems worldwide. Water mites are well known as indicators of changing environments in other ecosystems such as springs and lakes. For our study we selected seven peatlands located in North-Western Poland and focused on water mite distribution and associated habitat and water quality variables. We described water mite fauna in various microhabitats (aquatic and semiaquatic) along the mineral-richness gradient to test whether this gradient is reflected in the composition of water mite assemblages. We selected conductivity, pH and vegetation as variables reflecting the poor-rich gradient. Additionally, we measured water depth, temperature and dissolved oxygen, which are often important parameters for water mites. We also noted presence of prey and host taxa of particular water mite species. Based on physicochemical parameters we identified three types of habitats harbouring three distinctive species groups of water mites. We were able to distinguish species that appear to be typical of spring fens (e.g. Hygrobates norvegicus, Lebertia separata), connected with acidic, nutrient poor pools (e.g. Arrenurus neumani, A. pustulator) and species seemingly typical of temporary habitats dominated by Sphagnum mosses (e.g. Piersigia intermedia, Zschokkea oblonga, A. stecki). The poor-rich gradient is strongly reflected in the composition of water mite assemblages. We also found strong correlations between the water mite fauna and both conductivity and pH gradient. Our results show that water conductivity is the most important of the examined factors, driving mite-species distribution in peatlands.  相似文献   

15.
Estuaries are highly valuable ecosystems that provide various goods and services to society, such as food provision and supporting nursery habitats for various aquatic species. Estuarine habitat quality assessment is thus critical in managing both ecological and economic value. In this work, various biological and non-biological indicators of habitat quality in estuarine nursery areas were determined, encompassing local environmental conditions, chemical contamination, anthropogenic pressures, juvenile Solea senegalensis condition, biomarkers response to contamination and juvenile density. The various indicators provided an integrated view on habitat quality and their responses were broadly concordant. Nursery quality assessment based on anthropogenic pressure indicators and fish biomarker responses were very similar, signaling nursery areas with higher anthropogenic pressure in Tejo and Ria de Aveiro estuaries. Yet, favorable environmental conditions across all sites could have contributed to lessen the potential hazardous biological effects of exposure to anthropogenic stressors, resulting in soles’ fairly good condition and generally high juvenile density. Nevertheless, a mismatch between high juvenile density and high estuarine contribution to adult coastal populations was observed in areas with higher anthropogenic pressures. Although a causal relationship cannot be established, the results emphasize the need to fully understand how the estuarine period spent in estuaries and local processes determine the quantity and quality of juveniles exported to marine adult populations, which is critical to achieve the full potential of the fish production service of estuaries and coastal stock replenishment.  相似文献   

16.
The occurrence and environmental factors responsible for the distribution of benthic cyanobacteria in running waters remain largely unexplored in comparison with those of other aquatic ecosystems. In this study, combined data of ecological characteristics, molecular analysis (based on 16S rRNA gene), and direct microscopic inspection of environmental samples were analyzed in parallel with the morphological characterization of the isolated strains to investigate benthic cyanobacterial diversity in the Guadarrama river (Spain). A total of 17 species were identified that belonged to the genera Aphanocapsa, Pleurocapsa, Chroococcus, Chamaesiphon, Cyanobium, Pseudan‐abaena, Leptolyngbya, Phormidium, Nostoc, and Tolypothrix. Phenotypic features were associated with the results of 16S rRNA gene sequencing, complementing existing morphological and genetic databases. A decrease in the cyanobacterial diversity was observed along a pollution gradient in the river. Water quality differed among the sampling sites, and variation in nutrient content was the principal difference among locations. These characteristics were closely associated with an upstream‐downstream eutrophic gradient. Canonical correspondence analysis distinguished three groups of species with respect to the eutrophication gradient. The first group (Tolypothrix cf. tenuis, Nostoc punctiforme, Nostoc piscinale, Chamaesiphon investiens, Chroococcus minor, Leptolyngbya nostocorum, and Leptolyngbya tenuis) was characteristic of waters with low levels of nutrients. The second group (Cyanobium sp., Chamaesiphon polymorphus, Leptolyngbya boryana, Phormidium autumnale, Phormidium sp., and Aphanocapsa cf. rivularis) was characteristic of polluted waters, its members appearing mainly in great abundance under eutrophic‐hypertrophic conditions. The third group of species (Pseudanabaena catenata, Aphanocapsa muscicola, and Nostoc carneum) was present at upstream and downstream sites.  相似文献   

17.
Information on the structure of microalgal assemblages in the epiphyton and epilithon is necessary to understand the origin of phytoplankton in lowland rivers. To this end, we carried out concurrent investigations on phytoplankton, epiphyton and epilithon in 18 reaches of three Estonian rivers during the midsummers of 2002 and 2003. A total of 251 taxa was recorded, of which 192 were epiphyton species, 158 were epilithon species and 150 were phytoplankton species. Canonical correspondence analysis (CCA), based on the 31 most abundant taxa, indicated differences in the structure of the algal assemblages between the different biotopes (phytoplankton, epiphyton and epilithon) as well as between the studied rivers. The composition of the phytoplankton clearly differed from that of the other biotopes, with prevailing small flagellates, a chrysophyte (Synura uvella) and cryptophytes (Rhodomonas lacustris and Cryptomonas erosa). The epiphyton was characterized by a large number of diatoms, while the epilithic community contained filamentous cyanobacteria (Phormidium tergestinum and Planktolyngya sp.) and a green alga (Stigeoclonium tenue) in addition to diatoms. Based on redundancy analysis (RDA), phosphorous was the most relevant parameter determining the distribution of species in the phytoplankton assemblages. Shading by trees on the river bank, dissolved oxygen concentration and water temperature as well as river width determined the distribution of species in the epiphyton. The data set on the epilithon did not reveal any significant relationships between species distribution and the measured environmental parameters.  相似文献   

18.
19.
Stormwater ponds are increasingly common aquatic habitats whose biotic communities are largely unexplored. As anthropogenic development continues to alter the landscape, watershed land use is gaining recognition for its potential to predict species compositions in aquatic systems. This study reports species composition of five aquatic hemipteran families (Notonectidae, Corixidae, Belostomatidae, Nepidae, Pleidae) in 28 permanent, artificial stormwater ponds in watersheds with different land covers and associated contaminant input. We hypothesized that land cover variables would be significant drivers of aquatic hemipteran community structure in ponds, and that ponds with a high percentage of agricultural and lawn cover in the watershed would be characterized by the absence of species intolerant of the chemical, physical, and ultimately biotic changes associated with these watersheds. Non-metric multi-dimensional scaling (NMS) was used to identify dominant gradients of species composition and environmental variables. Pond morphology variables, watershed lawn, watershed agriculture, and predatory fish abundance were each found to have statistically significant correlations with hemipteran community structure. The abundance of Notonecta undulata, the species responsible for creating the largest (ranked) distance in species structure among ponds, was positively correlated with shallow, fishless ponds and independent of land use variables. The abundances of four species of corixids were negatively correlated with watershed agriculture, and hemipteran richness was positively correlated with watershed lawn and negatively correlated with pond surface area. Heirarchical cluster analysis revealed non-random hemipteran species assemblages in which congeneric corixid species tended to co-occur, contradicting traditional niche theory. Since artificial stormwater ponds are chemically different from natural-pond habitat and rapidly increasing in number, knowledge of which insect species are capable of thriving in this environment and their relationship to land use in the watershed is of both environmental and evolutionary interest. Handling editor: D. Dudgeon  相似文献   

20.
Promising microbial consortia for producing biofertilizers for rice fields   总被引:1,自引:0,他引:1  
Two cyanobacterial cultures from rice paddies of Kyzylorda Provence, Kazakhstan were isolated and characterized: Anabaena variabilis and Nostoc calsicola. Based on these cultures, new consortia of cyanobacteria, microalgae and Azotobacter were developed: ZOB-1 (Anabaena variabilis, Chlorella vulgaris, and Azotobacter sp.) and ZOB-2 (Nostoc calsicola, Chlorella vulgaris, and Azotobacter sp.). High growth rate and photosynthetic activity of microalgae were observed in these consortia. The active consortium ZOB-1 was selected, which improved germination and growth of rice plants. ZOB-1 was recommended as a biostimulator and biofertilizer for crops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号