首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Using a nonselective method, we have estimated the proportion of untargeted mutations in the lacI gene of E. coli by transferring either irradiated or unirradiated F pro lac plasmids from an excision deficient donor to an excision deficient pro lac deleted recipient that had been irradiated and allowed to induce recA dependent functions for 30 min. We find that about 10 percent of the mutations induced by either 3.5 Jm-2 or 7 Jm-2 UV are untargeted.  相似文献   

2.
We have employed conjugal transfer of an F' lac episome to examine targeted and untargeted mutagenesis in the lacI gene of Escherichia coli and to determine the relative importance of pyrimidine dimers as premutational UV lesions compared to (6-4) photoproducts that also may have a mutational role. This conjugal system allowed us to assess the premutagenic role of UV lesions independently from any role as inducers of SOS functions. F' DNA was transferred to an SOS-induced recipient strain from: unirradiated donor cells, UV-treated donor cells or donor cells that were irradiated and then exposed to photoreactivating light. The results indicate that SOS-related, untargeted events may account for as much as one-third of the nonsense mutations (i.e., base substitutions) recovered after undamaged F' DNA is transferred to UV-irradiated recipients. When the donor strain also is irradiated, in excess of 90% of the mutations detected following conjugation appear to be targeted. Photoreactivation of the UV-treated donors cells, prior to F' transfer to the SOS-induced recipient strain, demonstrated that in this experimental system virtually all recovered UV-induced mutations are targeted by photoreactivable lesions. We presume that these lesions are pyrimidine dimers because (6-4) photoproducts are not photoreactivable.  相似文献   

3.
Summary It has been proposed that the mutation fixation processes stimulated by SOS induction result from an induced infidelity of DNA replication (Radman 1974). The aim of this study was to determine if mutator mutations in the E. coli DNA polymerase III might affect UV-induced mutagenesis.Using a phage mutation assay which can discriminate between targeted and untargeted mutations, we show that the polC74 mutator mutation (Sevastopoulos and Glaser 1977) primarily affects untargeted mutagenesis, which occurs in a recA1 genetic background and is amplified in the recA + genetic background. The polC74 mutation also increases the UV-induced mutagenesis of the bacterial chromosome. These results suggest that DNA polymerase III is involved in the process of UV-induced mutagenesis in E. coli.  相似文献   

4.
UV mutagenesis of single-strand DNA phage can be divided into three types: induced untargeted; induced targeted; and uninduced targeted. We report the development of new tools to determine the number of processes which contribute to these types of mutagenesis. An E. coli tRNA gene, glyU, has been cloned using M13 derivatives mp8 and mp9 as vectors. The nucleotide sequence of glyU and its flanking regions is presented. In this paper, phage glyU anticodon mutants are detected by their ability to suppress GAA and GAT missense mutations in trpA. We used phage carrying GAG and CTC at the anticodon position and found results consistent with the hypothesis that two processes act to produce the transition to GAA suppression: an uninduced regionally targeted process; and an induced locally targeted process with some untargeted activity. The transversion frequency to GAT suppression on the other hand responded as if only an uninduced locally targeted process was involved. Thus, we hypothesize that the new tools have discriminated three different processes of mutagenesis and we discuss further work designed to test this hypothesis.  相似文献   

5.
Summary We introduced the dnaE486 and polC74 mutations (which are associated with decreased DNA polymerase III replication fidelity) into excision defective Escherichia coli strains with varying SOS responses. These mutations increased the UV-induced frequency of base pair substitution mutations in all strains tested, except recA430 and umuC122 derivatives. This UV mutator effect therefore requires expression of the SOS error-prone repair system. In recA441 lexA51 strains where the SOS system is constitutively expressed, the UV mutator effect of the dnaE alleles was similar in relative terms (though greater in absolute terms). Since these dnaE alleles decrease rather than increase survival after UV it is argued that they promote a burst of untargeted mutations close to UV photoproducts (hitch-hiking mutations) rather than increase the number of translesion synthesis events. The fact that there was no UV mutagenesis in dnaE486 umuC122 or polC74 umuC122 strains indicates that infidelity associated with these dnaE alleles did not of itself enable translesion synthesis to occur. The spontaneous mutator effect conferred by dnaE486 and polC74 was not affected by umuC122 or recA430 indicating that it is not dependent upon error-prone repair ability. In recA441 lexA51 bacteria, where SOS error-prone repair is constitutively induced, the mutator effect of dnaE486 was greater and was largely blocked by umuC122. It is suggested that spontaneously occurring cryptic lesions that are themselves unable to induce the SOS system are subject to translesion synthesis under these conditions and trigger a burst of hitch-hiking mutations that are therefore effectively umuC dependent.  相似文献   

6.
Bacteria live in unstructured and structured environments, experiencing feast and famine lifestyles. Bacterial colonies can be viewed as model structured environments. SOS induction and mutagenesis have been observed in aging Escherichia coli colonies, in the absence of exogenous sources of DNA damage. This cAMP-dependent mutagenesis occurring in Resting Organisms in a Structured Environment (ROSE) is unaffected by a umuC mutation and therefore differs from both targeted UV mutagenesis and recA730 (SOS constitutive) untargeted mutagenesis. As a recB mutation has only a minor effect on ROSE mutagenesis it also differs from both adaptive reversion of the lacI33 allele and from iSDR (inducible Stable DNA Replication) mutagenesis. Besides its recA and lexA dependence, ROSE mutagenesis is also uvrB and polA dependent. These genetic requirements are reminiscent of the untargeted mutagenesis in λ phage observed when unirradiated λ infects UV-irradiated E. coli. These mutations, which are not observed in aging liquid cultures, accumulate linearly with the age of the colonies. ROSE mutagenesis might offer a good model for bacterial mutagenesis in structured environments such as biofilms and for mutagenesis of quiescent eukaryotic cells. Received: 30 April 1997 / Accepted: 1 July 1997  相似文献   

7.
The major adverse consequences of radiation exposures are attributed to DNA damage in irradiated cells that has not been correctly restored by metabolic repair processes. However, the dogma that genetic alterations are restricted to directly irradiated cells has been challenged by observations in which effects of ionizing radiation arise in non-irradiated cells. These, so called, untargeted effects are demonstrated in cells that are the descendants of irradiated cells either directly or via media transfer (radiation-induced genomic instability) or in cells that have communicated with irradiated cells (radiation-induced bystander effects). Radiation-induced genomic instability is characterized by a number of delayed responses including chromosomal abnormalities, gene mutations and cell death. Bystander effects include increases or decreases in damage-inducible and stress-related proteins, increases or decreases in reactive oxygen and nitrogen species, cell death or cell proliferation, cell differentiation, radioadaptation, induction of mutations and chromosome aberrations and chromosomal instability. The phenotypic expression of untargeted effects and the potential consequences of these effects in tissues reflect a balance between the type of bystander signals produced and the responses of cell populations to such signals, both of which may be significantly influenced by cell type and genotype. Thus, in addition to targeted effects of damage induced directly in cells by irradiation, a variety of untargeted effects may also make important short-term and long-term contributions to determining overall outcome after radiation exposures.  相似文献   

8.
Summary Mutagenesis by ultraviolet light was studied in a strain of E. coli ung, which lacks uracil-DNA glycosylase activity. Mutation potentiated by UV in cells already induced by nalidixic acid treatment was still photoreversible suggesting that pyrimidine dimers act directly as premutational photoproducts. Secondly, irradiated cells were held in buffer at 48°C for 0 to 135 min to allow for deamination of cytosines in pyrimidine dimers. The mutation frequencies for class 2 de novo suppressor mutation, for class 2 converted suppressor mutation and for backmutation were individually determined, before and after photoreactivation, as a function of this thermal treatment. Backmutation remained sensitive to photoreactivation throughout the treatment but de novo and converted suppressor mutations rapidly developed resistance to photoreactivation. This resistance was not seen in an ung + control. A model is proposed to account for the selective resistance based on the hypothesis that class 2 de novo and converted suppressor mutations normally result from UV by GC to AT transitions at T=C dimers. The model describes deamination of the cytosine residues in these dimers to become uracil residues. In consequence, monomerization by photoreactivation in cells that can not repair uracils in DNA no longer reverses mutation and GC to AT transitions are established at the sites of uracils.  相似文献   

9.
Summary In Escherichia coli, induction of the SOS functions by UV irradiation or by mutation in the recA gene promotes an SOS mutator activity which generates mutations in undamaged DNA. Activation of RecA protein by the recA730 mutation increases the level of spontaneous mutation in the bacterial DNA. The number of recA730-induced mutations is greatly increased in mismatch repair deficient strains in which replication errors are not corrected. This suggests that the majority of recA730-induced mutations (90%) arise through correctable, i.e. non-targeted, replication errors. This recA730 mutator effect is suppressed by a mutation in the umuC gene. We also found that dam recA730 double mutants are unstable, segregating clones that have lost the dam or the recA mutations or that have acquired a new mutation, probably in one of the genes involved in mismatch repair. We suggest that the genetic instability of the dam recA730 mutants is provoked by the high level of replication errors induced by the recA730 mutation, generating killing by coincident mismatch repair on the two unmethylated DNA strands. The recA730 mutation increases spontaneous mutagenesis of phage poorly. UV irradiation of recA730 host bacteria increases phage untargeted mutagenesis to the level observed in UV-irradiated recA + strains. This UV-induced mutator effect in recA730 mutants is not suppressed by a umuC mutation. Therefore UV and the recA730 mutation seem to induce different SOS mutator activities, both generating untargeted mutations.  相似文献   

10.
Summary Uvm mutants of Escherichia coli K12 selected for defective UV reversion induction have previously been reported to differ considerably from the UV-reversion-less recA and lexA mutants with regard to survival or mutagenic response to UV, X-rays and alkylating agents. In the present study, the phenotypic characterization of uvm mutants was extended to investigate several cellular processes which also may be related to or involved in UV mutagenesis. Like recA and lexA mutations, the uvm mutations exhibit highly reduced Weigle reactivation and normal host cell reactivation of UV irradiated phage . But unlike recA and lexA, the uvm mutations do not impair genetic recombination, UV induction of prophage or R plasmid-mediated UV resistance and mutagenesis. These phenotypical characteristics and preliminary results of genetic mapping lend further support to the assumption that the uvm site may be a novel locus affecting, apart from the recA and lexA loci, the error-prone repair pathway in E. coli.  相似文献   

11.
It is still unclear how frameshift mutations arise at cyclobutane pyrimidine dimers. The polymerase model is commonly used to explain the mechanisms of various mutations. An alternative polymerase-tautomer model was developed for UV-induced mutagenesis. A mechanism was proposed for targeted insertions caused by cis-syn cyclobutane thymine dimers. Targeted insertions are frameshift mutations due to addition of one or more nucleotides in a DNA sequence opposite to a lesion capable of stopping DNA synthesis. Among other factors, cyclobutane pyrimidine dimers can cause targeted insertions. UV irradiation can change the tautomeric form of DNA bases. Five rare tautomeric forms are possible for thymine, and they are stable when the thymine is a component of a cyclobutane dimer. A structural analysis showed that none of the canonical nucleotides can be added opposite to a specific rare thymine tautomer so that hydrogen bonds form between the two bases. A single nucleotide gap is consequently left in the corresponding site of the nascent strand when a specialized or modified DNA polymerase drives SOS or error-prone DNA synthesis on a template containing cis-syn cyclobutane thymine dimers with a base occurring in the rare tautomeric form. If the DNA composition is homogenous within the region, the end of the growing DNA strand may slip to form a complementary pair with the nucleotide adjacent to the dimer according to the Streisinger model, thus producing a loop. A targeted insertion is thereby generated to make the daughter strand longer. Targeted insertions were for the first time assumed to result from the cis-syn cyclobutane thymine dimers wherein one or both of the bases occur in the specific tautomeric form that does not allow the addition and hydrogen bonding of any canonical nucleotide in the opposite position. A model was developed to explain how targeted insertions of one or more nucleotides are caused by cis-syn cyclobutane thymine dimers. Thus, the polymerase-tautomer model can explain the nature and formation of targeted frameshift mutations in addition to hot and cold spots or targeted or untargeted nucleotide substitutions.  相似文献   

12.
Pleiotropic chromosomal mutations were earlier identified in saprophytic associative bacterium Agrobacterium radiobacter5D-1. The mutations changed nitrogen metabolism, disturbed synthesis of indolylacetic acid (IAA), and conferred the ability to sustain replication of ColE1 plasmid derivatives, which are not normally maintained in bacteria other than Escherichia.The mutations were designated Nr(Nitrogen metabolism) and assigned to a single cluster on an A. radiobactergenetic map. A 420-bp fragment AGH23.1.1 was cloned from an agrobacterial genomic library. Introduced in the Nr mutants as a part of a pUC18-based recombinant plasmid, the AGH23.1.1 fragment complemented the Nrmutations with respect to nitrogen metabolism and IAA biosynthesis, but transformants still sustained replication of ColE1 plasmids. Transformation with the linear AGH23.1.1 fragment was due to substitution of a mutant allele of the nrgene with its wild-type counterpart as a result of recombination and completely restored the wild phenotype in the Nr mutants, including the inability to maintain ColE1 plasmids. The AGH23.1.1 fragment and its flanking regions were sequenced. The established sequence was shown to contain two open reading frames (ORFs) coding for proteins with unknown functions. Thus, the cloned fragment contained a gene(s) that controls nitrogen metabolism and IAA synthesis and replication of ColE1 plasmids inA. radiobactercells. Possible variants of the genetic control of these processes are considered.  相似文献   

13.
Summary Mutant forms of the glyU (glycyl tRNA) gene cloned in M13mp8 were subjected to uninduced targeted UV mutagenesis; i.e. phage particles were irradiated and used to infect unirradiated umuC + or irradiated umuC mutant cells. The irradiated phage carried GAG at the anticodon triplet and transitions to GAA were scored. The uninduced targeted mutation rate was reduced by altering the sequence of the gene in the vicinity of the target purine (Pu) residue. In particular a triplet of pyrimidines (PyPyPy) 5 to the target G was changed to PyPuPy in order to prevent formation of cyclcobutane and 6-4 pyrimidine dimers close to the target. On this basis we suggest a mechanism for one type of uninduced regionally targeted UV mutagenesis.  相似文献   

14.
Non-targeted mutagenesis of lambda phage by ultraviolet light is the increase over background mutagenesis when non-irradiated phage are grown in irradiated Escherichia coli host cells. Such mutagenesis is caused by different processes from targeted mutagenesis, in which mutations in irradiated phage are correlated with photoproducts in the phage DNA. Non-irradiated phage grown in heavily irradiated uvr+ host cells showed non-targeted mutations, which were 3/4 frameshifts, whereas targeted mutations were 2/3 transitions. For non-targeted mutagenesis in heavily irradiated host cells, there were one to two mutant phage per mutant burst. From this and the pathways of lambda DNA synthesis, it can be argued that non-targeted mutagenesis involves a loss of fidelity in semiconservative DNA replication. A series of experiments with various mutant host cells showed a major pathway of non-targeted mutagenesis by ultraviolet light, which acts in addition to "SOS induction" (where cleavage of the LexA repressor by RecA protease leads to din gene induction): (1) the induction of mutants has the same dependence on irradiation for wild-type and for umuC host cells; (2) a strain in which the SOS pathway is constitutively induced requires irradiation to the same level as wild-type cells in order to fully activate non-targeted mutagenesis; (3) non-targeted mutagenesis occurs to some extent in irradiated recA recB cells. In cells with very low levels of PolI, the induction of non-targeted mutagenesis by ultraviolet light is enhanced. We propose that the major pathway for non-targeted mutagenesis in irradiated host cells involves binding of the enzyme DNA polymerase I to damaged genomic DNA, and that the low polymerase activity leads to frameshift mutations during semiconservative DNA replication. The data suggest that this process will play a much smaller role in ultraviolet mutagenesis of the bacterial genome than it does in the mutagenesis of lambda phage.  相似文献   

15.
Summary In Escherichia coli B/r the expression of UV inducible (SOS) functions is under the control of the recA and lexA genes. In this study we have characterized mutants which are altered in their ability to express SOS functions. These mutants were isolated as UV resistant UV nonmutable (Rnm) derivatives of the lexA102 uvrA155 mutant strain WP51. The UV resistance of these Rnm strains is a result of the suppression of lexA102 mediated UV sensitivity. Genetic mapping of rnm mutations shows that the two predominant classes, rnmA and rnmB, map in or very near the lexA and recA genes respectively. rnmA mutations differ from rnmB with respectively recA protein synthesis. rnmA mutations do not restore the ability to express high levels of recA protein after UV treatment whereas rnmB mutations result in constitutive expression of high levels of recA protein. However, both rnmA and rnmB mutant strains inhibit postirradiation DNA degradation. This shows that in rnmA strains, high levels of recA protein are not needed to inhibit postirradiation DNA degradation.The genetic map location and constitutive expression of recA protein synthesis resulting from rnmB mutations suggests that they are operator constitutive mutations of the recA gene. The result that the lexA + gene is required for the expression of UV mutagenesis in rnmB mutants shows that high levels of recA protein do not circumvent the need for the lexA + gene product in this process. Thus, while the lexA gene product is required for the induction of recA protein synthesis, lexA must have an additional role in UV induced mutagenesis.  相似文献   

16.
Bacteria live in unstructured and structured environments, experiencing feast and famine lifestyles. Bacterial colonies can be viewed as model structured environments. SOS induction and mutagenesis have been observed in aging Escherichia coli colonies, in the absence of exogenous sources of DNA damage. This cAMP-dependent mutagenesis occurring in Resting Organisms in a Structured Environment (ROSE) is unaffected by a umuC mutation and therefore differs from both targeted UV mutagenesis and recA730 (SOS constitutive) untargeted mutagenesis. As a recB mutation has only a minor effect on ROSE mutagenesis it also differs from both adaptive reversion of the lacI33 allele and from iSDR (inducible Stable DNA Replication) mutagenesis. Besides its recA and lexA dependence, ROSE mutagenesis is also uvrB and polA dependent. These genetic requirements are reminiscent of the untargeted mutagenesis in λ phage observed when unirradiated λ infects UV-irradiated E. coli. These mutations, which are not observed in aging liquid cultures, accumulate linearly with the age of the colonies. ROSE mutagenesis might offer a good model for bacterial mutagenesis in structured environments such as biofilms and for mutagenesis of quiescent eukaryotic cells.  相似文献   

17.
Summary Strains carrying both the ramA1 and the neaA301 mutations do not exhibit the restriction of informational suppressors normally associated with resistance to neamine. Furthermore, ribosomes from such strains exhibit increased misreading in vitro with respect to particles from the neaA strain. These properties suggest that translational fidelity may be cooperatively controlled by ribosomal proteins S4 and S17, coded by ramA (rpsD) and neaA (rpsQ) genes respectively.  相似文献   

18.
Summary The question of whether induction of the SOS response in Escherichia coli increases the efficiency of excision repair was addressed by measuring repair of UV-damaged nonreplicating lambda phage DNA in previously irradiated bacteria. Prior UV irradiation of lex + bacteria enhanced both the rate of regeneration of infective phage DNA (about 10-fold) and the rate of cyclobutane dimer removal early in repressed infections. Indirect induction of SOS-regulated repair activities by the nonreplicating irradiated phage DNA itself seemed negligible. Prior bacterial irradiation reduced the frequency of recombination (loss of a tandem chromosomal duplication) of nonreplicating UV-irradiated DNA. In this respect UV-stimulated recombination of nonreplicating DNA differs from RecF-dependent recombination processes that are stimulated by increased SOS expression.Surprisingly, prior UV irradiation of lexA3 bacteria caused a small but reproducible increase in the regeneration of infective phage DNA.  相似文献   

19.
Summary A double mutant carrying the ramC and neaA mutations has been constructed by Plvir transductions. This mutant, which carries alterations in ribosomal proteins S5 and S17, behaves like to wildtype bacteria in the following respects: it no longer exhibits the restriction of informational suppressors normally associated with the neaA mutation (altered protein S17); ribosomes from the double mutant show increased intrinsic and neamine-induced misreading in vitro in contrast to ribosomes from the neaA strain, although still less than the misreading level of ribosomes from the ramC (altered protein S5) strain.These properties suggest that ribosomal proteins S5 and S17 act cooperatively to balance translational fidelity.  相似文献   

20.
Primary open angle glaucoma (POAG) affects 1% of people over age 40. Early detection and treatment can prevent blindness, but the disease is often asymptomatic until a late stage. Positive family history is an important risk factor and previous studies indicate that approximately 5% of POAG results from mutations in the myocilin (MYOC) gene, raising the possibility of identifying individuals genetically predisposed to glaucoma. We collected DNA samples from 426 unselected UK POAG patients and analyzed them for MYOC mutations. The Q368X mutation was found in six patients (1.4%). No other mutations were identified, suggesting that amongst patients unselected for family history, the prevalence of MYOC mutations in the UK is lower than in other populations. Genetic and glaucoma screening was offered to first-degree relatives of these six probands (group 1) and of age/sex-matched mutation-negative controls (group 2). Of 11 group-1 relatives, three carried Q368X, one of whom already had glaucoma. Notably, of the 13 relatives in both groups who were mutation negative, one was already being treated for ocular hypertension. We therefore caution against changing glaucoma surveillance regimens in such individuals and suggest that routine untargeted genetic testing for MYOC mutations in patients with POAG would be of limited value until additional significant genetic risk factors are identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号