首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A system for plant regeneration from protoplasts of the moss, Atrichum undulatum (Hedw.) P. Beauv. in vitro, is first reported. Viable protoplasts were isolated at about 9 × 105 protoplasts g−1 fresh weight from 10 to 18 days protonemata. For regeneration of protoplasts, viable protoplasts were cultured in liquid–solid medium containing surface liquid medium MS (0.4 M mannitol) and subnatant solid medium Benecke (0.3 M mannitol) at 20 °C under a 16-h photoperiod white light after 12 h preculture in darkness at 20 °C. The great majority of protoplasts follow a regenerative sequence: formation of asymmetric cells in 2–3 days; division of the asymmetric cells to 2–3 cells in 4–5 days, and further develop to produce a new chloronemal filament in 15 days. Juvenile gametophyte can be visible in 20 days. The plating ratio of cell cluster regenerated from protoplasts reaches up to 45%. Transient expression experiments indicate the electroporation uptake of DNA is possible.  相似文献   

2.
A simple enzyme mixture containing 2% Cellulase Onozuka R–10 and1% Macerozyme R–10 prepared in deionised water supplemented with 3% NaCland 1 mM CaCl2 was developed for isolating rapidlyprotoplasts from different species of Monostroma,Enteromorpha and Ulva. The yield fordifferent species of Monostroma ranged from 9.6 ×106 to 10.2 × 106 cells g–1f. wt thallus, and forEnteromorpha from 3.48 × 106 to 11.7× 106 cells g–1 f. wt and forUlva from 4.58 × 106 to 26.8 ×106 cells g–1 f. wt. The overallregeneration rate of the protoplasts isolated was usually > 90% and showednormal morphogenesis. The method yields rapid mass production of viableprotoplasts with high regeneration rates.  相似文献   

3.
Intergeneric hybridization between Pleurotus ostreatus and Schizophyllum commune was studied using PEG-induced fusion. The fusion of protoplasts from auxotrophic mutant strains resulted in the formation of fusion hybrids in the frequencies of 3.6 to 7.3×10–5. Most of these fusion hybrids were monokaryotic and sterile and no heterokaryosis occurred. Most fusants showed a significantly higher nuclear DNA content when compared to parental strains and no diploids (parent 1 genome plus parent 2 genome) were found. Some fusion hybrids revealed both parental fragments in nuclear and mitochondrial rDNA PCR profiles. AP-PCR (Arbitrarily-primed Polymerase Chain Reaction) fingerprints also indicated that most of the fusion products were recombinant hybrids.  相似文献   

4.
An efficient plant regeneration system was developed from isolated protoplasts of Echinacea purpurea L. using an alginate block/liquid culture system. Viable protoplasts could be routinely isolated from young leaves of Echinacea seedlings in an isolation mixture containing 1.0% cellulase Onozuka R-10, 0.5% pectinase and 0.3 mol l–1 mannitol. Purified protoplasts were embedded in 0.6% Na-alginate block at a density of 1 × 105/ml and cultured in a modified MS medium containing 0.3 mol l–1 sucrose, 2.5 µmol l–1 BA and 5.0 µmol l–1 2,4-D. Cell colonies were observed after 4 weeks of culture, and the protoplast-derived colonies formed calluses when transferred onto 0.25% gellan gum-solidified MS medium supplemented with 1.0 µmol l–1 BA and 2.0 µmol l–1 IBA. Shoot organogenesis from protoplast-derived callus was induced on MS medium supplemented with 5.0 µmol l–1 BA and 2.0 µmol l–1 IBA. Complete plantlets were obtained from the regenerated shoots on MS basal medium. The protoplast to plant regeneration protocol developed in this study provides the prerequisite for creating novel genotypes of this valuable medicinal species through genetic manipulation.  相似文献   

5.
Coury  D. A.  Naganuma  T.  Polne-Fuller  M.  Gibor  A. 《Hydrobiologia》1993,260(1):421-427
Viable protoplasts were isolated from apices of the agarophyte Gelidium robustum (Gardn.) Hollenb. & Abb. using a combination of commercial cell-wall degrading enzymes and extracellular wall-degrading enzymes isolated from a marine bacterium. The protoplasts were approximately 8–15 µm in diameter, liberated mainly from the surface cell layers and from cells at the distal ends of medullary filaments. The bacterial enzyme alone was not sufficient to liberate significant numbers of protoplasts. Maximum yield was 9 × 105 protoplasts/g tissue (wet wt.). Optimum osmolality occurred between 1750–1950 mOs kg–1; yield and viability were severely diminished at osmolalities less than 1350 mOs kg–1. Viability, as determined by flurorescein diacetate staining and Evans Blue exclusion 1 hr after removal from the enzyme solution, was approximately 80–95%. Roughly 80% of the cells did not show Calcofluor fluorescence, while 40% stained positively for the presence of sulfated polysaccharides. Cell wall regeneration was observed with inconsistent reproducibility, and no cell division was observed when the protoplasts were placed in culture medium.Dedicated to the memory of Professor Michael Neushul.  相似文献   

6.
George W. Bates 《Planta》1985,165(2):217-224
The electrical fusion of protoplasts has been studied in order to maximize the formation of heterokaryons for culture. Heterokaryons of Nicotiana tabacum L. mesophyll protoplasts and N. plumbaginifolia Viviani supension-cell protoplasts were identified in fixed and stained as well as living material; a quantitative fusion index was thereby developed. With this index the efficiencies of various electric fields and fusion-chamber designs have been determined. Optimal fusion was obtained with an alternating-current (AC) field of 150 V/cm and direct-current (DC) square-wave pulses of 1000 V/cm. A new, simple-to-use, largescale fusion chamber is described in which batches of up to 5·105 protoplasts (0.5 ml of cells at 106/ml) can be fused in 5–7 min with efficiencies approaching 40%. Half of the fusion products are heterokaryons, thus fusion is random. Of the fusion products, 60% are bi- or trinucleate. Using fusion procedures similar to those described here Bates and C. Hasenkampf (1985, Theor. Appl. Genet., in press) have recovered viable somatic hybrids which have been regenerated.Abbreviations AC alternating current - DC direct current - PEG polyethylene glycol  相似文献   

7.
Summary Leaf mesophyll protoplasts of the monohaploid potato (Solanum tuberosum L.) clone H7322 were fused with callus protoplasts of nitrate reductase deficient (NR) mutants Cnx 20 and NA 36 of Nicotiana plumbaginifolia. Somatic hybrid lines were selected for nitrate reductase proficiency. All callus lines tested appeared to be stable for the retention of the potato chromosome carrying the compensating NR gene when grown for over 1.5 years in the absence of nitrate. Shoots were regenerated from six different fusion lines of Cnx 20 + H7322 24 months after fusion. Chromosomal analysis in callus cultures revealed that in both fusion combinations 40–120 N. plumbaginifolia chromosomes were present, as were 9–20 potato chromosomes. Cells with 17 potato chromosomes in combination with a relatively small number (31) of N. plumbaginifolia chromosomes were found in one line. Preferential loss of species-specific chromosomes was not observed. Analysis of regenerating tissue from three lines of Cnx 20 + H7322 revealed that after 24 months of culture intra- and intergeneric translocations, fragments and deletions were present. Elimination of the potato and N. plumbaginifolia chromosomes had taken place before and after genome doubling.  相似文献   

8.
Uptake of glucose, 3-O-methylglucose and sucrose into beetroot protoplasts is considerably stimulated by 10–6M fusicoccin. This effect is decreased in the presence of 10mM Na+ or K+, 2 mM Mg2+ or Ca2+. Whereas fusicoccin causes no change in the pH-optimum of the sugar uptake (pH 5.0), the apparent Km of this uptake which obeys a biphasic kinetics is decreased by the action of fusicoccin. In the protoplast suspension, fusicoccin induces an acidification which is suppressed by uncoupling agents. Correspondingly, uncouplers as well as vanadate and diethylstilbestrol markedly inhibit the effect of fusicoccin on sugar uptake. The present data support the view that glucose uptake into beetroot protoplasts depend on the proton-pumping activity of the plasmalemma-ATPase. cis–Abscisic acid diminishes significantly the fusicoccin-enhanced glucose uptake. By using a radioimmunoassay, the internal abscisic acid content of the protoplast was estimated to be in the range of 10–6 M. Protoplasts isolated from bundle tissue contain twice as much abscisic acid as those derived from storage parenchyma. Because protoplasts from the bundle tissue were shown to take up sugars much faster than those from the storage cells, the observed effect of abscisic acid might reflect an involvement of this hormone in the regulation of carbohydrate partitioning in the beet.Abbreviations ABA cis–abscisic acid - bundle protoplast protoplasts isolated from the conducting tissue of beetroots - DES diethylstilbestrol - FC fusicoccin - 3-OMG 3-O-methylglucopyranose - PCMBS p–chloromercuribenzenesulfonic acid - storage protoplasts protoplasts isolated from storage parenchyma  相似文献   

9.
Summary The fusion of gametic protoplasts with somatic protoplasts giving rise to gametosomatic hybrid plants was investigated. Gametosomatic hybrid plants were regenerated following the fusion of nitrate reductase deficient (Nr) Nicotiana tabacum Nia-130 leaf mesophyll protoplasts with N. glutinosa tetrad protoplasts. The resulting plants were confirmed as hybrids, based on leaf and floral morphology, chromosome number, leaf esterase and leaf callus peroxidase zymograms and Fraction-1-protein analysis. The five gametosomatic hybrid plants had the expected pentaploid, but functionally triploid chromosome number of 3n=5x=60. The relevance of triploid gametosomatic hybrids in facilitating limited gene transfer, is discussed. The utilisation of tetrads as a generally available source of haploid protoplasts for fusion studies is proposed.  相似文献   

10.
Axenic shoot cultures of virus-free Vitis vinifera L. cv. Soultanina were a highly efficient source for isolation of viable protoplasts. Optimum results were obtained with leaves of 50–100 mg fresh weight, leaf discs of 0.7 cm in diameter, 100 and 15 U ml-1 Cellulase R-10 and Macerozyme R-10, respectively, and 18 h reaction time in either light or in darkness. Protoplast yield was approx. 25×106 viable protoplasts per g fresh weight and their size ranged from 12 to 44 m. During a 20-day culture period, the maximum survival rate obtained was approx. 40%. A plating density of 10×105 protoplasts per ml resulted in increased survival rates. Various growth regulators and glutamine did not significantly improve survival rates of protoplasts, whereas extract from coconut added to the culture medium caused an increase in the survival rates of protoplasts. Cell elongation at a significant rate and divisions were observed. [14C]glucose uptake was studied as an index of cell membrane integrity and functioning. Uptake rate of glucose by protoplasts was linear for up to 60 min, fully inhibited by NaN3, with an optimum pH of 4.8. Protoplasts 24 h old exhibited significantly lower rates of glucose uptake.  相似文献   

11.
Protoplasts of Cyamopsis tetragonoloba were isolated from leaves of in vitro grown plants. The yield of the protoplasts, their viability and subsequent divisions were greatly influenced by the pH of the media used for isolation and culture of protoplasts. Sustained divisions of the cultured protoplasts were best supported by a modified Kao and Michayluk (1975) nutrient medium containing glucose (0.4 M), NAA (4 mgl–1), 2,4-D (1 mgl–1) and KIN (2 mgl–1 ). The protoplast derived cells developed calli on transfer to Murashige and Skoog (1962) medium supplemented with 1 mgl–1 each of 2,4-D, NAA and KIN.  相似文献   

12.
The hydraulic conductivity of the membrane, Lp, of fused plant protoplasts was measured and compared to that for unfused cells, in order to identify possible changes in membrane properties resulting from the fusion process. Fusion was achieved by an electric field pulse which induced breakdown in the membranes of protoplasts in close contact. Close membrane contact was established by dielectrophoresis. In some experiments pronase was added during field application; pronase stabilizes protoplasts against high field pulses and long exposure times to the field. The Lp-values were obtained from the shrinking and swelling kinetics in response to osmotic stress. The Lp-values of fused mesophyll cell protoplasts of Avena sativa L. and of mesophyll and guard cell protoplasts of Vicia faba L. were found to be 1.9±0.9·10-6, 3.2±2.2·10-6, and 0.8±0.7·10-6 cm·bar-1·s-1, respectively. Within the limits of error, no changes in the Lp-values of fused protoplasts could be detected in comparison to unfused protoplasts. The Lp-values are in the range of those reported for walled cells of higher plants, as revealed by the pressure probe.Abbreviations GCP guard cell protoplast - Lp hydraulic conductivity - MCP mesophyll cell protoplast  相似文献   

13.
Isolated protoplasts of Ulva pertusa and Enteromorpha prolifera were electrically fused. Treatment of protoplasts in 1% protease for 15–20 min prior to fusion enhanced fusion ability. Protoplasts from each fusion partner were mixed together in 1:1 ratio in low conductivity electrofusion solution at a density of 1 × 105 cells ml−1 before subjecting them to electrofusion. The protoplasts were aligned in AC field (1MHz, 25 V for 10–15 s) and subsequently fused by a high intensity single DC pulse of 250 V for 25 μs duration. Fusion buffer supplemented with 1 mM calcium and 1 mM magnesium yielded optimum fusion frequencies (about 18–24%). Entrapment of fusion treated cells inside agarose/agar plate facilitated marking and regeneration of fusion products. The regeneration patterns of fused protoplasts were similar to normal (unfused) protoplast development. Most of the regenerated plants from fusion products had a thallus similar to either U. pertusa type or E. prolifera type. Although some of the plants of the former were morphologically similar to U. pertusa, but most had a higher growth rate (1.9 to 1.5 times) than U. pertusa. Furthermore the thallus of some plants had a characteristic irregular and dentate margin, which was never observed in the parental type.  相似文献   

14.
Plants of a diploid wild cotton species (G. klotzschianum A.) were efficiently regenerated from protoplasts isolated from immature somatic embryos and suspension cultures by studying various factors affecting regeneration. Purified protoplasts were cultured with the density of 2–10×105 ml−1, and the medium was k3 inorganic salts with modified KM8P organic compositions, supplemented with several combinations of PGRs. Calluses were formed from protoplasts of suspension cultures and immature somatic embryos. The influences of carbon sources and GA3 on callus differentiation and somatic embryo germination were analyzed. Somatic embryos germinated normally and formed regenerated plantlets. Regenerated plantlets were transferred to the soil and seeds were obtained. Random amplified polymorphic DNA (RAPD) analysis using 80 arbitrary oligonucleotide 10-mers showed 23 primers that gave 74 clear reproducible bands, with amplification products being monomorphic for 14 tested plantlets. A total of 1036 bands obtained exhibited no aberration in RAPD banding patterns in the 14 plants. Plants regenerated via somatic embryogenesis from the diploid cotton protoplasts have genetic homogeneity.  相似文献   

15.
Yields of 106–108 peach mesophyll cells and protoplasts · gfw-1 were obtained depending on factors such as digesting enzymes, and leaf size. Onozuka R-10 (2%) in combination with Macerase (0.5%) was found best for protoplast isolation and mediocre for cell isolation among several enzyme combinations tested. Viability was 90% for protoplasts and 60% for cells. Pectolyase Y23 was found to be ineffective in our investigation. Small leaves, 4–10 mm in length, were a superior source for protoplast isolation than medium or big expanded leaves, 22–30 mm in length. The high yields of protoplasts could be obtained only when keeping the ratio of leaf biomass to volume of digesting enzyme solution under 20 mg ml-1. Purification of protoplasts on a sucrose gradient yielded about 107 protoplasts · gfw-1, however, the preparation was still contaminated by intact cells. Protoplasts were cultured under different growth regulators and physical conditions. Limited growth and division of protoplasts embedded in agarose drops were observed.Abbreviations BA 6-benzyladenine - IBA indolebutyric acid - FDA fluorescein diacetate - MES 2-M-morpholinoethane sulphonic acid - MS Murashige and Skoog - NAA -naphthaleneacetic acid - PVP polyvinylpyrrolidone  相似文献   

16.
Plants of Solanum melongena were propagated under in vitro conditions (27°C, 12h/day illumination at 62 Em-2s-1, 60% humidity) by subculture of terminal and lateral cuttings on MS medium +20 gl-1 sucrose + Morel and Wetmore vitamins at 1/8 strength and 7 gl-1 agar. Lamina, petioles and stems of 3-week-old cuttings were used as sources of protoplasts. The best mean yield of protoplasts was obtained from the lamina with 9,030×103 protoplasts per gram of tissue. Petioles and stems yielded respectively 3,144×103 and 1,220.4×103 protoplasts per gram of tissue. first division of petiole and stem protoplasts occurred within 48 h, while lamina protoplasts underwent division after 3–4 days of culture in KM8p medium +2,4-D(0.2 gl-1) + zeatin (0.5 mgl-1) + NAA (1 mgl-1) and 0.35M glucose as osmoticum. The highest percentage of dividing cells was obtained from petiole material, estimated at 33.4% after 7 days, compared to 23.8% and 19.4% respectively for stem and lamina protoplasts. When BAP replaced zeatin in KM8p, the division percentage of lamina protoplasts was reduced to 10–15%. When transferred to regeneration medium, all calli derived from KM8p + zeatin formed deep-green spots identified as embryo-like structures, while only few calli from KM8p + BAP underwent shoot organogenesis without formation of green spots. Some of embryo-like structure developed into plantlets with a frequency of 1–2 plantlets per callus especially on MS medium + zeatin (4 mgl-1) + IAA (0.2 mgl-1). Maintaining protoplast-derived calli on MS + BAP (0.5 mgl-1) + NAA (0.5 mgl-1) for more than 3 weeks resulted in a decrease and loss of cell totipotency.Abbreviations (IAA) Indol-3-acetic acid - (2,4-D) 2,4-dichlorophenoxyacetic acid - (NAA) naphthale-neacetic - (BAP) 6-benzylaminopurine - (MS) Murashige and Skoog basal medium - (CPW) Cell and Protoplast Washing solution  相似文献   

17.
Summary In P. hybrida and B. nigra an enhancement of transformation rates (direct gene transfer) of about six to seven-fold was obtained after irradiation of protoplasts with 12.5 Gy (X-ray). The effect of protoplast irradiation was similar in experiments where protoplasts were irradiated 1h before transformation (X-ray/DNA) or 1h after completion of the transformation procedure (DNA/X-ray). Increased X-ray doses up to 62.5 Gy resulted in further enhancement of percentages of transformed colonies, indicating a correlation between relative transformation frequencies (RTF) and the doses applied. Estimation of degradation rates of plasmid sequences in plant protoplasts yielded a reduction of plasmid concentration to 50% 8–12 h after transformation. In 1-day-old protoplasts, the level of plasmid fragments dropped to 0%–10% compared to 1h after transformation. The results demonstrate that the integration rates of plasmid sequences into the plant genome may in part be governed by DNA repair mechanisms. This could be an explanation for the observed genotypic dependence of transformation rates in different plant species and plant genotypes. Gene copy number reconstructions revealed enhanced integration rates of plasmid sequences in transformed colonies derived from irradiated protoplasts.  相似文献   

18.
Summary Successful plant regeneration was achieved for the first time from hairy root-derived protoplasts of Hyoscyamus muticus. High yields (7 × 106 / g fresh weight) of protoplasts were isolated directly from the transformed roots of Hyoscyamus muticus using an enzyme mixture comprising 1 % macerozyme and 2 % cellulase in an osmoticum consisting of 0.2 M CaCl2 and 0.6 M mannitol. Protoplasts were first cultured in liquid NT/PRO I medium and further on semi-solid NT/PRO II agar medium. The procedure permits highly efficient formation of colonies. The plating efficiency varied from 1–9 %. The small individual colonies regenerated easily into shoots and roots at frequencies of 18 % and 70 %, respectively. The time required for the development of small plantlets from protoplasts was 8–11 weeks. The regenerated plants contained rolB from Ri-T-DNA and exhibited an altered phenotype compared to the control plants.Abbreviations BAP benzylaminopurine - NAA naphthaleneacetic acid - PCR Polymerase Chain Reaction - fw fresh weight  相似文献   

19.
Liposome-mediated delivery of DNA to carrot protoplasts   总被引:1,自引:0,他引:1  
The encapsulation of DNA within liposomes and subsequent fusion of the liposomes with carrot (Daucus carota L.) protoplasts were examined to determine optimum conditions for effective liposome-mediated delivery of DNA to protoplasts. Escherichia coli [3H]DNA could be encapsulated with 50% efficiency using encapsulation volumes as low as 0.5 ml. Incorporation of liposome-encapsulated [3H]DNA by carrot protoplasts increased linearly for 2.5 h, and increasing the ratio of protoplasts to liposomes increased the total amount of radioactive label incorporated within the protoplasts. Liposome-mediated incorporation of [3H]DNA by protoplasts increased over a range of polyethylene glycol concentrations up to 20%, but Ca2+ did not increase liposome-mediated incorporation when present in the liposome-protoplast incubation mixture. Optimum incorporation was observed when the pH of the liposome-protoplast incubation medium was decreased to 4.8. Encapsulation experiments using DNA of the plasmid pBR322 indicated that an average of 200–1,000 intact copies of pBR322 were sequestered within each nucleus after liposome delivery.  相似文献   

20.
Summary We report the isolation and regeneration of protoplasts from an embryogenic banana (Musa spp.) cell suspension culture initiated from in vitro proliferating meristems. A high yielding isolation method (up to 6×107 protoplasts.ml–1 packed cells) is discussed. Optimal regeneration, with more than 50% of the protoplasts showing initial cell division, occurred when high inoculation densities (106 protoplasts.ml–1) or nurse cultures were applied. Under these conditions, the frequency of microcolony formation was 20–40%. These microcolonies developed directly, without an intervening callus phase, into somatic embryos which later germinated and formed plantlets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号