首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thromboxane A(2) and other eicosanoids such as isoprostanes contribute to vascular proliferation and atherosclerosis by binding to the thromboxane/prostaglandin endoperoxide receptors. The effects of terutroban, a thromboxane/prostaglandin endoperoxide receptor antagonist, on aorta remodeling were evaluated in spontaneously hypertensive stroke-prone rats (SHRSPs), a model of severe hypertension, endothelial dysfunction, vascular inflammation, and cerebrovascular diseases. Male SHRSPs were allocated to three groups receiving a standard diet (n = 5) or a high-sodium permissive diet plus vehicle (n = 6) or plus terutroban (30 mg · kg(-1) · day(-1); n = 6). After 6 wk of dietary treatment, all of the animals were injected with bromodeoxyuridine and simultaneously euthanized for aorta collection. The aortic media thickness-to-lumen ratio significantly (P < 0.0001) increased in the salt-loaded rats compared with the rats fed a standard diet, whereas terutroban treatment completely prevented media thickening (P < 0.001). When compared with vehicle, terutroban was also effective in preventing cell proliferation in the media, as indicated by the reduced number of bromodeoxyuridine-positive (P < 0.0001) and proliferating cell nuclear antigen-positive cells (P < 0.0001). Severe fibrosis characterized by a significant accumulation of collagen and fibronectin in the vascular wall was observed in the vehicle-treated rats (P < 0.01) but was completely prevented by terutroban (P < 0.001). The latter also inhibited heat shock protein-47 (P < 0.01) and TGF-1β expression (P < 0.001), which were significantly increased by the high-salt diet. In conclusion, terutroban prevents the development of aorta hyperplasia and has beneficial effects on fibrotic processes by affecting TGF-β and heat shock protein-47 expression in SHRSPs. These findings provide mechanistic data supporting the beneficial effects of terutroban in preventing or retarding atherogenesis.  相似文献   

2.
Male Sprague-Dawley rats were maintained on a low-salt (LS) diet (0.4% NaCl) or changed to a high-salt (HS) diet (4% NaCl) for 3 days. Increases in intracellular Ca2+ ([Ca2+]i) in response to methacholine (10 microM) and histamine (10 microM) were significantly attenuated in aortic endothelial cells from rats fed a HS diet, whereas thapsigargin (10 microM)-induced increases in [Ca2+]i were unaffected. Methacholine-induced nitric oxide (NO) production was eliminated in endothelial cells of aortas from rats fed a HS diet. Low-dose ANG II infusion (5 ng x kg(-1) x min(-1) iv) for 3 days prevented impaired [Ca2+]i signaling response to methacholine and histamine and restored methacholine-induced NO production in aortas from rats on a HS diet. Adding Tempol (500 microM) to the tissue bath to scavenge superoxide anions increased NO release and caused N(omega)-nitro-L-arginine methyl ester-sensitive vascular relaxation in aortas from rats fed a HS diet but had no effect on methacholine-induced Ca2+ responses. Chronic treatment with Tempol (1 mM) in the drinking water restored NO release, augmented vessel relaxation, and increased methacholine-induced Ca2+ responses significantly in aortas from rats on a HS diet but not in aortas from rats on a LS diet. These findings suggest that 1) agonist-induced Ca2+ responses and NO levels are reduced in aortas of rats on a HS diet; 2) increased vascular superoxide levels contribute to NO destruction, and, eventually, to impaired Ca2+ signaling in the vascular endothelial cells; and 3) reduced circulating ANG II levels during elevated dietary salt lead to elevated superoxide levels, impaired endothelial Ca2+ signaling, and reduced NO production in the endothelium.  相似文献   

3.
The effect of sex hormones on vascular reactivity is considered one of the underlying factors contributing to gender differences in cardiovascular functions and diseases. Experiments were designed to investigate the role of androgens in salt-induced hypertension by assessing the relaxation response of isolated aortic rings to acetylcholine and sodium nitroprusside in the presence or absence of l-nitroarginine methyl ester in Sprague-Dawley rats. The rats were either orchidectomized or sham-operated, with or without testosterone replacement, and were placed on a normal or high-salt diet for 6?weeks. The results indicate a significant increase (p?< 0.001) in the mean arterial blood pressure of rats on the high-salt diet, when compared with control or orchidectomized rats. Orchidectomy elicited a reduction in mean arterial blood pressure (p?< 0.01), while testosterone replacement normalized mean arterial blood pressure to values seen in intact rats on the high-salt diet. The high-salt diet reduced the relaxation response to acetylcholine both in the presence and absence of inhibition of endothelial nitric oxide synthase with l-nitroarginine methyl ester. Bilateral orchidectomy attenuated the impaired endothelial function induced by the high-salt diet in rats, but this was reversed by concomitant administration of testosterone, suggesting a role for androgens in enhancing long-term vascular smooth muscle tone and hence maintenance of high blood pressure in salt-induced hypertension.  相似文献   

4.
A positive correlation has been established between increased oxidative stress and cardiovascular diseases in diabetes mellitus. We evaluated the effects of single or combined treatments with vitamin A (retinol acetate, 30 mg/kg/day, for 12-weeks) and insulin (8-10 IU/rat/day for the final 6-week) on vasomotor activity, oxidative stress and retinol metabolism in 12-week streptozotocin diabetic rats. The vasomotor activity was determined by measuring in vitro responsiveness of aorta rings to phenylephrine (PE) and acetylcholine (ACh) in the absence or in the presence of hydrogen peroxide (H2O2). Preincubation with H2O2 (10 μM) produced a significant decrease in PE (1 mM)-induced contraction in untreated-diabetic but not in control rats. Single treatment with insulin counteracted this effect of H2O2 and also reversed the increased contractile response of diabetic aorta to PE, while vitamin A was found to be ineffective. H2O2 (10 μM) also inhibited ACh (1 mM)-stimulated endothelium- dependent relaxation two fold more in diabetic than in control aorta. In the prevention of H2O2-induced inhibition of vascular relaxation to ACh, vitamin A alone was markedly effective while insulin alone was not. The combination of vitamin A plus insulin removed the inhibitory action of H2O2 in diabetic aorta. Diabetic animals displayed an increased level of aorta thiobarbituric acid reactive substance (TBARS) in association with decreased levels of plasma retinol and retinol-binding protein (RBP). Single treatment with insulin, in spite of allowing recovery of normal growth rate and improved glucose and retinol metabolism in diabetic rats, was unable to control TBARS production to the same extent as vitamin A alone. Our findings suggest that the maintenance of ACh-stimulated endothelium-dependent vasorelaxant tone in normal physiological levels depends largely on the prevention and/or inhibition of peroxidative stress, which is achieved by combined treatment with vitamin A plus insulin. The use of vitamin A together with insulin provides a better metabolic control and more benefits than use of insulin alone in the reduction of diabetes-induced vascular complications.  相似文献   

5.
In the present study, the effect of aqueous garlic extract (Allium sativum; 100 mg/Kg/day; i.p.) on the vascular reactivity of streptozotocin (STZ)-diabetic rats was investigated. Vascular reactivity of isolated aortic rings was assessed by measuring phenylephrine-induced contractile and acetylcholine-induced relaxation responses. The results showed that aortas prepared from 8-week, but not 4-week, STZ-diabetic rats exhibited significantly increased contractile responses, which were partially attenuated by garlic extract treatment. The maximum vasorelaxant response of pre-contracted aortic rings exposed to acetylcholine also significantly decreased in 8-week STZ-diabetic animals which was attenuated to some extent by extract treatment. It is concluded that long-term administration of garlic extract (i.p.) can attenuate various functional alterations induced by STZ-diabetes in the vascular system of an insulin-dependent model of uncontrolled diabetes, and this may suggest a potential approach to future therapeutic strategies.  相似文献   

6.
Leukotriene C4 is produced during hypoxic pulmonary vasoconstriction and leukotriene inhibitors preferentially inhibit the hypoxic pressor response in rats. If lipoxygenase products are important in hypoxic vasoconstriction, then an animal deficient in arachidonic acid should have a blunted hypoxic pressor response. We investigated if vascular responsiveness was decreased in vascular rings and isolated perfused lungs from rats raised on an essential fatty acid deficient diet (EFAD) compared to rats raised on a normal diet. Rats raised on the EFAD diet had decreased esterified plasma arachidonic acid and increased 5-, 8-, 11- eicosatrieonic acid compared to rats raised on the normal diet (control). Compared to the time matched responses in control isolated perfused lungs the pressor responses to angiotensin II and alveolar hypoxia were blunted in lungs from the arachidonate deficient rats. This decreased pulmonary vascular responsiveness was not affected by the addition of indomethacin or arachidonic acid to the lung perfusate. Similarly, the pulmonary artery rings from arichidonate deficient rats demonstrated decreased reactivity to norepinephrine compared to rings from control rats. In contrast, the tension increases to norepinephrine were greater in aortic rings from the arachidonate deficient rats compared to control. Stimulated lung tissue from the arachidonate deficient animals produced less slow reacting substance and platelet activating factor like material but the same amount of 6-keto-PGF and TXB2 compared to control lungs. Thus there is an associated between altered vascular responsiveness and impairment of stimulated production of slow reacting substance and platelet activating factor like materiali rat raised on an EFAD diet.  相似文献   

7.
Leukotriene C4 is produced during hypoxic pulmonary vasoconstriction and leukotriene inhibitors preferentially inhibit the hypoxic pressor response in rats. If lipoxygenase products are important in hypoxic vasoconstriction, then an animal deficient in arachidonic acid should have a blunted hypoxic pressor response. We investigated if vascular responsiveness was decreased in vascular rings and isolated perfused lungs from rats raised on an essential fatty acid deficient diet (EFAD) compared to rats raised on a normal diet. Rats raised on the EFAD diet had decreased esterified plasma arachidonic acid and increased 5-, 8-, 11-eicosatrienoic acid compared to rats raised on the normal diet (control). Compared to the time matched responses in control isolated perfused lungs the pressor responses to angiotensin II and alveolar hypoxia were blunted in lungs from the arachidonate deficient rats. This decreased pulmonary vascular responsiveness was not affected by the addition of indomethacin or arachidonic acid to the lung perfusate. Similarly, the pulmonary artery rings from arachidonate deficient rats demonstrated decreased reactivity to norepinephrine compared to rings from control rats. In contrast, the tension increases to norepinephrine were greater in aortic rings from the arachidonate deficient rats compared to control. Stimulated lung tissue from the arachidonate deficient animals produced less slow reacting substance and platelet activating factor like material but the same amount of 6-keto-PGF1 alpha and TXB2 compared to control lungs. Thus there is an association between altered vascular responsiveness and impairment of stimulated production of slow reacting substance and platelet activating factor like material in rats raised on an EFAD diet.  相似文献   

8.
Vascular smooth muscle cell contraction and endothelium-dependent relaxation was evaluated in aortic rings isolated from weaned, 5-mo-old Sprague-Dawley rats fed a normal (NS; 0.8% NaCl) or high (HS; 8% NaCl) sodium diet. Arterial pressure was 140 +/- 6 (NS) and 145 +/- 6 mmHg (HS). In endothelium-denuded rings, the response to phenylephrine (PE) was not modified by the sodium diet, while that of depolarizing agent KCl and intracellular calcium releasing agent caffeine increased in the HS group. When endothelium was preserved, PE-evoked contraction was reduced in both NS and HS groups, the contraction being yet lower in the HS group. This effect was partially obliterated by addition of N(G)-nitro-L-arginine methyl ester (L-NAME), independently of the sodium diet. Relaxation to ACh in intact rings and to sodium nitroprusside (SNP) and 8-bromoadenosine 3'5' cyclic guanosine monophosphate (8-BrcGMP) in the absence of endothelium was enhanced in rings isolated from HS rats. In addition, the dose-response curve to 8-BrcGMP was shifted to the right in the presence of iberiotoxin, an inhibitor of large conductance, voltage-dependent, and calcium-sensitive potassium channel (BK(Ca)). However, shift was more marked in rings from HS rats. Present results provide evidence that response of vascular smooth muscle cell to nitric oxide/cGMP-related compounds is increased in HS rings and is associated with a greater activation of the repolarizing BK(Ca) channels. Such changes might counterbalance enhanced contractile response to membrane depolarization and thus participate in maintenance of arterial pressure in the present model of early and long-term HS feeding in rats.  相似文献   

9.
Although iron is reported to be associated with the pathogenesis of chronic kidney disease, it is unknown whether iron participates in the pathophysiology of nephrosclerosis. Here, we investigate whether iron is involved in the development of hypertensive nephropathy and the effects of iron restriction on nephrosclerosis in salt- loaded stroke-prone spontaneously hypertensive rats (SHRSP). SHRSP were given either a normal or high-salt diet for 8 weeks. Another subset of SHRSP were fed a high-salt with iron-restricted diet. SHRSP given a high-salt diet developed severe hypertension and nephrosclerosis. As a result, survival rate was decreased after 8 weeks diet. Importantly, massive iron accumulation and increased iron content were observed in the kidneys of salt-loaded SHRSP, along with increased superoxide production, urinary 8-Hydroxy-2′-deoxyguanosine excretion, and urinary iron excretion; however, these changes were markedly attenuated by iron restriction. Of interest, expression of cellular iron transport proteins, transferrin receptor 1 and divalent metal transporter 1, was increased in the tubules of salt-loaded SHRSP. Notably, iron restriction attenuated the development of severe hypertension and nephrosclerosis, thereby improving survival rate in salt-loaded SHRSP. Taken together, these results suggest a novel mechanism by which iron plays a role in the development of hypertensive nephropathy and establish the effects of iron restriction on salt-induced nephrosclerosis.  相似文献   

10.
Previous studies indicate that release of superoxide radicals during coronary reperfusion following occlusion may relate to the loss of endothelium-dependent coronary arterial relaxation. We examined coronary arterial ring relaxation in dogs subjected to temporary circumflex (Cx) coronary artery occlusion and treated with saline or the superoxide radical scavenger superoxide dismutase (SOD). In dogs treated with saline, Cx coronary ring relaxation in response to leukotriene D4 (LTD4) and acetylcholine (ACh) was attenuated (p less than 0.01), but coronary relaxation in response to nitroglycerin was preserved, suggesting loss of endothelium-dependent relaxation following coronary reperfusion. In contrast, Cx coronary relaxation in response to LTD4 and ACh was preserved in the SOD-treated dogs (p less than 0.01 compared to saline-treated dogs). To further examine the role of superoxide radicals in the loss of endothelium-dependent relaxation, normal nonischemic canine coronary artery and rat aortic rings were exposed to a superoxide radical generating system of xanthine and xanthine oxidase in vitro. Xanthine plus xanthine oxidase treatment caused a significant (p less than 0.01) decrease in the relaxant effects of ACh. Pretreatment of rat aortic rings with SOD protected against the loss of ACh-induced relaxation. These observations suggest that release of superoxide radicals during reperfusion is the basis of loss of endothelium-dependent coronary arterial relaxation. Treatment with superoxide radical scavengers prior to coronary reperfusion protects against this loss.  相似文献   

11.
Polycystic ovary syndrome (PCOS) is a complex endocrine disorder characterized by hyperandrogenism and insulin resistance, both of which have been connected to atherosclerosis. Indeed, an increased risk of clinical manifestations of arterial vascular diseases has been described in PCOS. On the other hand endothelial dysfunction can be detected early on, before atherosclerosis develops. Thus we assumed that vascular dysfunction is also related directly to the hormonal imbalance rather than to its metabolic consequences. To detect early functional changes, we applied a novel rodent model of PCOS: rats were either sham operated or hyperandrogenism was achieved by implanting subcutaneous pellets of dihydrotestosterone (DHT). After ten weeks, myograph measurements were performed on isolated aortic rings. Previously we described an increased contractility to norepinephrine (NE). Here we found a reduced immediate relaxation to estradiol treatment in pre-contracted aortic rings from hyperandrogenic rats. Although the administration of vitamin D3 along with DHT reduced responsiveness to NE, it did not restore relaxation to estradiol. Poly-(ADP-ribose) polymerase (PARP) activity was assessed by poly-ADP-ribose immunostaining. Increased PAR staining in ovaries and circulating leukocytes from DHT rats showed enhanced DNA damage, which was reduced by concomitant vitamin D3 treatment. Surprisingly, PAR staining was reduced in both the endothelium and vascular smooth muscle cells of the aorta rings from hyperandrogenic rats. Thus in the early phase of PCOS, vascular tone is already shifted towards vasoconstriction, characterized by reduced vasorelaxation and vascular dysfunction is concomitant with altered PARP activity. Based on our findings, PARP inhibitors might have a future perspective in restoring metabolic disorders in PCOS.  相似文献   

12.
A high fructose diet induces hypertension, hyperinsulinemia - insulin resistance, and hypertriglyceridemia (syndrome X). In this study, we investigated the role of an abnormal lipid profile in mediating fructose-induced hypertension. We hypothesized that bezafibrate, a lipid-lowering drug, would reduce elevated blood pressure and inhibit increased vascular reactivity in fructose-fed rats. Male rats were placed on four different diets: group 1 was fed standard chow (n = 6); group 2 was fed 60% fructose (n = 5); group 3 was fed fructose plus bezafibrate (30 mg x kg(-1) x day(-1); drinking water; n = 5); and group 4 was fed standard chow plus bezafibrate (n = 6). In addition, the direct effects of very low density lipoprotein (VLDL) on vascular reactivity were examined. Bezafibrate treatment lowered blood pressure, free fatty acids, and triglycerides in the fructose-fed group, suggesting that lipid abnormalities play a role in the elevation of blood pressure in the fructose-induced hypertensive rat. Aortae from fructose-fed rats were hyperresponsive to the calcium channel agonist Bay K 8644, which was normalized with bezafibrate treatment. Incubation of aortae in a VLDL medium resulted in increased responsiveness to Bay K 8644, lending further support to lipid abnormalities altering vascular reactivity. An altered lipid profile evidenced by elevated triglycerides and free fatty acids is causally related to the development of high blood pressure and increased vascular reactivity in the fructose-induced hypertensive rat.  相似文献   

13.
Abnormal renal vasomotor tone exists in the early stages of diabetes mellitus. Insulin has been proposed to modulate renal function and to possess vasodilatory effects. The present study was initiated in order to evaluate the direct effect of insulin on isolated renal arteries. Twelve insulin-treated streptozotocine diabetic rats with diabetes for 50 days were compared with 15 weight-matched control rats. The contractile responses to 60 mM K+ and 10(-4) M noradrenaline, and the insulin- (0.8-6.4 I.U./ml) induced relaxation of vessels precontracted with noradrenaline, were similar in diabetic and control rats. There was a tendency towards greater relaxation in diabetic (71%) than in control rats (54%). Nw-nitro-L-arginine methyl ester (L-NAME) (10(-4) M) given before noradrenaline tended to attenuate the insulin-induced relaxation, while addition of L-arginine (10(-6) M) to L-NAME attenuated the relaxation in diabetic but increased it in control rats (P < 0.05). The effect of insulin was tested further in control rats and was not influenced by administration of a single dose (10(-6) M) of indomethacin or propranolol given instead of L-NAME. The effect of a single dose of methylene-blue, given before noradrenaline, was tested in control rats in varying doses between 2 x 10(-6) and 2 x 10(-4) M. In the highest concentration it made no difference whether insulin was given or not and there was a similar relaxing effect in diabetic and control arteries. In conclusion, the present study showed that insulin per se has a relaxing effect on renal arteries. There was a tendency to greater relaxation in diabetic than in control rats, an effect which was attenuated by in-vitro-pretreatment with L-NAME as well as with L-NAME and L-arginine in diabetic vessels, while relaxation was increased in control vessels. This may indicate that the effect of insulin may be mediated through nitric oxide in diabetic but not in control rats. The effects of insulin in control vessels were not modified in vitro by indomethacin, propranolol or methylene-blue.  相似文献   

14.

Background

Nonalcoholic steatohepatitis (NASH), a progressive stage of nonalcoholic fatty liver disease (NAFLD), is characterized by steatosis (accumulation of triacylglycerols within hepatocytes) along with inflammation and ballooning degeneration. It has been suggested that oxidative stress may play an important role in the progress of NAFLD to NASH. The aim of present study was to determine whether antioxidant supplementations using EUK-8, EUK-134 and vitamin C could improve the biochemical and histological abnormalities associated with diet-induced NASH in rats.

Methods

NASH was induced in male N-Mary rats by feeding a methionine - choline deficient (MCD) diet. The rats were fed either normal chow or MCD diet for 10 weeks. After NASH development, the MCD-fed rats were randomly divided into four groups of six: the NASH group that received MCD diet, the EUK-8 group which was fed MCD diet plus EUK-8, the EUK-134 group which was fed MCD diet plus EUK-134 and the vitamin C group which received MCD diet plus vitamin C. EUK-8, EUK-134 and vitamin C (30 mg/kg body weight/day) were administered by gavage for eight weeks.

Results

Treatment of MCD-fed rats with salens reduced the sera aminotransferases, cholesterol, low density lipoprotein contents, the extent of lipid peroxidation and protein carbonylation whereas the HDL-C cholesterol levels were significantly increased. In addition, EUK-8 and EUK-134 improved steatosis, ballooning degeneration and inflammation in liver of MCD-fed rats.

Conclusion

Antioxidant (EUK-8, EUK-134 and vitamin C) supplementation reduces NASH-induced biochemical and histological abnormalities, pointing out that antioxidant strategy could be beneficial in treatment of NASH.  相似文献   

15.
Vascular dysfunction, which presents either as an increased response to vasoconstrictors or an impaired relaxation to dilator agents, results in worsened cardiovascular outcomes in diabetes. We have established that the mesenteric circulation in Type 2 diabetes is hyperreactive to the potent vasoconstrictor endothelin-1 (ET-1) and displays increased nitric oxide-dependent vasodilation. The current study examined the individual and/or the relative roles of the ET receptors governing vascular function in the Goto-Kakizaki rat, a mildly hyperglycemic, normotensive, and nonobese model of Type 2 diabetes. Diabetic and control rats received an antagonist to either the ET type A (ETA; atrasentan; 5 mg x kg(-1) x day(-1)) or type B (ET(B); A-192621; 15 or 30 mg x kg(-1) x day(-1)) receptors for 4 wk. Third-order mesenteric arteries were isolated, and vascular function was assessed with a wire myograph. Maximum response to ET-1 was increased in diabetes and attenuated by ETA antagonism. ETB blockade with 15 mg/kg A-192621 augmented vasoconstriction in controls, whereas it had no further effect on ET-1 hyperreactivity in diabetes. The higher dose of A-192621 showed an ETA-like effect and decreased vasoconstriction in diabetes. Maximum relaxation to acetylcholine (ACh) was similar across groups and treatments. ETB antagonism at either dose had no effect on vasorelaxation in control rats, whereas in diabetes the dose-response curve to ACh was shifted to the right, indicating a decreased relaxation at 15 mg/kg A-192621. These results suggest that ETA receptor blockade attenuates vascular dysfunction and that ETB receptor antagonism exhibits differential effects depending on the dose of the antagonists and the disease state.  相似文献   

16.
Dietary flaxseed has significant anti-atherogenic effects. However, the limits of this action and its effects on vascular contractile function are not known. We evaluated the effects of flaxseed supplementation on atherosclerosis and vascular function under prolonged hypercholesterolemic conditions in New Zealand White rabbits assigned to one of four groups for 6, 8, or 16 wk of feeding: regular diet (RG), 10% flaxseed-supplemented diet (FX), 0.5% cholesterol-supplemented diet (CH), and 0.5% cholesterol- and 10% flaxseed-supplemented diet (CF). Cholesterol feeding resulted in elevated plasma cholesterol levels and the development of atherosclerosis. The CF group had significantly less atherosclerotic lesions in the aorta and carotid arteries after 6 and 8 wk than the CH animals. However, the anti-atherogenic effect of flaxseed supplementation was completely attenuated by 16 wk. Maximal tension induced in aortic rings either by KCl or norepinephrine was not impaired by dietary cholesterol until 16 wk. This functional impairment was not prevented by including flaxseed in the high-cholesterol diet. Aortic rings from the cholesterol-fed rabbits exhibited an impaired relaxation response to acetylcholine at all time points examined. Including flaxseed in the high-cholesterol diet completely normalized the relaxation response at 6 and 8 wk and partially restored it at 16 wk. No significant changes in the relaxation response induced by sodium nitroprusside were observed in any of the groups. In summary, dietary flaxseed is a valuable strategy to limit cholesterol-induced atherogenesis as well as abnormalities in endothelial-dependent vasorelaxation. However, these beneficial effects were attenuated during prolonged hypercholesterolemic conditions.  相似文献   

17.
Cardiac remodeling (hypertrophy and fibrosis) and an increased left ventricular diastolic stiffness characterize models of hypertension such as the SHR and DOCA-salt hypertensive rats. By contrast, hyperthyroidism induces hypertrophy and hypertension, yet collagen expression and deposition is unchanged or decreased, whereas diastolic stiffness is increased. We determined the possible role of increased calcium influx in the development of increased diastolic stiffness in hyperthyroidism by administering verapamil (15 mg/[kg x d] orally) to rats given triiodothyronine (T3) (0.5 mg/[kg x d] subcutaneously for 14 d). Administration of T3 significantly increased body temperature (control: 36.7 +/- 0.2 degrees C; T3: 39.6 +/- 0.2 degrees C), left ventricular wet weight (control: 2.09 +/- 0.02 mg/kg; T3 3.07 +/- 0.07 mg/kg), systolic blood pressure (control: 128 +/- 5 mmHg; T3: 156 +/- 4 mmHg), and left ventricular diastolic stiffness (control: 20.6 +/- 2.0; T3: 28.8 +/- 1.4). Collagen content of the left ventricle was unchanged. Contractile response to noradrenaline in thoracic aortic rings was reduced. Relaxation in response to acetylcholine (ACh) was also reduced in T3-treated rats, whereas sodium nitroprusside response was unchanged. Verapamil treatment of hyperthyroid rats completely prevented the increased diastolic stiffness and systolic blood pressure while attenuating the increased body temperature and left ventricular weight; collagen content remained unchanged. ACh response in thoracic aortic rings was restored by verapamil. Thus, in hyperthyroid rats, an increased calcium influx is a potential mediator of the increased diastolic stiffness independent of changes in collagen.  相似文献   

18.
The effects of hydrogen peroxide on the beta-adrenergic and muscarinic responses of the rat trachea muscle were studied in vitro, after feeding rats, for 6 weeks, either a diet deficient in vitamin E and selenium or a control diet. In the control situation after incubation with 1 mM hydrogen peroxide for 30 min, a reduction of the maximal response to methacholine of 39% occurred whereas no pD2 shift could be demonstrated. Moreover, no response to isoprenaline after precontraction with 3 x 10(-7) M methacholine was left. In the deficient situation, we found a reduction to 64% of the response to methacholine after incubation with 1 mM hydrogen peroxide. Again isoprenaline became inactive, i.e. no relaxation with isoprenaline was observed after precontraction with 3 x 10(-7) M methacholine. We therefore conclude that vitamin E and selenium protect against oxidative stress in lung tissue and thus regulate the (patho-) physiological balance between adrenergic and muscarinic responses.  相似文献   

19.
Male Sprague-Dawley rats were maintained on a low-salt (LS) diet (0.4% NaCl) or a high-salt (HS) diet (4% NaCl) for 3 days or 4 wk. PO(2) reduction to 40-45 mmHg, the stable prostacyclin analog iloprost (10 pg/ml), and stimulatory G protein activation with cholera toxin (1 ng/ml) caused vascular smooth muscle (VSM) hyperpolarization, increased cAMP production, and dilation in cerebral arteries from rats on a LS diet. Arteries from rats on a HS diet exhibited VSM depolarization and constriction in response to hypoxia and iloprost, failed to dilate or hyperpolarize in response to cholera toxin, and cAMP production did not increase in response to hypoxia, iloprost, or cholera toxin. Low-dose angiotensin II infusion (5 ng x kg(-1) x min(-1) i.v.) restored normal responses to reduced PO(2) and iloprost in arteries from animals on a HS diet. These observations suggest that angiotensin II suppression with a HS diet leads to impaired relaxation of cerebral arteries in response to vasodilator stimuli acting at the cell membrane.  相似文献   

20.
Previous work demonstrated that l-arginine, the substrate for nitric oxide (NO) synthase, is carried into inner medullary collecting duct (IMCD) cells via system y+, that the major system y+ gene product in IMCD is the cationic amino acid transporter 1 (CAT1), and that blockade of l-arginine uptake in the renal medulla decreases NO and leads to systemic hypertension. The present study determined the influence of dietary sodium intake on l-arginine uptake in IMCD, on CAT1 immunoreactive protein in the renal medulla, and on the hypertensive response to blockade of l-arginine uptake in the renal medulla. Transport studies in bulk-isolated IMCD demonstrated that l-arginine uptake by IMCD was significantly greater (663 +/- 100 pmol x mg(-1) x min(-1), n = 6) in rats exposed to a low-sodium diet (0.4% NaCl) compared with rats on a normal (1% NaCl, 519 +/- 78 pmol x mg(-1) x min(-1), n = 6) or high-sodium diet (4.0% NaCl, 302 +/- 27 pmol x mg(-1) x min(-1), n = 6). Immunoblotting experiments demonstrated that CAT1 immunoreactive protein was significantly decreased by approximately 30% in rats maintained on a high-NaCl diet (n = 5) compared with rats on a low-NaCl diet (n = 5). In contrast to the l-arginine transport and immunoblotting data, in vivo blockade of l-arginine uptake led to hypertension of equal magnitude in rats maintained on a low- or high-NaCl diet. These results indicate that sodium loading leads to a decrease in immunoreactive CAT1 protein in the rat renal medulla, resulting in decreased l-arginine uptake capacity. The decrease in l-arginine uptake capacity, however, does not alter the blood pressure response to l-arginine uptake inhibition in the renal medulla.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号