首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The physicochemical properties of spores were studied in relationship of their structure, which was modulated by chemical or genetic methods. The Bacillus subtilis spores were equilibrated at different water activities (from 0.113 to ~1) and investigated by differential scanning calorimetry (DSC). The isothermal sorptions at 25 °C of the native and the modified spores were also used to analyse the DSC results. As already reported in literature, an endothermic peak in DSC was found at about 70 °C, but a previously unreported baseline shift, a ∆Cp step, was also observed at −69 °C. The endothermic peak found at 70 °C was assigned to a material relaxation which corresponded to a structure change from a less mobile state to a more mobile state. The spore cortex material seems to be mainly implicated in this event. The ∆Cp step observed at −69 °C was identified as a glass transition of the water in the spore protoplast. These results showed that at room temperature, the physical state of the components within B. subtilis spores equilibrated at water activity levels below 0.3 was different: The cortex material is in a low mobility state whereas confined structure of protoplast and its internal hydration level allow a certain mobility of water molecules.  相似文献   

2.
Bacterial spores are commonly isolated from a variety of different environments, including extreme habitats. Although it is well established that such ubiquitous distribution reflects the spore resistance properties, it is not clear whether the growing conditions affect the spore structure and function. We used Bacillus subtilis spores of similar age but produced at 25, 37, or 42°C to compare their surface structures and functional properties. Spores produced at the 25°C were more hydrophobic while those produced at 42°C contained more dipicolinic acid, and were more resistant to heat or lysozyme treatments. Electron microscopy analysis showed that while 25°C spores had a coat with a compact outer coat, not tightly attached to the inner coat, 42°C spores had a granular, not compact outer coat, reminiscent of the coat produced at 37°C by mutant spores lacking the protein CotG. Indeed, CotH and a series of CotH-dependent coat proteins including CotG were more abundantly extracted from the coat of 25 or 37°C than 42°C spores. Our data indicated that CotH is a heat-labile protein with a major regulatory role on coat formation when sporulation occurs at low temperatures, suggesting that B. subtilis builds structurally and functionally different spores in response to the external conditions.  相似文献   

3.
Bacillus anthracis makes highly stable, heat-resistant spores which remain viable for decades. Effect of various stress conditions on sporulation in B. anthracis was studied in nutrient-deprived and sporulation medium adjusted to various pH and temperatures. The results revealed that sporulation efficiency was dependent on conditions prevailing during sporulation. Sporulation occurred earlier in culture sporulating at alkaline pH or in PBS than control. Spores formed in PBS were highly sensitive towards spore denaturants whereas, those formed at 45°C were highly resistant. The decimal reduction time (D-10 time) of the spores formed at 45°C by wet heat, 2 M HCl, 2 M NaOH and 2 M H2O2 was higher than the respective D-10 time for the spores formed in PBS. The dipicolinic acid (DPA) content and germination efficiency was highest in spores formed at 45°C. Since DPA is related to spore sensitivity towards heat and chemicals, the increased DPA content of spores prepared at 45°C may be responsible for increased resistance to wet heat and other denaturants. The size of spores formed at 45°C was smallest amongst all. The study reveals that temperature, pH and nutrient availability during sporulation affect properties of B. anthracis spores.  相似文献   

4.
Bacterial spores of the Bacillus genus are ubiquitous in nature and are commonly isolated from a variety of diverse environments. Such wide distribution mainly reflects the spore resistance properties but some Bacillus species can grow/sporulate in at least some of the environments where they have been originally isolated. Growing and sporulating at different conditions is known to affect the structure and the resistance properties of the produced spore. In B. subtilis the temperature of growth and sporulation has been shown to influence the structure of the spore surface throughout the action of a sporulation-specific and heat-labile kinase CotH. Here we report that CotG, an abundant component of the B. subtilis spore surface and a substrate of the CotH kinase, assembles around the forming spore but also accumulates in the mother cell cytoplasm where it forms aggregates with at least two other coat components. Our data suggest that the thermo-regulator CotH contributes to the switch between the coat of 25°C and that of 42°C spores by controlling the phosphorylation levels of CotG that, in turn, regulates the assembly of at least two other coat components.  相似文献   

5.
An effective formulated biopesticide for controlling sheath blight in rice was developed using three microbial antagonists (Bacillus megaterium, Bacillus subtilis and Aspergillus niger) isolated from the rice sheath. The efficiency of spore-based formulations of the above microbial antagonists was investigated and their effectiveness in controlling sheath blight was demonstrated. Application of talc-based formulations of individual antagonists and mixtures of the three antagonists as spray treatments or soil applications were effective in reducing the incidence by up to 45% at 27 days after inoculation of the pathogen of sheath blight and increased rice yield. The use of spores of a fungal antagonist (A. niger), in comparison to commonly used bacterial antagonists, is a novel feature of the present study. Optimum sporulation conditions of the antagonists for preparation of spore-based formulations and their commercially desirable features such as the ability to maintain spore viability in storage were also determined. Culturing in the synthetic replacement sporulation medium (SRSM-2) for 72 hours was the most effective for sporulation of the two bacterial antagonists while culturing in potato dextrose broth (PDB) for 7 days was the most effective for sporulation of the fungal antagonist. It was demonstrated that talc-based formulations of all antagonists, either in refrigerated storage (4°C) or at room temperature (28±2°C), were able to maintain greater spore viability over a longer period (>6 months) than spore suspensions. In view of the relatively shorter life spans of formulations based on vegetative cells, spore-based formulations have a distinct advantage in achieving longer-lasting control, especially under harsh field conditions.  相似文献   

6.
Summary Resistances to various chemical agents appear sequentially during the sporulation of B. subtilis, with the following order: xylene-toluene-benzene-octanol-butanol-methanol, ethanol, chloroform, acetone, dioxane-pyridine-TCA, phenol. Heat-resistance increases gradually: resistance to 80°C for 10 min appears simultaneously with that to TCA and phenol, but spore maturation, as detected by heating at 90°C for two hours, continues for another 120 minutes. Various solvents and temperatures can be used as specific markers for the later stages of sporulation. Such markers cover more than a third of the entire process. Both chemical and temperature resistance markers are useful tools in the study of late sporulation events in wild type and in sporulation mutants.  相似文献   

7.
Aims: To determine yields, germination and stability of superdormant Bacillus cereus spores. Methods and Results: Superdormant B. cereus spores were isolated by germination with high concentrations of inosine or l ‐alanine in 2–5% yield and did not germinate with high concentrations of either of these germinants, but germinated like starting spores with Ca‐DPA, dodecylamine, l ‐alanine plus inosine or concentrated complete medium. Yields of superdormant spores from germinations with low inosine concentrations were higher, and these spores germinated poorly with low inosine, but relatively normally with high inosine. Yields of superdormant spores were also higher when nonheat‐activated spores were germinated. Superdormant spores stored at 4°C slowly recovered some germination capacity, but recovery was slowed significantly at ?20°C and ?80°C. Conclusions: Factors that influence levels of superdormant B. cereus spores and the properties of such spores are similar to those in B. megaterium and B. subtilis, suggesting there are common mechanisms involved in superdormancy of Bacillus spores. Significance: Superdormant spores are a major concern in the food industry, because the presence of such spores precludes decontamination strategies based on triggering spore germination followed by mild killing treatments. Studies of the properties of superdormant spores may suggest ways to eliminate them.  相似文献   

8.
Three classes of low‐G+C Gram‐positive bacteria (Firmicutes), Bacilli, Clostridia and Negativicutes, include numerous members that are capable of producing heat‐resistant endospores. Spore‐forming firmicutes include many environmentally important organisms, such as insect pathogens and cellulose‐degrading industrial strains, as well as human pathogens responsible for such diseases as anthrax, botulism, gas gangrene and tetanus. In the best‐studied model organism Bacillus subtilis, sporulation involves over 500 genes, many of which are conserved among other bacilli and clostridia. This work aimed to define the genomic requirements for sporulation through an analysis of the presence of sporulation genes in various firmicutes, including those with smaller genomes than B. subtilis. Cultivable spore‐formers were found to have genomes larger than 2300 kb and encompass over 2150 protein‐coding genes of which 60 are orthologues of genes that are apparently essential for sporulation in B. subtilis. Clostridial spore‐formers lack, among others, spoIIB, sda, spoVID and safA genes and have non‐orthologous displacements of spoIIQ and spoIVFA, suggesting substantial differences between bacilli and clostridia in the engulfment and spore coat formation steps. Many B. subtilis sporulation genes, particularly those encoding small acid‐soluble spore proteins and spore coat proteins, were found only in the family Bacillaceae, or even in a subset of Bacillus spp. Phylogenetic profiles of sporulation genes, compiled in this work, confirm the presence of a common sporulation gene core, but also illuminate the diversity of the sporulation processes within various lineages. These profiles should help further experimental studies of uncharacterized widespread sporulation genes, which would ultimately allow delineation of the minimal set(s) of sporulation‐specific genes in Bacilli and Clostridia.  相似文献   

9.
Spores of Bacillus subtilis were exposed to a series of stratosphere simulations. In total, five distinct treatments measured the effect of reduced pressure, low temperature, high desiccation, and intense ultraviolet (UV) irradiation on stratosphere-isolated and ground-isolated B. subtilis strains. Environmental conditions were based on springtime data from a mid-latitude region of the lower stratosphere (20 km). Experimentally, each treatment consisted of the following independent or combined conditions: −70°C, 56 mb, 10–12% relative humidity and 0.00421, 5.11, and 54.64 W/m2 of UVC (200–280 nm), UVB (280–315 nm), UVA (315–400 nm), respectively. Bacteria were deposited on metal coupon surfaces in monolayers of ~1 × 106 spores and prepared with palagonite (particle size < 20 μm). After 6 h of exposure to the stratosphere environment, 99.9% of B. subtilis spores were killed due to UV irradiation. In contrast, temperature, desiccation, and pressure simulations without UV had no effect on spore viability up through 96 h. There were no differences in survival between the stratosphere-isolated versus ground-isolated B. subtilis strains. Inactivation of most bacteria in our simulation indicates that the stratosphere can be a critical barrier to long-distance microbial dispersal and that survival in the upper atmosphere may be constrained by UV irradiation.  相似文献   

10.
Aims: To determine effects of inner membrane lipid composition on Bacillus subtilis sporulation and spore properties. Methods and Results: The absence of genes encoding lipid biosynthetic enzymes had no effect on B. subtilis sporulation, although the expected lipids were absent from spores’ inner membrane. The rate of spore germination with nutrients was decreased c. 50% with mutants that lacked the major cardiolipin (CL) synthase and another enzyme for synthesis of a major phospholipid. Spores lacking the minor CL synthase or an enzyme essential for glycolipid synthesis exhibited 50–150% increases in rates of dodecylamine germination, while spores lacking enzymes for phosphatidylethanolamine (PE), phosphatidylserine (PS) and lysylphosphatidylglycerol (l‐PG) synthesis exhibited a 30–50% decrease. Spore sensitivity to H2O2 and tert‐butylhydroperoxide was increased 30–60% in the absence of the major CL synthase, but these spores’ sensitivity to NaOCl or Oxone? was unaffected. Spores of lipid synthesis mutants were less resistant to wet heat, with spores lacking enzymes for PE, PS or l‐PG synthesis exhibiting a two to threefold decrease and spores of other strains exhibiting a four to 10‐fold decrease. The decrease in spore wet heat resistance correlated with an increase in core water content. Conclusions: Changing the lipid composition of the B. subtilis inner membrane did not affect sporulation, although modest effects on spore germination and wet heat and oxidizing agent sensitivity were observed, especially when multiple lipids were absent. The increases in rates of dodecylamine germination were likely due to increased ability of this compound to interact with the spore’s inner membrane in the absence of some CL and glycolipids. The effects on spore wet heat sensitivity are likely indirect, because they were correlated with changes in core water content. Significance and Impact of the Study: The results of this study provide insight into roles of inner membrane lipids in spore properties.  相似文献   

11.
Sporulation in Bacillus megaterium var phosphaticum (PB — 1) was induced using modified nutrient media. This modified medium induced sporulation within 36 h. After spore induction the spores were kept under refrigerated (5°C) and room temperature (32°C) for five months and survival of spores was studied at 15 days intervals by plating them in nutrient agar medium. It was observed that there was not much variation in the storage temperature (5°C & 32°C). The spore cells of Bacillus megaterium var phosphaticum (PB — 1) were observed up to five months of storage under refrigerated (5°C) and room temperature (32°C). Regeneration of spore cells into vegetative cells was studied in tap water, rice gruel, nutrient broth, sterile lignite and sterile water at different concentrations of spore inoculum. The multiplication of sporulated Bacillus megaterium var phosphaticum culture was fast and reached its maximum (29.5 × 108 cfu ml−1) in nutrient broth containing 5 per cent inoculum level.  相似文献   

12.
The determination of the ideal cultivation conditions and the knowledge of solar radiation tolerance are important aspects that must be investigated for the use of Bipolaris euphorbiae Muchovej and Carvalho as a biocontrol agent. The present study was done to assess the growth rate, sporulation and viability of the fungus cultivated under different conditions of the initial pH value of the growth medium, temperature and photoperiod. The tolerance of this fungus’ conidia to light from a source simulating solar and ultraviolet radiation was also assessed. B. euphorbiae was affected by different pH values of the growth medium being 6.0 the adequate pH for fungus cultivation. Incubation of the fungus under temperatures of 22, 25 and 28°C enhanced mycelium growth, while sporulation and viability of conidia were better at 22 and 16°C. Different regimens of exposure to light of fungal cultures only affect sporulation. Conidia exposed to solar and ultraviolet radiation for 8 h and 90 min, respectively, presented viabilities higher than 92%, indicating high tolerance levels to radiation exposure.  相似文献   

13.
Aims: To determine the effects of cysteine, cystine, proline and thioproline as sporulation medium supplements on Bacillus subtilis spore resistance to hydrogen peroxide (H2O2), wet heat, and germicidal 254 nm and simulated environmental UV radiation. Methods and Results: Bacillus subtilis spores were prepared in a chemically defined liquid medium, with and without supplementation of cysteine, cystine, proline or thioproline. Spores produced with thioproline, cysteine or cystine were more resistant to environmentally relevant UV radiation at 280–400 and 320–400 nm, while proline supplementation had no effect. Spores prepared with cysteine, cystine or thioproline were also more resistant to H2O2 but not to wet heat or 254‐nm UV radiation. The increases in spore resistance attributed to the sporulation supplements were eliminated if spores were chemically decoated. Conclusions: Supplementation of sporulation medium with cysteine, cystine or thioproline increases spore resistance to solar UV radiation reaching the Earth’s surface and to H2O2. These effects were eliminated if the spores were decoated, indicating that alterations in coat proteins by different sporulation conditions can affect spore resistance to some agents. Significance and Impact of the Study: This study provides further evidence that the composition of the sporulation medium can have significant effects on B. subtilis spore resistance to UV radiation and H2O2. This knowledge provides further insight into factors influencing spore resistance and inactivation.  相似文献   

14.
Bacillus subtilis endospores have applications in different fields including their use as probiotics and antigen delivery vectors. Such specialized applications frequently require highly purified spore preparations. Nonetheless, quantitative data regarding both yields and purity of B. subtilis endospores after application of different growth conditions and purification methods are scarce or poorly reported. In the present study, we conducted several quantitative and qualitative analyses of growth conditions and purification procedures aiming generation of purified B. subtilis spores. Based on two growth media and different incubations conditions, sporulation frequencies up to 74.2 % and spore concentrations up to 7 × 109 spores/ml were achieved. Application of a simplified spore isolation method, in which samples were incubated with lysozyme and a detergent, resulted in preparations with highly purified spores at the highest yields. The present study represents, therefore, an important contribution for those working with B. subtilis endospores for different biotechnological purposes.  相似文献   

15.
The effect of temperature and moist period on the onset of sporangia production by Phytophthora ramorum on Rhododendron ‘Cunningham's White’ was examined with misted detached leaves held in humid chambers. Following wound inoculation with sporangia, leaves were pre‐incubated at 20°C for either 24 or 72 h prior to placement at six different temperatures (4, 10, 15, 20, 25 and 30°C). The overall mean moist period required for first occurrence of sporulation over all six temperatures was 3.24 days with the 24‐h pre‐incubation time, compared with 1.49 days for the 72‐h pre‐incubation time. Following 24 h pre‐incubation at 20°C and at an incubation temperature of 15°C, sporangia were first collected from leaves following a 24 h incubation. At 10 and 20°C, sporangia were first collected after 48 h, whereas at 4, 25 and 30°C, sporangia were first collected after 3 days. Following 72 h pre‐incubation at 20°C, sporulation generally occurred within 1 day, even at temperatures such at 4 and 30°C that are suboptimal for sporulation. The highest levels of P. ramorum sporulation were observed at 20°C. P. ramorum formed sporangia on host tissue under moist conditions within the same time frame reported for P. phaseoli, P. palmivora and P. nicotianae, but substantially more slowly than certain other species such as P. infestans. Quantifying moisture and temperature conditions for initiation of sporangia production provides knowledge which leads to a greater understanding of the epidemic potential of P. ramorum.  相似文献   

16.
Cysteine synthetase (O-acetylserine sulfhydrylase) was partially purified from cells of Bacillus subtilis by the use of ammonium sulfate fractionation technique and DEAE-Sephadex A–50 chromatography. The cysteine synthetase preparation was compared with cystathionase (cystathionine β-cleavage enzyme) of the same organism in regard to biochemical properties and to changes in activity during sporulation.

The optimal pH and temperature for the cysteine synthetase were 8.5 and 25°C respectively. The enzyme was relatively stable at temperatures below 50°C and fairly resistant to proteases, in contrast to cystathionase. Production by B. subtilis of cysteine synthetase in sulfur-deficient synthetic medium was repressed by the addition of cysteine and derepressed by djenkolic acid. Activity of the enzyme was inhibited by methionine and increased by acetate. The cysteine synthetase activity was almost constant until the late sporulation stage commenced, but the specific activity of cystathionase (Fraction I) decreased rapidly in the course of sporulation and it could not be detected in the free spores.  相似文献   

17.
Adsorption and degradation of zearalenone by bacillus strains   总被引:2,自引:0,他引:2  
Two Bacillus strains; Bacillus subtilis 168 and Bacillus natto CICC 24640 separately adsorbed and degraded zearalenone in liquid media, in vitro. Viable, autoclaved (121°C, 20 min) and acid-treated cells of both strains separately bound more than 55% of zearalenone (ZEN, 20 μg/L) after 30 min and 1-h incubation at 37°C under aerobic conditions, and the amount of ZEN adsorbed was dependent on initial cell volume. In addition, ZEN was degraded by the culture extract of both strains. Degradation by B. subtilis 168 and B. natto CICC 24640 culture extract after 24-h aerobic incubation at 30°C was 81% and 100%, respectively. B. natto CICC 24640 culture extract comprehensively degraded ZEN and, for both strains, no oestrogenic ZEN analogues were present. ZEN degradation was accompanied by carbondioxide emission indicating a decarboxylation reaction. ZEN degradation by the salient B. natto CICC 24640 culture extract varied with initial ZEN concentration, incubation time, temperature and pH. Degradation was enhanced by Mn2+, Zn2+, Ca2+ and Mg2+ but impeded by Hg2+, Cu2+, Pb2+, ethylenediaminetetraacetic acid and 1,10-phenanthroline. The degradation reaction is associated with a metalloproteinase of molar mass in the range 31–43 kDa. Overall, the two generally recognised as safe Bacillus strains can, potentially, be utilised for detoxification of zearalenone in food.  相似文献   

18.
Abstract The survival of a plasmid-containing Bacillus subtilis released into mushroom compost was investigated. The indigenous Bacillus population of mushroom compost exhibited an antibiotic-resistance profile that was distinguished by almost complete absence of chloramphenicol resistance. Bacillus subtilis containing the chloramphenicol-resistance plasmid pC194 was released into mushroom compost microcosms and populations were monitored at different incubation temperatures. The organism colonized both sterile and untreated compost at 37°C, and to a lesser extent at 50°C, but was eliminated after 30 d at 65°C. Although sporulation of the B. subtilis population occurred within compost, the population was maintained for up to 13 weeks at 50°C, largely as vegetative cells. Experiments in which the B. subtilis host strain, without plasmid, was released demonstrated that plasmid carriage had no effect on the ability of the bacterium to colonize and survive in compost. Furthermore, the size and composition of the indigenous bacterial population was unaffected by the presence of the introduced B. subtilis strain. Virtually no loss of plasmid pC194 from the B. subtilis population in compost was observed, and experiments at low growth rates in chemostats confirmed the stability of this host/vector system in the absence of positive selection pressure. Received: 9 July 1997; Accepted: 20 October 1997  相似文献   

19.
A Surface Response Model was used to study the effect of pH, temperature and agitation on growth, sporulation and production of antifungal metabolites by Bacillus subtilis CCMI 355.Strong agitation, temperature between 27 and 34 °C and pH 6 favoured cell growth. Alkaline pH, strong agitation and temperature between 28 and 34 °C favoured spore formation. No relationship was found between sporulation and the production of antifungal metabolites. According to the model, pH 8, 37 °C and the absence of agitation were the optimal conditions for the production of broad-spectrum antifungal metabolites against Botrytis cinerea, Penicillium expansum, Trichoderma sp, Trichoderma harzianum, Trichoderma koningii and Trichoderma virgatum.In situ assays using green wood impregnated with Bacillus subtilis CCMI 355 inoculated in Yeast Extract Glucose Broth medium in the conditions above, displayed an efficient protection against wood surface contaminant fungi.  相似文献   

20.
Temperature-sensitive sporulation mutants were isolated spontaneously from Bacillus subtilis 168 TT by a sequential transfer method. A representative mutant strain, ts32, was characterized in detail. The mutant grew normally at 30°C and 42°C, but did not sporulate at 42°C. Electron microscopic observation and physiological analysis showed that the mutant was blocked at stage 0-1 of sporulation. Genetic analysis suggested that the mutation was located at the spo0B locus on the B. subtilis chromosome. Temperature-shift experiments clearly showed that the spo0B gene product functions only at the beginning of sporulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号