首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quaternary ammonium compounds (QACs) are widely used as adjuncts to hygiene in domestic cleaning products. Current concern that the increased use of such biocides in consumer products might contribute to the emergence of antibiotic resistance has led us to examine the effects of a QAC-containing domestic cleaning fluid on the population dynamics and antimicrobial susceptibility of domestic sink drain biofilm communities. QAC susceptibilities of numerically dominant, culturable drain bacteria (15 genera, 17 species) were determined in vitro before and after repeated QAC exposure (14 passages). A fully characterized drain microcosm was then exposed to short-term (12 days) and long-term (3 months) dosing with a QAC-containing domestic detergent (QD). QAC exposure of isolated cultures caused both increases (three species) and circa twofold decreases (six species) in QAC susceptibility. The susceptibility of Ralstonia sp. was considerably decreased following 14 consecutive QAC passages. Control drain microcosm biofilms maintained dynamic stability, as evidenced by culture and denaturing gradient gel electrophoresis (DGGE) analysis. Bacterial population densities were largely unaffected during short-term exposure to use levels of QD, although 50% QD caused circa 10-fold viability reductions. DGGE analysis supported these observations; identified the major microcosm genera as Pseudomonas, Pseudoalteromonas, Erwinia, and Enterobacter, and showed that aeromonads increased in abundance under 10 to 50% QD. Long-term exposure of the microcosms to QD did not significantly alter the pattern of antimicrobial susceptibility. These data demonstrate the recalcitrance of domestic drain biofilms toward QAC and that although repeated QAC exposure of drain isolates in pure culture results in susceptibility change in some test bacteria, such changes do not necessarily occur within complex communities.  相似文献   

2.
We have used heterotrophic plate counts, together with live-dead direct staining and denaturing gradient gel electrophoresis (DGGE), to characterize the eubacterial communities that had formed as biofilms within domestic sink drain outlets. Laboratory microcosms of these environments were established using excised biofilms from two separate drain biofilm samples to inoculate constant-depth film fermentors (CDFFs). Drain biofilms harbored 9.8 to 11.3 log10 cells of viable enteric species and pseudomonads/g, while CDFF-grown biofilms harbored 10.6 to 11.4 log10 cells/g. Since live-dead direct staining revealed various efficiencies of recovery by culture, samples were analyzed by DGGE, utilizing primers specific for the V2-V3 region of eubacterial 16S rDNA. These analyses showed that the major PCR amplicons from in situ material were represented in the microcosms and maintained there over extended periods. Sequencing of amplicons resolved by DGGE revealed that the biofilms were dominated by a small number of genera, which were also isolated by culture. One drain sample harbored the protozoan Colpoda maupasi, together with rhabtidid nematodes and bdelloid rotifers. The microcosm enables the maintenance of stable drain-type bacterial communities and represents a useful tool for the modeling of this ecosystem.  相似文献   

3.
We have used heterotrophic plate counts, together with live-dead direct staining and denaturing gradient gel electrophoresis (DGGE), to characterize the eubacterial communities that had formed as biofilms within domestic sink drain outlets. Laboratory microcosms of these environments were established using excised biofilms from two separate drain biofilm samples to inoculate constant-depth film fermentors (CDFFs). Drain biofilms harbored 9.8 to 11.3 log(10) cells of viable enteric species and pseudomonads/g, while CDFF-grown biofilms harbored 10.6 to 11.4 log(10) cells/g. Since live-dead direct staining revealed various efficiencies of recovery by culture, samples were analyzed by DGGE, utilizing primers specific for the V2-V3 region of eubacterial 16S rDNA. These analyses showed that the major PCR amplicons from in situ material were represented in the microcosms and maintained there over extended periods. Sequencing of amplicons resolved by DGGE revealed that the biofilms were dominated by a small number of genera, which were also isolated by culture. One drain sample harbored the protozoan Colpoda maupasi, together with rhabtidid nematodes and bdelloid rotifers. The microcosm enables the maintenance of stable drain-type bacterial communities and represents a useful tool for the modeling of this ecosystem.  相似文献   

4.
Oral bacterial microcosms, established using saliva inocula from three individuals, were maintained under a feast-famine regime within constant-depth film fermenters. Steady-state communities were exposed four times daily, postfeeding, to a chlorhexidine (CHX) gluconate-containing mouthwash (CHXM) diluted to 0.06% (wt/vol) antimicrobial content. The microcosms were characterized by heterotrophic plate counts and PCR-denaturing gradient gel electrophoresis (DGGE). CHXM caused significant decreases in both total anaerobe and total aerobe/facultative anaerobe counts (P < 0.05), together with lesser decreases in gram-negative anaerobes. The degree of streptococcal and actinomycete inhibition varied considerably among individuals. DGGE showed that CHXM exposure caused considerable decreases in microbial diversity, including marked reductions in Prevotella sp. and Selenomonas infelix. Pure-culture studies of 10 oral bacteria (eight genera) showed that Actinomyces naeslundii, Veillonella dispar, Prevotella nigrescens, and the streptococci were highly susceptible to CHX, while Lactobacillus rhamnosus, Fusobacterium nucleatum, and Neisseria subflava were the least susceptible. Determination of the MICs of triclosan, CHX, erythromycin, penicillin V, vancomycin, and metronidazole for microcosm isolates, before and after 5 days of CHXM exposure, showed that CHXM exposure altered the distribution of isolates toward those that were less susceptible to CHX (P < 0.05). Changes in susceptibility distributions for the other test agents were not statistically significant. In conclusion, population changes in plaque microcosms following repeated exposure to CHXM represented an inhibition of the most susceptible flora with a clonal expansion of less susceptible species.  相似文献   

5.
Recent concern that the increased use of triclosan (TCS) in consumer products may contribute to the emergence of antibiotic resistance has led us to examine the effects of TCS dosing on domestic-drain biofilm microcosms. TCS-containing domestic detergent (TCSD) markedly lowered biofouling at 50% (wt/vol) but was poorly effective at use levels. Long-term microcosms were established and stabilized for 6 months before one was subjected to successive 3-month exposures to TCSD at sublethal concentrations (0.2 and 0.4% [wt/vol]). Culturable bacteria were identified by 16S rDNA sequence analysis, and their susceptibilities to four biocides and six antibiotics were determined. Microcosms harbored ca. 10 log10 CFU/g of biofilm, representing at least 27 species, mainly gamma proteobacteria, and maintained dynamic stability. Viable cell counts were largely unaffected by TCSD exposure, but species diversity was decreased, as corroborated by denaturing gradient gel electrophoresis analysis. TCS susceptibilities ranged widely within bacterial groups, and TCS-tolerant strains (including aeromonads, pseudomonads, stenotrophomonads, and Alcaligenes spp.) were isolated before and after TCSD exposure. Several TCS-tolerant bacteria related to Achromobacter xylosoxidans became clonally expanded during dosing. TCSD addition did not significantly affect the community profiles of susceptibility to the test biocides or antibiotics. Several microcosm isolates, as well as reference bacteria, caused clearing of particulate TCS in solid media. Incubations of consortia and isolates with particulate TCS in liquid led to putative TCS degradation by the consortia and TCS solubilization by the reference strains. Our results support the view that low-level exposure of environmental microcosms to TCS does not affect antimicrobial susceptibility and that TCS is degradable by common domestic biofilms.  相似文献   

6.
Microorganisms have been reported to induce settlement and metamorphosis in a wide range of marine invertebrate species. However, the primary cue reported for metamorphosis of coral larvae is calcareous coralline algae (CCA). Herein we report the community structure of developing coral reef biofilms and the potential role they play in triggering the metamorphosis of a scleractinian coral. Two-week-old biofilms induced metamorphosis in less than 10% of larvae, whereas metamorphosis increased significantly on older biofilms, with a maximum of 41% occurring on 8-week-old microbial films. There was a significant influence of depth in 4- and 8-week biofilms, with greater levels of metamorphosis occurring in response to shallow-water communities. Importantly, larvae were found to settle and metamorphose in response to microbial biofilms lacking CCA from both shallow and deep treatments, indicating that microorganisms not associated with CCA may play a significant role in coral metamorphosis. A polyphasic approach consisting of scanning electron microscopy, fluorescence in situ hybridization (FISH), and denaturing gradient gel electrophoresis (DGGE) revealed that coral reef biofilms were comprised of complex bacterial and microalgal communities which were distinct at each depth and time. Principal-component analysis of FISH data showed that the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Cytophaga-Flavobacterium of Bacteroidetes had the largest influence on overall community composition. A low abundance of Archaea was detected in almost all biofilms, providing the first report of Archaea associated with coral reef biofilms. No differences in the relative densities of each subdivision of Proteobacteria were observed between slides that induced larval metamorphosis and those that did not. Comparative cluster analysis of bacterial DGGE patterns also revealed that there were clear age and depth distinctions in biofilm community structure; however, no difference was detected in banding profiles between biofilms which induced larval metamorphosis and those where no metamorphosis occurred. This investigation demonstrates that complex microbial communities can induce coral metamorphosis in the absence of CCA.  相似文献   

7.
The shell of the bivalve Montacuta ferruginosa, a symbiont living in the burrow of an echinoid, is covered with a rust-colored biofilm. This biofilm includes different morphotypes of bacteria that are encrusted with a mineral rich in ferric ion and phosphate. The aim of this research was to determine the genetic diversity and phylogenetic affiliation of the biofilm bacteria. Also, the possible roles of the microorganisms in the processes of mineral deposition within the biofilm, as well as their impact on the biology of the bivalve, were assessed by phenotypic inference. The genetic diversity was determined by denaturing gradient gel electrophoresis (DGGE) analysis of short (193-bp) 16S ribosomal DNA PCR products obtained with primers specific for the domain Bacteria. This analysis revealed a diverse consortium; 11 to 25 sequence types were detected depending on the method of DNA extraction used. Individual biofilms analyzed by using the same DNA extraction protocol did not produce identical DGGE profiles. However, different biofilms shared common bands, suggesting that similar bacteria can be found in different biofilms. The phylogenetic affiliations of the sequence types were determined by cloning and sequencing the 16S rRNA genes. Close relatives of the genera Pseudoalteromonas, Colwellia, and Oceanospirillum (members of the γ-Proteobacteria lineage), as well as Flexibacter maritimus (a member of the Cytophaga-Flavobacter-Bacteroides lineage), were found in the biofilms. We inferred from the results that some of the biofilm bacteria could play a role in the mineral formation processes.  相似文献   

8.
Phototrophic biofilms were cultivated simultaneously using the same inoculum in three identical flow-lane microcosms located in different laboratories. The growth rates of the biofilms were similar in the different microcosms, but denaturing gradient gel electrophoresis (DGGE) analysis of both 16S and 18S rRNA gene fragments showed that the communities developed differently in terms of species richness and community composition. One microcosm was dominated by Microcoleus and Phormidium species, the second microcosm was dominated by Synechocystis and Phormidium species, and the third microcosm was dominated by Microcoleus- and Planktothrix- affiliated species. No clear effect of light intensity on the cyanobacterial community composition was observed. In addition, DGGE profiles obtained from the cultivated biofilms showed a low resemblance with the profiles derived from the inoculum. These findings demonstrate that validation of reproducibility is essential for the use of microcosm systems in microbial ecology studies.  相似文献   

9.
The acorn barnacle Balanus amphitrite (syn. Amphibalanus amphitrite) is a model organism to investigate pelago-benthic transitions in marine invertebrates. A driver for larval settlement in this organism is the need to attach close to conspecifics, to allow reproduction to take place. Adult barnacles are covered by microbial biofilms and the contribution of these biofilms to conspecific recognition is not fully understood. Little information is available on microbial communities associated with B. amphitrite. We compared biofilm communities from the barnacle shell surface with those from the surrounding rocks using the culture-independent methods of quantitative PCR and denaturing gradient gel electrophoresis. Quantification of the relative abundances of higher bacterial taxa showed that barnacles hosted a greater proportion of α-Proteobacteria compared to rock-associated biofilms (p < 0.01). Differences in relative abundances of other taxa were not observed but DGGE profiling suggested that differences were present at lower taxonomic levels. The capacity of these communities to influence larval settlement was assessed by growing multispecies biofilms on artificial medium, obtained by extracting nutrients from adult barnacles. Biofilms composed of shell-associated bacteria were capable of promoting conspecific settlement by 67% compared to control surfaces (p < 0.05), while rock-associated communities showed contrasting effects. A taxonomic comparison of settlement-stimulating and -inhibiting bacteria was performed by DGGE and band sequencing. All partial 16S rRNA genes sequenced were similar to members of the Vibrio and Pseudoalteromonas genera, suggesting that larvae can detect and respond to variations in the composition of microbial biofilms at low taxonomic levels. Our results indicate that barnacle larvae may be able to detect parentally-associated biofilms and use this information to settle close to members of its own species.  相似文献   

10.
BACKGROUND: Triclosan (TCS) exposure of Escherichia coli selects for tolerant clones, mutated in their enoyl-acyl carrier protein reductase (FabI). It has been inferred that this phenomenon is widespread amongst bacterial genera and might be associated with resistance to third party agents. METHODS: Ex-situ, low passage isolates of enteric, human axilla, human oral origin and bacteria isolated from a domestic drain, together with selected type cultures were exposed to escalating concentrations of TCS over 10 passages using a gradient plate technique. One fresh faecal isolate of E. coli was included as a positive control. TCS susceptibility was determined for all strains before and after exposure, whilst enteric isolates were additionally assessed for susceptibility towards chlorhexidine, tetracycline, chloramphenicol, nalidixic acid and ciprofloxacin, and the oral isolates towards chlorhexidine, tetracycline and metronidazole. RESULTS: Triclosan exposure of E. coli markedly decreased TCS susceptibility. TCS susceptibility also decreased for Klebsiella oxytoca, Aranicola proteolyticus and Stenotrophomonas maltophilia. Susceptibility of the remaining 35 strains to TCS and the other test agents remained unchanged. CONCLUSIONS: These data suggest that selection for high level resistance by TCS exposure is not widespread and appears to be confined to certain enteric bacteria, especially E. coli. Change in TCS susceptibility did not affect susceptibility towards chemically unrelated antimicrobials. SIGNIFICANCE AND IMPACT: Acquired high-level TCS resistance is not a widespread phenomenon.  相似文献   

11.
An up-flow fixed-bed (UFB) bioreactor with patented functional polyurethane foam (FPUF) carriers was used to treat sulfide in hydrocarbon wastewater. Community compositions of autotrophic and heterotrophic bacteria were analyzed by polymerase chain reaction–denaturing gradient gel electrophoresis (PCR–DGGE). DGGE results showed that a relatively stable bacterial community composed of heterotrophic and autotrophic bacteria formed in the bioreactor by the end of experiment, which ensured 92–100% sulfide removal efficiencies. Furthermore, autotrophic genera of Thiobacillus and Thiomonas, as well as those of the heterotrophic genus of Acinetobacter survived and exhibited high sulfide oxidation activity under all three operational conditions. Different special genera were also observed under each operational condition, such as the halophilic genus of Nesterenkonia. In addition, a new genus of sulfide oxidation bacteria was found in the bioreactor, which had the ability to synthesize cytoplasm from organic compounds. These genera have wide applications for the treatment of sulfide in hydrocarbon wastewater.  相似文献   

12.
Oral bacterial microcosms, established using saliva inocula from three individuals, were maintained under a feast-famine regime within constant-depth film fermenters. Steady-state communities were exposed four times daily, postfeeding, to a chlorhexidine (CHX) gluconate-containing mouthwash (CHXM) diluted to 0.06% (wt/vol) antimicrobial content. The microcosms were characterized by heterotrophic plate counts and PCR-denaturing gradient gel electrophoresis (DGGE). CHXM caused significant decreases in both total anaerobe and total aerobe/facultative anaerobe counts (P < 0.05), together with lesser decreases in gram-negative anaerobes. The degree of streptococcal and actinomycete inhibition varied considerably among individuals. DGGE showed that CHXM exposure caused considerable decreases in microbial diversity, including marked reductions in Prevotella sp. and Selenomonas infelix. Pure-culture studies of 10 oral bacteria (eight genera) showed that Actinomyces naeslundii, Veillonella dispar, Prevotella nigrescens, and the streptococci were highly susceptible to CHX, while Lactobacillus rhamnosus, Fusobacterium nucleatum, and Neisseria subflava were the least susceptible. Determination of the MICs of triclosan, CHX, erythromycin, penicillin V, vancomycin, and metronidazole for microcosm isolates, before and after 5 days of CHXM exposure, showed that CHXM exposure altered the distribution of isolates toward those that were less susceptible to CHX (P < 0.05). Changes in susceptibility distributions for the other test agents were not statistically significant. In conclusion, population changes in plaque microcosms following repeated exposure to CHXM represented an inhibition of the most susceptible flora with a clonal expansion of less susceptible species.  相似文献   

13.
14.
PCR-denaturing gradient gel electrophoresis (DGGE) was used to determine diversity and community of endophytic actinomycetes distributed within the roots of Aquilaria crassna Pierre ex Lec (eaglewood). DNA was extracted from plant roots collected from one plantation in Nakhonnayok province and three plantations in Phetchabun province of Thailand. A nested-PCR was used to specifically amplify all actinobacterial groups. PCR-DGGE analysis of a variable region 3 (V3) of 16S rDNA confirmed the presence of endophytic actinomycetes in genera Nocardia, Pseudonocardia, Streptomyces and Actinomadura within the roots of eaglewood from Phetchabun province. Actinomycetes in genera Nocardia, Nonomuraea, Pseudonocardia and Actinomadura were found to inhabit abundantly in the roots of eaglewood from Nakhonnayok province. Actinobacterial community structures within the roots of this plant grown in two provinces were different from each other based on the generated dendrogram and Sorensen’s index. These results suggest that different locations resulted in different endophytic actinomycetes communities within the plant. Besides actinobacterial community structure, genetic diversity was analyzed based on species diversity and simple index. DGGE exhibited many species of actinomycetes inhabited as endophytes. The highest diversity of endophytic actinomycetes was found in the roots from a plantation in Nakhonnayok province and one of the plantations in Phetchabun province. This is the first report of the ecology and the community of endophytic actinomycetes colonized and imbedded within the roots of eaglewood plant.  相似文献   

15.
Little is known about the dynamics of succession of fungi on limestone exposed in subtropical environments. In this study, the colonization of experimental blocks of compact and porous limestone by a fungal community derived from natural biofilms occurring on Structure X from the archaeological site of Becán (México), was studied using a cultivation-dependent approach after short-term (9 m) exposure in order to provide a preliminary insight of the colonization process under seminatural conditions. Microbial growth seen as the change of colour of stone surfaces to black/dark green was more abundant on the porous limestone. There was a fairly clear difference in microbial colonization between the onset of the experiment and the 6th month for both limestone types, but no significant increase in the colonization of coupons occurred between months 6 and 9. This could be related to the low rainfall expected for this period, corresponding to the dry season. A total of 977 isolates were obtained. From these, 138 sterile fungi were unidentified, 380 could only be assigned to the order Sphaeropsidales; the remaining isolates (459) were grouped into 27 genera and 99 different species. Nearly all detected fungal species belonged to the Ascomycota (90 %). Rare taxa (species represented by one to three isolates) included the recently described genus Elasticomyces, several species of genera Hyalodendron, Monodyctis, Papulospora, Curvularia, and Septoria. Other taxa were Minimedusa and Gliomastix luzulae, which have not been previously described for stone environments. Abundant fungi included several species of the common genera Cladosporium, Alternaria, and Taeniolella typical for a range of habitats. Succession of populations was observed for certain taxa, this shift in the composition of fungal communities was more evident in porous limestone. After 6 m of exposure, species of the genera Scolecobasidium, Hyalodendron, and Taeniolella were predominant, while after 9 m, the predominant species belonged to the genera Curvularia and Alternaria, particularly on porous stone. These results suggest that Curvularia and Alternaria replaced other fungi, due to a higher tolerance towards low levels of available water during the dry season. Higher levels of water within the porous stone, keep longer periods of microbial activity, minimizing the impact of desiccation. This study contributes to understand the diversity of fungal communities in stone surfaces in subtropical settings and the dynamics of colonization on limestone.  相似文献   

16.
The housefly (Musca domestica) is an important host for a variety of bacteria, including some pathogenic and antibiotic-resistant strains. To further investigate the relationship between the housefly and the bacteria it harbors, it is necessary to understand the fate of microorganisms during the larval metamorphosis. The major bacterial communities in three developmental stages of the housefly (maggot, pupa, and adult fly) were investigated by a culture-independent method, polymerase chain reaction–denaturing gradient gel electrophoresis (PCR?DGGE) analysis of 16S rRNA genes. The bacteria that were identified using DGGE analysis spanned phyla Proteobacteria, Firmicutes, and Bacteroidetes. Changes in the predominant genera were observed during the housefly development. Bacteroides, Koukoulia, and Schineria were detected in maggots, Neisseria in pupae, and Macrococcus, Lactococcus, and Kurthia in adult flies. Antibiotic-resistant bacteria were screened using a selective medium and tested for antibiotic susceptibility. Most resistant isolates from maggots and pupae were classified as Proteus spp., while those from adult flies were much more diverse and spanned 12 genera. Among 20 tested strains across the three stages, 18 were resistant to at least two antibiotics. Overall, we demonstrated that there are changes in the major bacterial communities and antibiotic-resistant strains as the housefly develops.  相似文献   

17.
Mycobacterium avium and Mycobacterium intracellulare were grown in suspension and in biofilms, and their susceptibilities to chlorine were measured. M. avium and M. intracellulare readily adhered within 2 h, and numbers increased 10-fold in 30 days at room temperature in biofilms on both polystyrene flasks and glass beads. The chlorine resistance of M. avium and M. intracellulare cells grown and exposed to chlorine in biofilms was significantly higher than that of cells grown in suspension. Survival curves showed no evidence of a resistant, persisting population after 6 h of exposure to 1 μg chlorine/ml. The chlorine susceptibility of cells grown in biofilms and exposed in suspension (cells detached from bead surfaces) was also significantly higher than that of cells grown and exposed in suspension (planktonic cells), although it was lower than that of cells grown and exposed in biofilms. The higher resistance of the detached biofilm-grown cells was reversed upon their growth in suspension. There was a strong correlation between the chlorine susceptibility of cells of both M. avium and M. intracellulare and cell surface hydrophobicity measured by contact angle for both biofilm- and suspension-grown cells.  相似文献   

18.
BackgroundMost recalcitrant infections are associated to colonization and microbial biofilm development. These biofilms are difficult to eliminate by the immune response mechanisms and the current antimicrobial therapy.AimTo describe the antifungal of micafungin against fungal biofilms based in the scientific and medical literature of recent years.MethodsWe have done a bibliographic retrieval using the scientific terms “micafungin”, “activity”, “biofilm”, “Candida”, “Aspergillus”, “fungi”, “mycos”*, susceptibility, in PubMed/Medline from the National Library of Medicine from 2006 to 2009.ResultsMost current antifungal agents (amphotericin B and fluconazole) and the new azole antifungals have no activity against fungal biofilms. However, micafungin and the rest of echinocandins are very active against Candida albicans, Candida dubliniensis, Candida glabrata, and Candida krusei biofilms but their activities are variable and less strong against Candida tropicalis and Candida parapsilosis biofilms. Moreover, they have not activities against the biofilms of Cryptococcus y Trichosporon.ConclusionsThe activity of micafungin against Candida biofilms gives more strength to its therapeutic indication for candidaemia and invasive candidiasis associated to catheter, prosthesis and other biomedical devices.  相似文献   

19.
We developed a pentachlorophenol (PCP)-degrading, methanogenic fixed-film reactor by using broken granular sludge from an upflow anaerobic sludge blanket reactor. This methanogenic consortium was acclimated with increasing concentrations of PCP. After 225 days of acclimation, the reactor was performing at a high level, with a PCP removal rate of 1,173 μM day−1, a PCP removal efficiency of up to 99%, a degradation efficiency of approximately 60%, and 3-chlorophenol as the main chlorophenol residual intermediate. Analyses by PCR-denaturing gradient gel electrophoresis (DGGE) showed that Bacteria and Archaea in the reactor stabilized in the biofilms after 56 days of operation. Important modifications in the profiles of Bacteria between the original granular sludge and the reactor occurred, as less than one-third of the sludge DGGE bands were still present in the reactor. Fluorescence in situ hybridization experiments with probes for Archaea or Bacteria revealed that the biofilms were composed mostly of Bacteria, which accounted for 70% of the cells. With PCR species-specific primers, the presence of the halorespiring bacterium Desulfitobacterium hafniense in the biofilm was detected very early during the reactor acclimation period. D. hafniense cells were scattered in the biofilm and accounted for 19% of the community. These results suggest that the presence of PCP-dehalogenating D. hafniense in the biofilm was crucial for the performance of the reactor.  相似文献   

20.
Little is known about the nature of the rumen epithelial adherent (epimural) microbiome in cattle fed different diets. Using denaturing gradient gel electrophoresis (DGGE), quantitative real-time PCR (qPCR), and pyrosequencing of the V3 hypervariable coding region of 16S rRNA, epimural bacterial communities of 8 cattle were profiled during the transition from a forage to a high-concentrate diet, during acidosis, and after recovery. A total of 153,621 high-quality gene sequences were obtained, with populations exhibiting less taxonomic variability among individuals than across diets. The bacterial community composition exhibited clustering (P < 0.03) by diet, with only 14 genera, representing >1% of the rumen epimural population, differing (P ≤ 0.05) among diets. During acidosis, levels of Atopobium, Desulfocurvus, Fervidicola, Lactobacillus, and Olsenella increased, while during the recovery, Desulfocurvus, Lactobacillus, and Olsenella reverted to levels similar to those with the high-grain diet and Sharpea and Succinivibrio reverted to levels similar to those with the forage diet. The relative abundances of bacterial populations changed during diet transition for all qPCR targets except Streptococcus spp. Less than 5% of total operational taxonomic units (OTUs) identified exhibited significant variability across diets. Based on DGGE, the community structures of epithelial populations differed (P ≤ 0.10); segregation was most prominent for the mixed forage diet versus the grain, acidotic challenge, and recovery diets. Atopobium, cc142, Lactobacillus, Olsenella, RC39, Sharpea, Solobacterium, Succiniclasticum, and Syntrophococcus were particularly prevalent during acidosis. Determining the metabolic roles of these key genera in the rumens of cattle fed high-grain diets could define a clinical microbial profile associated with ruminal acidosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号