首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文开发了一条从豆腐柴叶中提取果胶的新工艺。该工艺中,树脂吸附纯化、超滤浓缩和喷雾干燥是三个重要的单元操作。为了确定最佳提取条件和考察树脂吸附纯化和超滤浓缩两个单元操作的商业应用可行性,进行了三种不同规模的试验。结果表明,所开发的工艺在能耗和果胶质量方面明显优于传统的醇沉淀法。  相似文献   

2.
Efficient techniques for the isolation of enzymes from a microbial production culture are required to meet the growing needs of the “White Biotechnologies” for novel catalysts. Traditional protein purification procedures typically comprise multistep operations, which inevitably come along with significant losses of enzyme activity. Foaming offers an alternative minimizing the processing steps, preserving the purification efficiency and decreasing the activity losses all at the same time. This review provides an insight into the foaming process itself and its application in separating enzymes from model systems and from complex media, such as microbial cultures. Examples demonstrate fractionated foaming and the tweezer technique.  相似文献   

3.
Technology development initiatives targeted for monoclonal antibody purification may be motivated by manufacturing limitations and are often aimed at solving current and future process bottlenecks. A subject under debate in many biotechnology companies is whether conventional unit operations such as chromatography will eventually become limiting for the production of recombinant protein therapeutics. An evaluation of the potential limitations of process chromatography and filtration using today's commercially available resins and membranes was conducted for a conceptual process scaled to produce 10 tons of monoclonal antibody per year from a single manufacturing plant, a scale representing one of the world's largest single-plant capacities for cGMP protein production. The process employs a simple, efficient purification train using only two chromatographic and two ultrafiltration steps, modeled after a platform antibody purification train that has generated 10 kg batches in clinical production. Based on analyses of cost of goods and the production capacity of this very large scale purification process, it is unlikely that non-conventional downstream unit operations would be needed to replace conventional chromatographic and filtration separation steps, at least for recombinant antibodies.  相似文献   

4.
This paper presents a novel solution strategy for the synthesis of multiproduct and multihost protein production processes. There are several possible hosts that may express each of the products, and different downstream processing separation and purification tasks are needed, which in part depend on the host selection. Moreover, alternative unit operations may be available for some of these separation tasks. Finally, these processing units may be arranged in different configurations. A single mixed-integer optimization model represents the different decisions involved in synthesizing a plant for producing multiple proteins. The mathematical model optimizes the profit of the multiproduct plant and allows the decisions to be made simultaneously, namely, the choice of hosts, downstream operations, the configuration and size of units, as well as their scheduling. An example is solved for a plant that must produce four proteins for which there are alternative hosts for their expression (Escherichia coli, Chinese hamster ovary cells, and yeast that, depending on the product, may express it as an extracellular or intracellular protein) that require 15 stages with choices of unit operations as well as in or out of phase operations. Given the very large quantity of novel recombinant proteins for a number of novel therapeutic uses presently being approved or "in the pipeline", multiproduct and multihost recombinant protein production plants have recently been or are being built for the manufacture of these products. The strategy presented in this paper is of crucial value for the optimal utilization of such plants.  相似文献   

5.
Osteopontin (OPN) is a structural protein with potential value in therapeutic and diagnostic applications. Low titer, acidic isoelectric point, and the lack of well-defined secondary and tertiary structure were some of the challenges that complicated purification development of OPN from recombinant Escherichia coli lysates. Reported processes for OPN recovery from recombinant sources use nonorthogonal unit operations and often suffer from low yield. In this work, we expanded the search for an optimal OPN purification method by including mixed-modal resins with both ionic and hydrophobic properties (Capto adhere, HEA HyperCel, and PPA HyperCel). Plate-based high-throughput screening (HTS) platform revealed useful information about the interactions between the three different ligands and OPN as function of pH and ionic strength. The HTS data allowed the selection of OPN adsorption and elution conditions that were tested and optimized in a batch mode. In terms of purification factor and yield, HEA HyperCel performed significantly better than the other two mixed-modal resins. Pairing HEA HyperCel with a strong anion exchange step (Capto Q) resulted in a two-step purification process that achieved 45-fold purification of OPN with a final purity of 95% and 44% overall yield. The orthogonality provided by mixed-modal and ion exchange steps resulted in higher yield in fewer unit operations than reported processes. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2722, 2019  相似文献   

6.
《Process Biochemistry》2007,42(7):1084-1089
This work describes the development of a downstream process based upon membrane technology for the purification of Ehrlichia ruminantium (ER) elementary bodies, which can be used as an inactivated vaccine against heartwater for wild and domestic ruminants.Currently, ER purification is performed by a time consuming multistep centrifugation leading to a high level of host endothelial cell protein contamination. Herein, a simple and scaleable process based on depth filtration for clarification, and tangential flow filtration for concentration to effectively recover ER from infected endothelial cell microcarrier cultures is described. Specifically, depth filtration using 20 and 3 μm pore size membranes was applied to remove microcarriers from the bulk culture while tangential flow filtration was used to simultaneously remove additional cell debris and concentrating the ER to an appropriate level of volume reduction. The effects of transmembrane pressure and tangential filtration mode on ER purification were evaluated; three purification processes were compared to the commonly used centrifugation technique. Results showed that an ER recovery yield of 58% and volume reduction of 87% was achievable in less than 1 h of processing time when using membrane-based processes.This process enables a rapid purification of ER elementary bodies with a minimum of unit operations, reducing the overall cost of the vaccine production; similar approaches may be applied for the purification of other obligate intracellular bacteria with emerging impact on human and animal health.  相似文献   

7.
Significant efforts are put into the design of large-scale purification processes of proteins due to great demands regarding cost efficiency and safety. In order to design an effective purification scheme the unit operations need to be reduced to a minimum. In this review we are discussing proteinaceous ligands as well as small synthetic mimics for use in affinity chromatography for large-scale applications. Different advantages as well as drawbacks of the two approaches are outlined.  相似文献   

8.
《MABS-AUSTIN》2013,5(5):480-499
Hundreds of therapeutic monoclonal antibodies (mAbs) are currently in development, and many companies have multiple antibodies in their pipelines. Current methodology used in recovery processes for these molecules are reviewed here. Basic unit operations such as harvest, Protein A affinity chromatography, and additional polishing steps are surveyed. Alternative processes such as flocculation, precipitation, and membrane chromatography are discussed. We also cover platform approaches to purification methods development, use of high throughput screening methods, and offer a view on future developments in purification methodology as applied to mAbs.  相似文献   

9.
For many protein therapeutics including monoclonal antibodies, aggregate removal process can be complex and challenging. We evaluated two different process analytical technology (PAT) applications that couple a purification unit performing preparative hydrophobic interaction chromatography (HIC) to a multi-angle light scattering (MALS) system. Using first principle measurements, the MALS detector calculates weight-average molar mass, Mw and can control aggregate levels in purification. The first application uses an in-line MALS to send start/stop fractionation trigger signals directly to the purification unit when preset Mw criteria are met or unmet. This occurs in real-time and eliminates the need for analysis after purification. The second application uses on-line ultra-high performance size-exclusion liquid chromatography to sample from the purification stream, separating the mAb species and confirming their Mw using a µMALS detector. The percent dimer (1.5%) determined by the on-line method is in agreement with the data from the in-line application (Mw increase of approximately 2750 Da). The novel HIC-MALS systems demonstrated here can be used as a powerful tool for real-time aggregate monitoring and control during biologics purification enabling future real time release of biotherapeutics.  相似文献   

10.
A novel downstream bioprocess was developed to obtain purified plasmid DNA (pDNA) from Escherichia coli ferments. The intermediate recovery and purification of the pDNA in cell lysate was conducted using hollow-fiber tangential filtration and frontal anion-exchange membrane and elution hydrophobic chromatographies. The purity of the solutions of pDNA obtained during each process stage was investigated. The results show that the pDNA solution purity increased 30-fold and more than 99% of RNA in the lysate was removed during the process operations. The combination of membrane operations and hydrophobic interaction chromatography resulted in an efficient way to recover pDNA from cell lysates. A better understanding of membrane-based technology for the purification of pDNA from clarified E. coli lysate was developed in this research.  相似文献   

11.
Next-generation manufacturing (NGM) has evolved over the past decade to a point where large biopharmaceutical organizations are making large investments in the technology and considering implementation in clinical and commercial processes. There are many well-considered reasons to implement NGM. For the most part, organizations will not fund NGM unless the implementation benefits the funding organization by providing reduced costs, reduced time, or additional needed capabilities. Productivity improvements gained from continuous purification are shown in this work, which used a new system that fully integrates and automates several downstream unit operations of a biopharmaceutical process to provide flexibility and easy implementation of NGM. The equipment and automation needed to support NGM can be complicated and expensive. Biopharmaceutical Process Development considered two options as follows: (1) design its own NGM system or (2) buy a prebuilt system. PAK BioSolutions offers a turn-key automated and integrated system that can operate up to four continuous purification stages simultaneously, while maintaining a small footprint in the manufacturing plant. The system provides significant cost benefits (~10× lower) compared with the alternative—integration of many different pieces of equipment through a Distributed Control System that would require significant engineering time for design, automation, and integration. Integrated and Continuous Biomanufacturing can lead to significant reductions in facility size, reduced manufacturing costs, and enhanced product quality when compared with the traditional batch mode of operation. The system uses new automation strategies that robustly link unit operations. We present the optimized process fit, sterility and bioburden control strategy, and automation features (such as pH feedback control and in-line detergent addition), which enabled continuous operation of a 14-day end-to-end monoclonal antibody purification process at the clinical manufacturing scale.  相似文献   

12.
Hundreds of therapeutic monoclonal antibodies (mAbs) are currently in development, and many companies have multiple antibodies in their pipelines. Current methodology used in recovery processes for these molecules are reviewed here. Basic unit operations such as harvest, Protein A affinity chromatography and additional polishing steps are surveyed. Alternative processes such as flocculation, precipitation and membrane chromatography are discussed. We also cover platform approaches to purification methods development, use of high throughput screening methods, and offer a view on future developments in purification methodology as applied to mAbs.Key words: monoclonal antibody, recovery, purification, chromatography, membrane, filtration, platform process  相似文献   

13.
Continuous bioprocessing holds the potential to improve product consistency, accelerate productivity, and lower cost of production. However, switching a bioprocess from traditional batch to continuous mode requires surmounting business and regulatory challenges. A key regulatory requirement for all biopharmaceuticals is virus safety, which is assured through a combination of testing and virus clearance through purification unit operations. For continuous processing, unit operations such as capture chromatography have aspects that could be impacted by a change to continuous multicolumn operation, for example, do they clear viruses as well as a traditional batch single column. In this study we evaluate how modifying chromatographic parameters including the linear velocity and resin capacity utilization could impact virus clearance in the context of moving from a single column to multicolumn operation. A Design of Experiment (DoE) approach was taken with two model monoclonal antibodies (mAbs) and two bacteriophages used as mammalian virus surrogates. The DoE enabled the identification of best and worst-case scenario for virus clearance overall. Using these best and worst-case conditions, virus clearance was tested in single column and multicolumn modes and found to be similar as measured by Log Reduction Values (LRV). The parameters identified as impactful for viral clearance in single column mode were predictive of multicolumn modes. Thus, these results support the hypothesis that the viral clearance capabilities of a multicolumn continuous Protein A system may be evaluated using an appropriately scaled-down single mode column and equipment.  相似文献   

14.
15.
A method for the purification of alcohol dehydrogenase from Drosophila melanogaster is described. The method makes use of 8-(6-aminohexyl)amino-5'-AMP, immobilized on Sepharose 4B, as an affinity ligand. Since alcohol dehydrogenase from Drosophila shows weak affinity for this column, a novel technique was developed to separate alcohol dehydrogenase from both unbound proteins and more strongly bound enzymes. The purification procedure is simple to operate and give a homogeneous preparation in good yield after only three steps.  相似文献   

16.
Clearance of minute virus of mice (MVM) from CHO cell suspensions by flocculation and microfiltration has been investigated. MVM is a parvovirus that is recommended by the U.S. Food and Drug Administration for validating clearance of parvoviruses. The feed streams were flocculated using a cationic polyelectrolyte. Virus clearance in excess of 10,000-fold was obtained in the bulk permeate for flocculated feeds streams. However, the level of clearance was only about 10- to 100-fold for unflocculated feed streams. The results suggest that virus clearance involves interactions between the MVM particles, the cationic polyelectrolyte, and the CHO cells present. Validating virus clearance is a major concern in the biotechnology industry. New unit operations are frequently added to the purification train simply to validate virus clearance. However, many of these unit operations are less effective at validating clearance of nonenveloped viruses. Validating clearance of parvoviruses is often particularly problematic as they are nonenveloped and the virus particles are small (18 to 24 nm), making physical removal difficult. The results obtained herein indicate that addition of the cationic polyelectrolyte not only results in significant clearance of MVM but also leads to an increase in permeate flux.  相似文献   

17.
In recent years, the market for therapeutic monoclonal antibodies (mAb) has grown exponentially, and with this there has been a desire to reduce the costs associated with production and purification of these high-value biological products. A typical mAb purification process involves three adsorption/chromatography steps [protein A, ion exchange (IEX), and hydrophobic interaction (HIC)], along with ultrafiltration, nanofiltration, and microfiltration. With the development of membrane adsorption/chromatography as a viable alternative to traditional pack bed systems, the opportunity exists to complete the entire downstream purification process using only membrane operations. In this study, the process simulation tool SuperPro Designer was used to evaluate the application of recently developed ultra-high capacity electrospun nanofibrous adsorption membranes as a replacement for conventional chromatographic media in the downstream mAb production process. The simulation showed that nanofibrous adsorption membranes in place of the three packed bed chromatography steps reduced the required volume of protein A, IEX, and HIC adsorptive medium by 25, 80, and 80%, respectively. In addition, the membrane-only process reduced the downstream processing time by 50%, decreased the number of labor hours associated with the purification steps by 40%, generated 40% less aqueous waste, and reduced the overall downstream process operating expenses per unit product by 23%. There were also significant savings in facility construction costs and the price of fixed equipment required for separations. With these savings not only is the membrane-only process economically competitive with the traditional packed bed operations, but it offers the possibility of moving toward more disposable process.  相似文献   

18.
Up to now, the productivity of mammalian cell culture has been perceived as limiting the productivity of the industrial manufacture of therapeutic monoclonal antibodies. Dramatic improvements in cell culture performance have changed this picture, and the throughput of antibody purification processes is gaining increasing attention. Although chromatographic separations currently are the centerpiece of antibody purification, mostly due to their high resolving power, it becomes more and more apparent that there may be limitations at the very large scale. This review will discuss a number of alternatives to chromatographic antibody purification, with a particular emphasis on the ability to increase throughput and overcome traditional drawbacks of column chromatography. Specifically, precipitation, membrane chromatography, high-resolution ultrafiltration, crystallization, and high-pressure refolding will be evaluated as potential large scale unit operations for industrial antibody production.  相似文献   

19.
中试规模纯化海洋芽孢杆菌源脂肽类化合物   总被引:1,自引:0,他引:1  
本次研究旨在建立经济可行的海洋芽孢杆菌源脂肽类化合物的中试规模纯化工艺。对包括酸化沉淀、甲醇浸提、溶剂沉淀、盐析、萃取、硅胶柱层析和HZ806大孔树脂吸附工艺在内的可放大的成熟单元工艺进行反复试验,考察脂肽类化合物表面活性对单元工艺的影响。严格遵循以高收率为前提循序渐进逐步减少杂质的原则,组合上述单元工艺对目标产物进行提取和纯化,并最终获得高纯度脂肽样品。新工艺可从1 t海洋芽孢杆菌Bacillus marinus B-9987的发酵液中,以百克量级的规模制备87.51%–100%纯度的脂肽类化合物样品,收率81.73%。本研究首次实现了高纯度的海洋芽孢杆菌源脂肽类化合物的百克量级制备;允许发酵生产阶段使用天然培养基,缓解了脂肽中游发酵生产和下游大规模纯化之间的矛盾;且各单元工艺规避了脂肽类化合物水溶液的乳化起泡和不经济的大体积水溶液蒸发浓缩。新工艺实用可行,经济合理。  相似文献   

20.
《Process Biochemistry》2004,39(11):1567-1571
A novel prepurification method was developed aiming at increasing yield and purity, also reducing solvent usage for purification of paclitaxel. This method was a simple and efficient procedure, for the isolation and prepurification of paclitaxel from the biomass of Taxus chinensis, consisting of micelle formation, followed by two precipitation steps. The purity and yield were 65.8 and 80% in the prepurification step, respectively. The use of a micelle and precipitation in the prepurification process allows rapid separation of paclitaxel from interfering compounds and dramatically reduces solvent usage compared to alternative methodologies. This prepurification process serves to minimize the size and complexity of the HPLC operations for paclitaxel purification. This process is readily scalable to a pilot plant and eventually to a production environment where multikilogram quantities of material are expected to be produced. As much as possible, the process has been optimized to minimize solvent usage, complexity, and operating costs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号