共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
本文旨在研究白藜芦醇(resveratrol)对下丘脑脑片室旁核神经元放电的影响.应用玻璃微电极细胞外记录单位放电技术,在下丘脑脑片上观察白藜芦醇对静息状态下室旁核神经元放电的影响.结果如下:(1)在29张下丘脑脑片室旁核神经元放电单位给予白藜芦醇(O.05,0.5,5.0 μmol/L)2 min,有28张脑片(96.6%)放电频率显著降低,且呈剂量依赖性;(2)预先用0.2mmol/L的L.glutamate灌流8张下丘脑脑片,8张脑片(100%)放电频率显著增加,表现为癫痫样放电,该放电可被白藜芦醇(5.0 μmol/L)灌流2 min抑制:(3)预先用L型钙通道开放剂Bay K8644(0.1μmol/L)灌流8张下丘脑脑片,8张脑片(100%)放电频率显著增加,该放电可被白藜芦醇(5.0 μmol/L)灌流2 min抑制;(4)用一氧化氮合酶抑制剂Nω-nitro.L-arginine methyl ester(L-NAME)50μmol/L灌流8张下丘脑脑片,7张脑片(87.5%)放电频率显著增加,该放电可被白藜芦醇(5.0 μmol/L)灌流2 min抑制.以上结果提示,白藜芦醇抑制下丘脑室旁核神经元自发放电,可能通过降低心血管中枢的活动性而产生中枢保护作用.这种抑制作用可能与白藜芦醇抑制L型钙通道、减少钙内流有关,与NO释放无关. 相似文献
3.
4.
5.
6.
Role of interleukin-1 in stress responses 总被引:7,自引:0,他引:7
Futoshi Shintani Toshio Nakaki Shigenobu Kanba Ryuichi Kato Masahiro Asai 《Molecular neurobiology》1995,10(1):47-71
Recently, the central roles of interleukin-1 (IL-1) in physical stress responses have been attracting attention. Stress responses
have been characterized as central neurohormonal changes, as well as behavioral and physiological changes. Administration
of IL-1 has been shown to induce effects comparable to stress-induced changes. IL-1 acts on the brain, especially the hypothalamus,
to enhance release of monoamines, such as norepinephrine, dopamine, and serotonin, as well as secretion of corticotropin-releasing
hormone (CRH). IL-1-induced activation of the hypothalamo-pituitary-adrenal (HPA) axis in vivo depends on secretion of CRH,
an intact pituitary, and the ventral noradrenergic bundle that innervates the CRH-containing neurons in the paraventricular
nucleus of the hypothalamus. Recent studies have shown that IL-1 is present within neurons in the brain, suggesting that IL-1
functions in neuronal transmission. We showed that IL-1 in the brain is involved in the stress response, and that stress-induced
activation of monoamine release and the HPA axis were inhibited by IL-1 receptor antagonist (IL-1Ra) administration directly
into the rat hypothalamus. IL-1Ra has been known to exert a blocking effect on IL-1 by competitively inhibiting the binding
of IL-1 to IL-1 receptors. In the latter part of this review, we will attempt to describe the relationship between central
nervous system diseases, including psychological disorders, and the functions of IL-1 as a putative neurotransmitter. 相似文献
7.
Pei Liu Hong-Mei Zhang Ke Hu Xiu-Fang Zhou Si Tang 《Journal of cellular physiology》2019,234(8):13534-13543
Chronic intermittent hypoxia (CIH) is known to induce hypertension, but the mechanism is not well understood. We hypothesized that sensory plasticity of the carotid body (CB) and oxidative stress in the paraventricular nucleus (PVN) are involved in CIH-induced hypertension. In this study, rats were exposed to CIH for 28 days (intermittent hypoxia of 21% O2 for 60 s and 5% O2 for 30 s, cyclically repeated for 8 hr/day) and then randomly grouped for intracerebroventricular injection of 5-HT2 receptor antagonist ritanserin, Rho-associated protein kinase (ROCK) inhibitor Y-27632, and NADPH oxidase (NOX) inhibitor diphenyleneiodonium (DPI), respectively. We found that CIH increased blood pressure (BP), elevated carotid sinus nerve (CSN) and renal sympathetic nerve (RSN) activities, oxidative stress, and cell apoptosis in PVN. NOX-derived reactive oxygen species (ROS) production and cell apoptosis decreased when CIH-induced activation of 5-HT/5-HT2AR/PKC signaling was inhibited by ritanserin. In addition, RhoA expression was downregulated when oxidative stress was attenuated by DPI, while Y-27632 decreased the expression of endothelin-1, which is overexpressed in the vascular wall during hypertension. Moreover, treatment with ritanserin, DPI or Y-27632 attenuated the sensory plasticity and sympathetic hyperactivity as well as CIH-induced elevation of BP. In conclusion, CIH-induced activation of 5-HT/5-HT2AR/PKC signaling contributes to NOX-derived oxidative stress in PVN, which may cause sensory plasticity of CB, RSN hyperactivity, and elevated BP. 相似文献
8.
The effects of nesfatin‐1 in the paraventricular nucleus on gastric motility and its potential regulation by the lateral hypothalamic area in rats 下载免费PDF全文
Fei‐fei Guo Luo Xu Sheng‐li Gao Xiang‐rong Sun Zhi‐ling Li Yan‐ling Gong 《Journal of neurochemistry》2015,132(3):266-275
The current study investigated the effects of nesfatin‐1 in the hypothalamic paraventricular nucleus (PVN) on gastric motility and the regulation of the lateral hypothalamic area (LHA). Using single unit recordings in the PVN, we show that nesfatin‐1 inhibited the majority of the gastric distention (GD)‐excitatory neurons and excited more than half of the GD‐inhibitory (GD‐I) neurons in the PVN, which were weakened by oxytocin receptor antagonist H4928. Gastric motility experiments showed that administration of nesfatin‐1 in the PVN decreased gastric motility, which was also partly prevented by H4928. The nesfatin‐1 concentration producing a half‐maximal response (EC50) in the PVN was lower than the value in the dorsomedial hypothalamic nucleus, while nesfatin‐1 in the reuniens thalamic nucleus had no effect on gastric motility. Retrograde tracing and immunofluorescent staining showed that nucleobindin‐2/nesfatin‐1 and fluorogold double‐labeled neurons were observed in the LHA. Electrical LHA stimulation changed the firing rate of GD‐responsive neurons in the PVN. Pre‐administration of an anti‐ nucleobindin‐2/nesfatin‐1 antibody in the PVN strengthened gastric motility and decreased the discharging of the GD‐I neurons induced by electrical stimulation of the LHA. These results demonstrate that nesfatin‐1 in the PVN could serve as an inhibitory factor to inhibit gastric motility, which might be regulated by the LHA.
9.
目的研究烫伤后下丘脑室旁核(PVH)内皮素-1(ET-1)的合成和分泌改变,探讨PVHET-1在烫伤中的病理生理学意义。方法用原位杂交和免疫组织化学方法观察了烫伤后PVHET-1合成和分泌的变化,并用通用图象颗粒分析法检测单位面积内ET-1mRNA阳性杂交信号的强度和ET-1样免疫反应物(ET-1-ir)免疫反应强度。结果烫伤后15minPVH神经元胞浆内ET-1mRNA阳性杂交信号与对照组相比未见明显差异,烫伤后60min和180minPVH神经元胞浆内ET-1mRNA阳性杂交信号较对照组(100%±25%)明显增多,强度明显增高,分别为138%±26%(P<0.05)和167%±18%(P<0.01);而烫伤后15minPVH神经元胞浆内ET-1阳性反应物明显减少,免疫反应物强度为6.3%±1.5%,显著低于对照组(P<0.01),烫伤后60min和180min逐渐回升,分别为23.1%±2.9%和44.1%±3.8%,但仍显著低于对照组(P<0.01)。结论烫伤后PVHET-1合成和分泌增加。 相似文献
10.
Young animals respond to threatening stimuli in an age-specific way. Their endocrine and behavioral responses reflect the potential threat of the situation at a given age. The aim of the present study was to determine whether corticotropin-releasing factor (CRF) is involved in the endocrine and behavioral responses to threat and their developmental changes in young rats. Preweaning 14-day-old and postweaning 26-day-old rats were exposed to two age-specific threats, cat odor and an adult male rat. The acute behavioral response was determined during exposure. After exposure, the time courses of the corticosterone response and of CRF expression in the paraventricular nucleus of the hypothalamus (PVN) and in extrahypothalamic areas were assessed. Preweaning rats became immobile when exposed to cat odor or the male rat, whereas postweaning rats became immobile to cat odor only. Male exposure increased serum corticosterone levels in 14-day-old rats, but cat odor failed to increase levels at either age. Exposure induced elevation of CRF mRNA levels in the PVN that paralleled changes in corticosterone levels. CRF may thus play a role in endocrine regulation and its developmental changes during early life. Neither cat odor nor the adult male altered CRF mRNA levels in the bed nucleus of the stria terminalis (BNST) or the amygdala, but both stimuli increased levels in the hippocampus. Hippocampal CRF mRNA expression levels did not parallel cat odor or male-induced immobility, indicating that CRF is not involved in this response in young rats but may be involved in aspects of learning and memory. 相似文献
11.
Ming‐Dong Zhang Amit Zeisel André Calas Marc Landry Matthew Fuszard Sally L Shirran Robert Schnell Árpád Dobolyi Márk Oláh Lauren Spence Jan Mulder Henrik Martens Miklós Palkovits Mathias Uhlen Harald H Sitte Catherine H Botting Ludwig Wagner Sten Linnarsson Tibor Harkany 《The EMBO journal》2015,34(1):36-54
12.
Kenichi Katsurada Yuko Maejima Masanori Nakata Misato Kodaira Shigetomo Suyama Yusaku Iwasaki Kazuomi Kario Toshihiko Yada 《Biochemical and biophysical research communications》2014
Glucagon-like peptide-1 (GLP-1) receptor agonists have been used to treat type 2 diabetic patients and shown to reduce food intake and body weight. The anorexigenic effects of GLP-1 and GLP-1 receptor agonists are thought to be mediated primarily via the hypothalamic paraventricular nucleus (PVN). GLP-1, an intestinal hormone, is also localized in the nucleus tractus solitarius (NTS) of the brain stem. However, the role of endogenous GLP-1, particularly that in the NTS neurons, in feeding regulation remains to be established. The present study examined whether the NTS GLP-1 neurons project to PVN and whether the endogenous GLP-1 acts on PVN to restrict feeding. Intra-PVN injection of GLP-1 receptor antagonist exendin (9–39) increased food intake. Injection of retrograde tracer into PVN combined with immunohistochemistry for GLP-1 in NTS revealed direct projection of NTS GLP-1 neurons to PVN. Moreover, GLP-1 evoked Ca2+ signaling in single neurons isolated from PVN. The majority of GLP-1-responsive neurons were immunoreactive predominantly to corticotropin-releasing hormone (CRH) and nesfatin-1, and less frequently to oxytocin. These results indicate that endogenous GLP-1 targets PVN to restrict feeding behavior, in which the projection from NTS GLP-1 neurons and activation of CRH and nesfatin-1 neurons might be implicated. This study reveals a neuronal basis for the anorexigenic effect of endogenous GLP-1 in the brain. 相似文献
13.
Leptin plays an important role in the central regulation of body weight and arterial pressure via activation of leptin receptors (Ob-Rs) in the hypothalamic area, including the hypothalamic paraventricular nucleus (PVN). The present study was undertaken to investigate whether endogenous leptin in the PVN plays a dual role in the tonic regulation of body weight and arterial pressure. Adult, male normal-weight Sprague-Dawley rats, which were anesthetized and maintained with propofol, were used. A direct bilateral microinjection into the PVN of an antisense oligonucleotide against Ob-R mRNA (ASON1, 50 pmol) significantly increased the daily food intake and body weight gain, effects which lasted for at least 14 days. The same treatment, on the other hand, had no appreciable effect on the basal mean systemic arterial pressure (SAP), heart rate (HR), or power density of the vasomotor components of SAP signals, the experimental index of neurogenic sympathetic vasomotor tone. ASON1 treatment also exerted an insignificant effect on the baroreceptor reflex control of HR. Western blot analysis revealed that a bilateral microinjection into the PVN of ASON1 (50 pmol) significantly decreased the expression of the Ob-R protein in the hypothalamus. The same treatment also attenuated hypertension, tachycardia, and the increase in the power density of the vasomotor components of the SAP signals induced by exogenous bilateral application of leptin (5 or 50 ng) into the PVN. Control application of sense (SON, 50 pmol) or a scrambled antisense Ob-R oligonucleotide (ASON2, 50 pmol) into the bilateral PVN promoted no discernible effect on Ob-R protein expression in the hypothalamus, on daily food intake, or on cardiovascular performance. Our results indicate that whereas the Ob-Rs in the PVN are involved in the tonic regulation of food intake, they might not be actively involved in the tonic regulation of cardiovascular functions. 相似文献
14.
15.
Eberhard Fuchs Jan-Christian Wasmuth Gabriele Flügge Gerald Huether Raphael Troost Jürgen Beyer 《Cellular and molecular neurobiology》1996,16(1):21-37
Summary 1. Corticotropin-releasing factor (CRF) is thought to be involved in the regulation of the diurnal activity of the hypothalamus-pituitary-adrenal
(HPA) axis and to act as a neurotransmitter in the brain. To date it is unknown whether the binding sites of the central CRF
system are subject to diurnal variations.
2. We measured the number of CRF binding sites over the course of a complete 24-hr light-dark cycle in the pituitary, amygdala,
bed nucleus of the stria terminalis (BNST), cingulate cortex, visceral cortex, paraventricular nucleus of the hypothalamus,
hippocampus, and locus ceruleus of rats byin vitro receptor autoradiography with iodinated ovine CRF. A 24-hr time course was also established for plasma CRF and corticosterone.
3. The diurnal pattern of plasma CRF does not correlate with the pattern of plasma corticosterone. Within the brain, CRF binding
in the basolateral nucleus of the amygdala showed a U-shaped curve with maximum levels in the morning and a wide hallow between
1500 and 0100. A biphasic profile with a small depression in the afternoon and a more pronounced depression in the second
half of the activity period is characteristic for the other brain areas and the pituitary. The profile for the pituitary correlates
with those for the BNST and the area of the locus ceruleus. Furthermore, the diurnal pattern of CRF binding sites in the BNST
correlates with that of the hippocampus, and the daytime pattern of the visceral cortex is similar to that of both the hippocampus
and the BNST.
4. Since the CRF-binding profiles in the brain and the pituitary clearly differ from the profiles of both plasma CRF and corticosterone,
one may assume that the diurnal pattern of central CRF binding sites is not directly coupled to the activity of the HPA axis. 相似文献
16.
17.
18.
Morphine withdrawal stimulates the hypothalamic-pituitary-adrenocortical axis activity by activation of nucleus tractus solitarius (NTS)/ventrolateral medulla (VLM) noradrenergic pathways innervating the hypothalamic paraventricular nucleus (PVN). We investigated whether cAMP-dependent protein kinase (PKA) plays a role in this process by estimating changes in PKA immunoreactivity and the influence of inhibition of PKA on Fos protein expression and tyrosine hydroxylase (TH) immunoreactivity levels in the PVN and NTS/VLM during morphine withdrawal. Dependence on morphine was induced by a 7-day s.c. implantation of morphine pellets. Morphine withdrawal was precipitated on day 8 by an injection of naloxone (5 mg/kg s.c.). When opioid withdrawal was precipitated, an increase in PKA immunoreactivity levels was observed 90 min after naloxone administration in the PVN and NTS/VLM areas. Morphine withdrawal induced expression of Fos in the PVN and NTS/VLM, indicating an activation of neurones in those nuclei. TH immunoreactivity in NTS/VLM was increased 90 min after induction of morphine withdrawal, whereas there was a decrease in TH levels in the PVN at the same time point. When the selective PKA inhibitor HA-1004 was infused it greatly diminished the Fos expression observed in morphine-withdrawn rats. Furthermore, the changes in TH immunoreactivity were significantly modified by infusion of HA-1004. The present findings suggest that an up-regulated PKA-dependent transduction pathway might contribute to the activation of the hypothalamic-pituitary-adrenocortical axis in response to morphine withdrawal. 相似文献
19.
A single exposure to a severe emotional stressor such as immobilization in wooden boards (IMO) causes long‐term (days to weeks) peripheral and central desensitization of the hypothalamic‐pituitary‐adrenal (HPA) response to the same (homotypic) stressor. However, the brain areas putatively involved in long‐term desensitization are unknown. In the present experiment, adult male rats were subjected to 2 h of IMO and, 1 or 4 weeks later, exposed again to 1 h IMO together with stress‐naive rats. C‐fos mRNA activation just after IMO and 1 h after the termination of IMO (post‐IMO) were evaluated by in situ hybridization. Whereas in most brain areas c‐fos mRNA induction caused by the last IMO session was similar in stress‐naive (controls) and previously immobilized rats, a few brain areas showed a reduced c‐fos mRNA response: ventral lateral septum (LSv), medial amygdala (MeA), parvocellular region of the paraventricular hypothalamic nucleus (pPVN), and locus coeruleus (LC). In contrast, an enhanced expression was observed in the medial division of the bed nucleus stria terminalis (BSTMv). The present work demonstrates that a previous experience with a stressor can induce changes in c‐fos mRNA expression in different brain areas in response to the homotypic stressor and suggests that LSv, MeA, and BSTMv may be important for providing signals to lower diencephalic (pPVN) and brainstem (LC) nuclei, which results in a lower physiological response to the homotypic stressor. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006 相似文献
20.
Summary This paper deals with the ultrastructure of two types of intranuclear inclusions, microfilamentous spindle-shaped and crystalloid, present in paraventricular nucleus neurons of adult normal rats. These inclusions appear occasionally in some non-secretory neurons of the parvocellular system, but have never been seen in neurosecretory cells of the magnocellular system. The microfilamentous spindle-shaped inclusions show a close spatial relationship with the granulofibrillar body and interchromatin granules.The distribution and functional significance of such structures are discussed in the light of recent ultrastructural and biochemical studies on nuclear inclusions. 相似文献