首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Aquatic Botany》2007,86(3):295-299
Recovery ability in relation to carbohydrate content of Potamogeton maackianus growing in two dissolved oxygen concentrations (8 and 2 mg L−1) was investigated during 28 days exposure to very low irradiance (about 0.06 μmol m−2 s−1). Plant weight remained relatively constant (0.19 g dry wt plant−1) within the initial 21 days in the high oxygen treatment, but decreased to 0.14 g dry wt plant−1 at the end of the experiment. In low oxygen environments, plant weight was similar within the initial 14 days, but decreased to 0.08 g dry wt plant−1 at 21 day. During the experimental period, both soluble sugar and starch contents in shoots decreased with time. Compared to high oxygen treatment, plants in the low oxygen treatment depleted starch more quickly (25 versus 18 mg g−1 at 28 day) but remained a relatively high soluble sugar content (0.9 versus 1.8 mg g−1 at 28 day). After recovery in high light and high dissolved oxygen conditions for 1 week, plant growth rate, new branch number, stem elongation rate and leaf recruitment number were significantly higher in high oxygen than in the low oxygen treatments. These data suggest that the ability of the plant to recover from prolonged exposure to very low irradiance is related to the depletion level of carbohydrate stored in plant tissues, which is regulated by oxygen availability in the water.  相似文献   

2.
Protocorm cultures of Dendrobium candidum were established in balloon type bubble bioreactors using Murashige and Skoog (MS) medium with 0.5 mg l−1 α-naphthaleneacetic acid (NAA), 2.5% (w/v) sucrose, 5:25 mM NH4:NO3 and 1% (v/v) banana homogenate for the production of biomass and bioactive compounds. In 3 l bioreactor containing 2 l medium, a maximum protocorm biomass (21.0 g l−1 dry biomass) and also optimum quantities of total polysaccharides (389.3 mg g−1 DW), coumarins (18.0 mg g−1 DW), polyphenolics (11.9 mg g−1 DW), and flavonoids (4.5 mg g−1 DW) were achieved after 7 weeks of culture. Based on these studies, 5 and 10 l bioreactor cultures were established to harvest 80 g and 160 g dry biomass. In 10 l bioreactors, the protocorms grown were accumulated with optimal levels of polysaccharides (424.1 mg g−1 DW), coumarins (15.8 mg g−1 DW), polyphenols (9.03 mg g−1 DW) and flavonoids (4.7 mg g−1 DW). The bioreactor technology developed here will be useful for the production of important bioactive compounds from D. candidum.  相似文献   

3.
《Aquatic Botany》2001,69(2-4):209-216
Seasonal dynamics of concentrations of reserve carbohydrates (starch, sucrose, glucose, fructose and their sum denoted as total non-structural carbohydrates, TNC) were followed in five reed stands of Kis-Balaton wetland area in Hungary. The stands included three stands of tall and robust reed, situated in the Ingói area, and two stands of short and subtle reed situated in the downstream part. While both the seasonal pattern and the proportions of single carbohydrate species corresponded to findings for other sites, the absolute concentrations were markedly lower as compared to other European reed stands except lake Fertö in Hungary. The seasonal minimum values ranged from 54 to 87 mg g−1 dry weight. During the seasonal minimum, glucose reached the lowest concentrations (down to 0.01 mg g−1 dry weight) of all carbohydrates measured. The seasonal maximum concentrations of TNC reached 160–270 mg g−1 dry weight. Maximum TNC standing stock ranged from 240 to 520 g m−2, and was depleted by 60–80% during the period of spring shoot growth. It is proposed that the remaining TNC pool may not suffice to support complete recovery after a subsequent catastrophic event.  相似文献   

4.
《Process Biochemistry》2007,42(6):925-933
The influence of organic acids on growth and dithiolopyrrolone antibiotic production by Saccharothrix algeriensis NRRL B-24137 was studied. The production of dithiolopyrrolones depends upon the nature and concentration of the organic acids in the culture medium. Study of the nature of organic acids showed that the most effective organic acids for thiolutin specific production were maleic, 4-hydroxybenzoic, benzentetracarboxylic, pantothenic, pivalic and pyruvic acids (which yielded almost five-fold over the starting medium) and pimelic acid (more than three-fold). 4-Bromobenzoic acid showed the best production of senecioyl-pyrrothine (59 mg g−1 DCW). Tiglic acid showed the best production of tigloyl-pyrrothine (22 mg g−1 DCW). The highest yield of isobutyryl-pyrrothine (7.6 mg g−1 DCW) was observed in the presence of crotonic acid. Sorbic acid yielded the best production of butanoyl-pyrrothine (26 mg g−1 DCW). Methacrylic, butyric, pyruvic and 4-bromobenzoic acids also exhibited the best production of butanoyl-pyrrothine (27–11-fold).Study of organic acid concentration showed that among the selected organic acids, pimelic acid yielded the highest specific production of thiolutin (91 mg g−1 DCW) at 7.5 mM; and senecioyl-pyrrothine (11 mg g−1 DCW), tigloyl-pyrrothine (9 mg g−1 DCW) and butanoyl-pyrrothine (3.5 mg g−1 DCW) at 5 mM. Pyruvic acid at 1.25 mM enhanced the production of senecioyl-pyrrothine (4.3 mg g−1 DCW). The maximum production of tigloyl-pyrrothine (18.6 mg g−1 DCW) was observed in the presence of tiglic acid at 2.5 mM. Maximum production of isobutyryl-pyrrothine was observed in the presence of 7.5 mM tiglic acid. In addition, methacrylic acid (at 5 mM) and butyric acid (at 2.5 mM) enhanced the production of butanoyl-pyrrothine (26 and 20 times, respectively).The above results can be employed in the optimisation of the culture medium for the production of dithiolopyrrolone in higher quantities.  相似文献   

5.
Propolis is a gummy material made by honeybees for protecting their hives from bacteria and fungi. The main objective of this study is to determine the chemical compositions and concentrations of organic compounds in the extractable organic matter (EOM) of propolis samples collected from four different regions in Yemen. The propolis samples were extracted with a mixture of dichloromethane and methanol and analyzed by gas chromatography–mass spectrometry (GC–MS). The results showed that the total extract yields ranged from 34% to 67% (mean = 55.5 ± 12.4%). The major compounds were triterpenoids (254 ± 188 mg g−1, mainly α-, β-amyryl and dammaradienyl acetates), n-alkenes (145 ± 89 mg g−1), n-alkanes (65 ± 29 mg g−1), n-alkanoic acids (40 ± 26 mg g−1), long chain wax esters (38 ± 25 mg g−1), n-alkanols (8 ± 3 mg g−1) and methyl n-alkanoates (6 ± 4 mg g−1). The variation in the propolis chemical compositions is apparently related to the different plant sources. The compounds of these propolis samples indicate that they are potential sources of natural bio-active compounds for biological and pharmacological applications.  相似文献   

6.
As global climate is warming and the nitrogen cycle accelerates, plants are likely to respond not only by shifting community composition, but also by adjusting traits such as tissue chemistry. We subjected a widespread wetland plant, Phragmites australis, to increased nitrate supply and elevated temperature in enclosures that were established in a littoral permanently submerged freshwater marsh. The nitrogen (N) and phosphorus (P) concentrations in green leaves ranged from 11.4 to 13.8 mg N and from 1.5 to 2.0 mg P g−1 dry mass. While the N concentration changed little in brown litter, the P concentration decreased to 0.53–0.65 mg P g−1 litter dry mass. Neither experimental warming of the water and sediment surface, nor nitrate enrichment during the growing season affected nitrogen or phosphorus concentrations in green leaves. Concentrations of the two major structural carbon compounds in plant litter, cellulose and lignin, were also unaffected, ranging from 32.1 to 34.2% of dry mass for cellulose and from 16.3 to 17.7% of dry mass for lignin. Warming, however, significantly increased the nitrogen concentration of fully brown leaf litter. Thus, temperature appears to be more important than the supply of dissolved N in the water, especially in affecting leaf litter N concentrations in P. australis, even when only water but not air temperature is increased. This result may have implications for decomposition processes and decomposer food webs, which both depend on the quality of plant litter.  相似文献   

7.
The coastal shrub Limoniastrum monopetalum is capable of growth in soil containing extremely high concentrations of heavy metals. A greenhouse experiment was conducted in order to investigate the effects of a range of Zn concentrations (0–130 mmol l−1) on growth and photosynthetic performance, by measuring relative growth rate, total leaf area, plant height, gas exchange, chlorophyll fluorescence parameters and photosynthetic pigment concentrations. We also determined the total zinc, nitrogen, phosphorus, sulphur, calcium, magnesium, sodium, potassium, iron and copper concentrations in the plant tissues. The study species demonstrated hypertolerance to Zn stress, since survival was recorded with leaf concentrations of up to 1700 mg Zn kg−1 dry mass when treated with 130 mmol Zn l−1. L. monopetalum exhibited little overall effects on photosynthetic function at Zn levels of up to 90 mmol l−1. At greater external Zn concentration, plant growth was negatively affected, due in all probability to the recorded decline in net photosynthetic rate, which may be linked to the adverse effect of the metal on photosynthetic electron transport. Growth parameters were virtually unaffected by leaf tissue concentrations as high as 1400 mg Zn kg−1 dry mass thus indicating that this species could play an important role in the phytoremediation of Zn-polluted areas.  相似文献   

8.
Picris divaricata Vant., a plant species native to subtropical China, was recently identified as the first Cd/Zn hyperaccumulator from Asteraceae. P. divaricata was grown from wild collected seed for 4 months in a series of pH adjusted test soils with added Zn levels 0–7000 mg kg−1 and Cd levels 0–150 mg kg−1. Plants did not hyperaccumulate Zn (threshold >3000 μg g−1) and weakly hyperaccumulated Cd with little or no dose–response.P. divaricata has multicellular simple trichomes concentrated on the leaf margins and midrib. X-ray analysis showed that Zn was concentrated in larger trichomes and epidermal cells adjacent to the trichome but virtually absent in other leaf tissues. Within the trichomes, Zn was localized in ovate spots around the tips of individual cells. These tips and other locations in the trichome cell contained black electron dense material when examined with transmission electron microscopy, some of which was identified as SiO2. Silicon and Mn were concentrated in the same areas as Zn. Si has been previously associated with alleviating Zn, Mn and Cd toxicity. Our results support this observation and further investigation is warranted.Calcium and P were concentrated in the distal tips of trichomes, similar to patterns previously observed for calcicole plants grown in elevated Ca soils. Overall, nonsecretory trichomes from many plant families may have a common origin as tissues adapted to handle a variety of environmental metals.  相似文献   

9.
《Aquatic Botany》2005,81(1):85-96
Rooted submerged macrophytes can absorb significant amounts of nutrients from both sediment and water. We investigated root morphology of Vallisneria natans in mesocosm plastic bins, in response to three types of sediment (sandy loam, clay, and a 50:50 (v/v) mixture of the two sediments) and two levels of water-column nutrient (well water and nutrient medium). Compared to the plants grown in the clay or mixed sediments, root diameter decreased (0.39–0.41 versus 0.36–0.37 mm) but total root length per plant increased (0.87–1.27 versus 1.14–1.62 m) when grown in sandy loam. Increase of nutrient availability in water column led to decreased specific root length (306–339 versus 258–281 m g−1). However, both sediment type and water-column nutrient had no impacts on root number (ranged from 19 to 24 number of roots per plant). Root weight ratio, root:leaf mass ratio and root:leaf length ratio generally decreased with enhanced nutrient availability in sediment or water. Plant growth was affected by sediment type alone (P < 0.05), rather than water-column nutrient (P > 0.05). However, plant N and P contents were significantly impacted by both sediment type (P  0.001) and water-column nutrient (P < 0.05). Increase of nutrient availability in sediment or water led to increased plant N (ranged from 2.47 to 4.77 mg g−1) and P concentrations (ranged from 42.8 to 62.0 mg g−1). These results indicate that considerable variation in root morphology of V. natans exists in response to the fertility of the sediment it is rooted in.  相似文献   

10.
The diatom genus Pseudo-nitzschia (Peragallo) associated with the production of domoic acid (DA), the toxin reposnsible for amnesic shellfish poisoning, is abundant in Scottish waters. A two year study examined the relationship between Pseudo-nitzschia cells in the water column and DA concentration in blue mussels (Mytilus edulis) at two sites, and king scallops (Pecten maximus) at one site. The rate of DA uptake and depuration differed greatly between the two species with M. edulis whole tissue accumulating and depurating 7 μg g−1 (now expressed as mg kg−1) per week. In contrast, it took 12 weeks for DA to depurate from P. maximus gonad tissue from a concentration of 68 μg g−1 (now mg kg−1) to <20 μg g−1 (now mg kg‐1). The DA depuration rate from P. maximus whole tissue was <5% per week during both years of the study. Correlations between the Pseudo-nitzschia cell densities and toxin concentrations were weak to moderate for M. edulis and weak for P. maximus. Seasonal diversity on a species level was observed within the Pseudo-nitzschia genus at both sites with more DA toxicity associated with summer/autumn Pseudo-nitzschia blooms when P. australis was observed in phytoplankton samples. This study reveals the marked difference in DA uptake and depuration in two shellfish species of commercial importance in Scotland. The use of these shellfish species to act as a proxy for DA in the environment still requires investigation.  相似文献   

11.
The research on the function and mechanism of selenium (Se) is of great significance for the development of Se-enriched agricultural products. In this paper, uptake, speciation distribution, the effects on the flue-cured tobacco growth and antioxidant system of Se at different levels (0–22.2 mg Se kg−1) were studied through a pot experiment, aiming to clarify flue-cured tobacco's response to Se stress and the relationship between Se speciation and antioxidant system. The results showed that the leaf area and number, the biomass and the chlorophyll content reached the maximum at 4.4 mg kg−1 of Se treatment. Selenium at low levels (≤4.4 mg kg−1) stimulated the growth of flue-cured tobacco by elevating the capability of antioxidant stress and reducing the malondialdehyde (MDA) content to 0.6–0.8 times of that of the control. However, high Se levels (≥11.1 mg kg−1) depressed the capability of antioxidant stress and raised the MDA content to 1.5-fold of that of the control, and meanwhile the biomass of the aboveground parts and underground parts declined notably. The Se content in different parts of flue-cured tobacco significantly increased with the growth of Se levels. The range of Se content in roots, leaves and stems at 2.2–22.2 mg kg−1 of Se treatment were 16.7–58.6 mg kg−1, 2.6–37.3 mg kg−1 and 2.2–10.3 mg kg−1, respectively. According to the detection of different Se speciation, only selenocysteine (SeCys) was detectable in leaves at 2.2 mg kg−1 Se treatment; SeCys, selenite [Se(IV)]and selenate [Se(VI)] were detected in flue-cured tobacco leaves at Se treatment (≥4.4 mg kg−1), which accounted for 4.6–10%, 9–18.7% and 71–86% respectively; SeCys, selenomethionine (SeMet) and Se(IV) were detected in roots, and organic selenium(66–84%) was the main Se species at Se  11.1 mg kg−1 treatment; four Se species [SeCys, SeMet, Se(IV) and Se(VI)] were detected in flue-cured tobacco roots, and the main Se species was inorganic Se (60%) at 22.2 mg kg−1 Se treatment. That was to say, the percentage of organic Se species (SeCys and SeMet in flue-cured tobacco leaves and root) declined, whereas the ratio of inorganic Se species [Se(IV) and Se(VI)] increased with the growth of Se levels. The correlation analysis showed that the superoxide dismutase (SOD) activity as well as the glutathione (GSH) and MDA contents were positively correlated with the Se(IV) and Se(VI) contents at P < 0.01 and excessive inorganic Se might destruct the reactive oxygen species (ROS) balance and enhance the MDA content, thus causing damage to the plant growth. In a word, the present study suggested that the ratio of inorganic Se [Se(IV) and Se(VI)] was closely related with the growth and the antioxidant capacity of flue-cured tobacco and the excessive application of Se led to the higher proportion of inorganic Se and poorer antioxidant capacity, which ultimately inhibited the growth of flue-cured tobacco.  相似文献   

12.
《Aquatic Botany》2007,87(1):61-68
An annual cycle of biomass and productivity of wild celery (Vallisneria americana) was studied in Kings Bay, FL, USA. In situ growth rates were measured monthly between March 2001 and June 2002 in high-density stands, using a modified hole-punching technique, and applied to shoot density data to obtain areal estimates of production. Mean shoot density varied greatly over the study period, ranging between 200 and 800 shoots m−2. Mean total biomass ranged between 162 and 1013 g m−2, with aboveground material comprising, on average, 70% of total biomass. Total annual estimated production of new attached shoots was 519 g m−2. Leaf growth rates peaked at >50 mg shoot−1 d−1, and mass-specific leaf growth ranged 0.6–1.8% d−1. Annually, individual shoots produced 7.4 g of leaf material and completely replaced standing leaf biomass 3.5 times. Areal leaf production was highest in late spring/summer of 2001, and ranged between 3.6 and 23.0 g m−2 d−1. Annual total leaf production was 2704 g m−2. Seasonality was not apparent in most variables monitored monthly; only 1 of the 64 relationships we examined between environmental variables (nutrients, chlorophyll a, and irradiance) and Vallisneria biological variables were significant, with relative growth rate increasing linearly with irradiance. Peak biomass and productivity of Vallisneria in Kings Bay were high compared to literature values for other Vallisneria populations as well as global averages for well-studied seagrasses, emphasizing the potential importance of Vallisneria to whole ecosystem functioning in springs, lakes, and oligohaline reaches of many estuaries.  相似文献   

13.
Asymbiotic germination of immature seeds (embryos), and mature seeds and micropropagation of Spathoglottis plicata were described. Effects of three nutrition media namely, Murashige & Skoog (MS); Phytamax (PM); and Phyto-Technology orchid seed sowing medium (P723), two carbon sources such as glucose and sucrose at 2–3% (w/v), two plant growth regulators such as 6-benzylaminopurine (BAP; 0.5–3.0 mg l 1) and α-naphthalene acetic acid (NAA; 0.5–2.0 mg l 1) and peptone (2.0 g l 1) were examined on seed germination, early protocorm development and micropropagation. The maximum germination of mature seeds (95%) was recorded in PM medium supplemented with 2% (w/v) sucrose + 2.0 g l 1 peptone. For germination of embryos P723 medium supplemented with 1.0 mg l 1 BAP proved best. Multiple shoot buds or protocorm-like bodies (PLBs) were produced from stem segments of in vitro raised seedlings. Both direct organogenesis and embryogenesis were observed and the morphogenetic response was initiated by different concentrations and combinations of PGRs. The optimum PGR combination for maximal PLB regeneration was 1.0 mg l 1 NAA + 2.5 mg l 1 BAP, while 1.0 mg l 1 NAA + 1.0 mg l 1 BAP for shoot bud development. Strong and stout root system was induced in half strength PM medium supplemented with 0.5 mg l 1 IAA. The well-rooted plantlets were transferred to pots containing a potting mixture composed of saw dust, coconut coir, humus, and coal pieces at 1:1:1:2 (w/w) with 80% survival in outside environment and flowered after two years of transfer.  相似文献   

14.
We reported the Australian golden wattle as a copper stabilizer in abandoned copper mine soils earlier. Here we investigate to confirm this plant’s suitability to grow on metal contaminated mine soils based on stress indication. The seeds of Acacia pycnantha collected from mining area were germinated after heat and no heat treatment on two types of irrigation. The daily irrigated and heat treated seeds gave up to 85% germination on sandy soil. The A. pycnantha was grown under greenhouse condition in six different soils collected from abandoned copper mine at Kapunda in South Australia. Among the six soil samples, soil-1 with the highest copper concentration produced 2.05 mmol g−1 tissue of proline. Proline expression was prominent in more saline soils (1, 5 and 6) having electrical conductivity (EC) 1184, 1364 and 1256 μS, respectively. Chlorophyll a, b and carotenoid levels in plants showed a gradually decreasing trend in all the soils as experiment progressed. The plants grown on soil sample-1, containing 4083 ± 103 mg kg−1 of copper resulted in 18 ± 2 mg kg−1 accumulation in its leaf. The calcium accumulation was significant up to 11648 ± 1209 mg kg−1 in leaf. Although pore water samples showed higher Cu concentration in soils, an increased mobility of arsenic and lead was observed in all the soil samples. Our experiment points out the need for proper monitoring of revegetation processes to avoid revegetation and reclamation failure.  相似文献   

15.
The removal of Remazol Blue and Reactive Black B by the immobilized thermophilic cyanobacterial strain Phormidium sp. was investigated under thermophilic conditions in a batch system, in order to determine the optimal conditions required for the highest dye removal. In the experiments, performed at pH 8.5, with different initial dye concentrations between 9.1 mg l−1 and 82.1 mg l−1 and at 45 °C, calcium alginate immobilized Phormidium sp. showed high dye decolorization, with maximum uptake yields ranging from 50% to 88% at all dye concentrations tested. When the effects of high dye concentrations on dye removal were investigated, the highest uptake yield in the beads was 50.3% for 82.1 mg l−1 Remazol Blue and 60.0% for 79.5 mg l−1 Reactive Black B. The highest color removal was detected at 45 °C and 50 °C incubation temperatures for all dye concentrations. As the temperature decreased, the removal yield of immobilized Phormidium sp. also decreased. At about 75 mg l−1 initial dye concentrations, the highest specific dye uptake measured was 41.29–41.17 mg g−1 for Remazol Blue and 47.69–43.82 mg g−1 for Reactive Black B at 45 °C and 50 °C incubation temperatures, respectively, after 8 days incubation.  相似文献   

16.
《Flora》2014,209(5-6):285-289
Apocynum venetum has antidepressant and anxiolytic effects according to the traditional Chinese medicine. Lithium (Li) is a proven mood stabilizer. According to the similar drug efficacy, we hypothesized that A. venetum may contain high levels of Li. Here, we investigated Li tolerance and accumulation potential of A. venetum in the field and in greenhouse cultivation. Li concentration in leaves of A. venetum was substantially higher than that of its main accompanying plants. Under a soil Li supply of 50 mg kg−1 the plant did not show obvious symptom of phytotoxicity. Rather, A. venetum could accumulate >1800 mg kg−1 Li in leaf tissues, and survived still under 400 mg kg−1 Li supply. The bioconcentration factor (except control) and translocation factor values were greater than 1.0. Thus, A. venetum has the characteristics of, at least, a Li-accumulator, if not a Li-hyperaccumulator. A. venetum may serve as an interesting model species to study the influence of Li on plants.  相似文献   

17.
The relationship between light intensity, nitrogen availability and pigmentation was investigated in mixotrophic and heterotrophic cultures of the unicellular red alga Galdieria sulphuraria 074G, a potential host for production of the blue pigment, phycocyanin (PC). During the exponential growth phase of batch cultures, G. sulphuraria 074G contained 2–4 mg phycocyanin per g dry weight. In carbon-limited and nitrogen-sufficient batch cultures grown in darkness, this value increased to 8–12 mg g−1 dry weight during the stationary phase, whereas the phycocyanin content in nitrogen-deficient cells decreased to values below 1 mg g−1 dry weight during stationary phase. Light intensities between 0 and 100 μmol photons m−2 s−1 had no influence on phycocyanin accumulation in mixotrophic cultures grown on glucose or fructose, while light stimulated phycocyanin synthesis in cultures grown on glycerol, in which the phycocyanin content in stationary phase was increased from 10 mg g−1 dry weight in darkness to 20 mg g−1 dry weight at a light intensity of 80 μmol photons m−2 s−1. At higher light intensities, less phycocyanin accumulated than at lower intensities, irrespective of the carbon substrate used. In carbon-limited continuous flow cultures grown on glucose or glycerol at a dilution rate of 0.63 day−1, corresponding to 50% of the maximum specific growth rate, the highest steady-state phycocyanin content of 15–28 mg g−1 dry weight was found at 65 μmol photons m−2 s−1. In contrast to the apparent glucose repression of light-induced PC synthesis observed in batch cultures, no glucose repression of the light stimulation was observed in continuous flow cultures because the glucose concentration in the culture supernatant always remained at limiting levels. Despite the fact that G. sulphuraria 074G contains less phycocyanin than some other microalgae and cyanobacteria, the ability of G. sulphuraria 074G to grow and synthesize phycocyanin in heterotrophic or mixotrophic cultures makes it an interesting alternative to the cyanobacterium, Spirulina platensis presently used for synthesis of phycocyanin.  相似文献   

18.
Methanolic extracts from the biomass of shoot-differentiating and undifferentiating callus cultures of Schisandra chinensis growing respectively on six and two different variants of the Murashige and Skoog (MS) medium, with different concentrations of plant growth regulators, BA (N6-benzyladenine) and NAA (α-naphthaleneacetic acid) were analyzed for the accumulation of two lignans–schisantherin A and gomisin G, using the HPLC method. The amounts of the two compounds in the biomass extracts from shoot-differentiating callus cultures were dependent on the concentration of plant growth regulators in the MS medium. The highest amounts of both lignans were obtained on the MS medium supplemented with 3 mg l−1 BA and 1 mg l−1 NAA. The maximum amount of schisantherin A (33.45 mg 100 g−1 DW) was about 1.3 times higher than in the extracts from the leaves and fruits of parent plants. This is the most important result potentially promising from a practical point of view.  相似文献   

19.
Plants of miscanthus were grown in a Cd-free solution up to 1 month before heading and then were exposed to 0, 0.75, 1.5, 2.25 and 3 mg l−1 cadmium for 36 days. All cadmium levels were toxic to miscanthus. Growth response was not dose-dependent and two toxicity thresholds were identified: one between 0 and 0.75 mg l−1 Cd, the other between 2.25 and 3 mg l−1 Cd. The former caused a biomass decrease by about 50%, whereas the latter completely inhibited growth and disrupted the mechanisms that restricted Cd translocation to the shoot. Growth of the aerial part was affected by cadmium more than that of the hypogeal one. Cadmium did not change the N concentration of different plant parts, but markedly reduced the N uptake of the plant, the N net uptake rate (NUR) and the N net translocation rate (NTR) from the rhizome to the aerial part. These two indexes equalled zero when plants ceased to grow. Otherwise, the Cd-NUR increased with Cd supply and the Cd-NTR from rhizome to aerial part showed the highest increment when plants did not grow at all. This suggests different uptake pathways for the two elements, active for nitrogen and passive for cadmium. The Cd concentration and the Cd content markedly increased with all Cd levels, following the order roots  rhizome > culms > leaves. The Cd concentration and the Cd content of aerial organs increased with Cd supply, but increments were highest between 2.25 and 3 mg l−1 Cd. The highest Cd concentrations were recorded in plants grown with 3 mg l−1 Cd and were 41 and 122 mg kg−1, respectively, for the aerial and the hypogeal plant parts. The hypogeal plant part retained most of the cadmium taken up from solution, accounting for approximately 87% of total plant cadmium with the three lower Cd levels, and for 73% with the highest one. The maximum Cd content of the entire plant was achieved with the two higher Cd levels and was approximately 4.7 mg, while the Cd content of the aerial part was highest with 3 mg l−1 Cd (1.2 mg Cd per plant) and that of the hypogeal one with 2.25 mg l−1 Cd (4 mg Cd per plant). The highest aerial content achieved in this experiment was 10-fold that obtained in a previous research when small-sized plants were exposed to the same Cd level.  相似文献   

20.
The phosphorus (P) fractions and bioavailable P in the sediments from the Quanzhou Bay Estuarine Wetland Nature Reserve were investigated using chemical extraction methods for the first time to study the distribution and bioavailability of P in the reserve sediments. A hypothesis was presented suggesting that the bioavailable P in the sediments could be evaluated using the P fractions. The total phosphorus (TP), inorganic phosphorus (IP), organic phosphorus (OP), non-apatite phosphorus (NAIP), and apatite phosphorus (AP) contents in the sediments were in the ranges of 303.87–761.59 mg kg−1, 201.22–577.66 mg kg−1, 75.83–179.16 mg kg−1, 28.86–277.90 mg kg−1, and 127.36–289.94 mg kg−1, respectively. The water soluble phosphorus (WSP), readily desorbable phosphorus (RDP), algal available phosphorus (AAP), and NaHCO3 extractable phosphorus (Olsen-P) contents in the sediments were in the ranges of 0.58–357.17 mg kg−1, 80.77–586.75 mg kg−1, 1.09–24.12 mg kg−1, and 54.96–676.82 mg kg−1, respectively. The correlation analysis results showed that the NAIP was the major component of the bioavailable P and that the impact of the AP on the bioavailable phosphorus may be minimal. Due to the low TP content in the sediments of the Quanzhou Bay Estuarine Wetland Nature Reserve, the potential pollution risks of P in the sediments may not be very high. The results also show that the bioavailable P concentrations in the sediments of the Quanzhou Bay Estuarine Wetland Nature Reserve could not be evaluated by measuring the P fractions and that the hypothesis was untenable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号