首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When the dimensions of standard commercial chambers for measuring gas exchange cannot accommodate the object being measured, scientists construct their own chambers. The time needed to reach chamber steady state (chamber response time) depends on net system volume (e.g. chamber and tubing volume) and airflow. Unfortunately, some authors take chamber response time into consideration while others ignore it. We present the formula for calculating chamber response time.  相似文献   

2.
3.
Tidal ventilation gas-exchange models in respiratory physiology and medicine not only require solution of mass balance equations breath-by-breath but also may require within-breath measurements, which are instantaneous functions of time. This demands a degree of temporal resolution and fidelity of integration of gas flow and concentration signals that cannot be provided by most clinical gas analyzers because of their slow response times. We have characterized the step responses of the Datex Ultima (Datex Instrumentation, Helsinki, Finland) gas analyzer to oxygen, carbon dioxide, and nitrous oxide in terms of a Gompertz four-parameter sigmoidal function. By inversion of this function, we were able to reduce the rise times for all these gases almost fivefold, and, by its application to real on-line respiratory gas signals, it is possible to achieve a performance comparable to the fastest mass spectrometers. With the use of this technique, measurements required for non-steady-state and tidal gas-exchange models can be made easily and reliably in the clinical setting.  相似文献   

4.
5.
Aims:  To develop a time-dependent dose–response model for describing the survival of animals exposed to Yersinia pestis.
Methods and Results:  Candidate time-dependent dose–response models were fitted to a survival data set for mice intraperitoneally exposed to graded doses of Y. pestis using the maximum likelihood estimation method. An exponential dose–response model with the model parameter modified by an inverse-power dependency of time postinoculation provided a statistically adequate fit to the experimental survival data. This modified model was verified by comparison with prior studies.
Conclusions:  The incorporated time dependency quantifies the expected temporal effect of in vivo bacteria growth in the dose–response relationship. The modified model describes the development of animal infectious response over time and represents observed responses accurately.
Significance and Impact of the Study:  This is the first study to incorporate time in a dose–response model for Y. pestis infection. The outcome may be used for the improved understanding of in vivo bacterial dynamics, improved postexposure decision making or as a component to better assist epidemiological investigations.  相似文献   

6.
Databases describing branch gas exchange ofPicea abies L. at two montane forest sites, Lägeren, Switzerland (National Forschungsprojekt 14 of the Schweizerische Nationalfonds) and Oberwarmensteinach, Germany (Bayerische Forschungsgruppe Forsttoxikologie), were analyzed in conjunction with a physiologically based model. Parameter estimates for describing carboxylase kinetics, electron transport, and stomatal function were derived, utilizing information from both single factor dependencies and diurnal time course measurements of gas exchange. Data subsets were used for testing the model at the branch level. Most of the observed variation in gas exchange characteristics can be explained with the model, while a number of systematic errors remain unexplained. Factors seen as contributing to the unexplained residual variation and not included in the model are light acclimation, degree of damage in adjustment to pollutant deposition, needle age, and cold stress effects. Nevertheless, a set of parameter values has been obtained for general application with spruce, e.g., for use in calculating canopy flux rates and to aid in planning of focused leaf and canopy level experiments. The value of the model for estimating fluxes between the forest and the atmosphere must be evaluated together with measurements at the stand level.  相似文献   

7.
The response of foliar gas exchange to exogenously applied ethylene   总被引:2,自引:1,他引:2       下载免费PDF全文
The responsiveness to ethylene of net photosynthesis and stomatal conductance to water vapor in intact plants was investigated in 13 herbaceous species representing seven plant families. Exposures were conducted in an open, whole-plant exposure system providing controlled levels of irradiance, air temperature, CO2, relative humidity, and ethylene concentration. Net photosynthesis and stomatal conductance to water vapor in units of moles per square meter per second were measured on recently expanded leaves in control and ethylene-treated plants using a remotely operated single-leaf cuvette. The ethylene concentration was either 0 or 210 micromoles per cubic meter and was maintained for 4 hours. Species varied substantially in the response of their foliar gas exchange to ethylene. In 7 of the 13 species, net photosynthesis was inhibited statistically by 4 hours of ethylene exposure. As a function of the rate in control plants, the responses were most pronounced and statistically significant in Arachis hypogaea (−51.1%), Gossypium hirsutum (−31.7%), Glycine max (−24.8%), Cucurbita pepo (−20.4%), Phaseolus vulgaris (−18.4%), Setaria viridis (−17.5%), and Raphanus sativus (−4.4%). Whereas the responsiveness of net photosynthesis to ethylene among the 13 species showed no specific taxonomic associations, the responsiveness was positively correlated with the intrinsic rate of net photosynthesis. Stomatal conductance to water vapor after 4 hours of ethylene exposure declined statistically in 6 of the 13 species. As a function of control rates, the most marked and statistically significant responses of stomatal conductance were in Glycine max (−53.6%), Gossypium hirsutum (−51.2%), Arachis hypogaea (−42.7%), Phaseolus vulgaris (−38.6%), Raphanus sativus (−26.8%), and Solanum tuberosum (−23.4%). Although ethylene-induced changes in net photosynthesis and stomatal conductance were positively correlated, there were species-specific exceptions in which net photosynthesis declined after 4 hours of exposure without a concurrent change in stomatal conductance, stomatal conductance declined without a change in net photosynthesis, and the decline in stomatal conductance substantially exceeded the corresponding decline in net photosynthesis. Thus, the responsiveness to ethylene of net photosynthesis and stomatal conductance to water vapor were not consistently synchronous or equivalent among the 13 species. It is concluded that foliar gas exchange is responsive to exogenously applied ethylene in many plant species. The sensitivity of foliar gas exchange to ethylene may play a role in general plant response to environmental stress in which one of the physiological sites of action for endogenously produced stress ethylene in the leaf is the plant's photosynthetic capacity and/or stomatal conductance to water vapor.  相似文献   

8.
9.
10.
We investigated the role of xylem cavitation, plant hydraulic conductance, and root pressure in the response of rice (Oryza sativa) gas exchange to water stress. In the field (Philippines), the percentage loss of xylem conductivity (PLC) from cavitation exceeded 60% in leaves even in watered controls. The PLC versus leaf water potential relationship indicated diurnal refilling of cavitated xylem. The leaf water potential causing 50 PLC (P(50)) was -1.6 MPa and did not differ between upland versus lowland rice varieties. Greenhouse-grown varieties (Utah) were more resistant to cavitation with a 50 PLC of -1.9 MPa but also showed no difference between varieties. Six-day droughts caused concomitant reductions in leaf-specific photosynthetic rate, leaf diffusive conductance, and soil-leaf hydraulic conductance that were associated with cavitation-inducing water potentials and the disappearance of nightly root pressure. The return of root pressure after drought was associated with the complete recovery of leaf diffusive conductance, leaf-specific photosynthetic rate, and soil-leaf hydraulic conductance. Root pressure after the 6-d drought (61.2 +/- 8.8 kPa) was stimulated 7-fold compared with well-watered plants before drought (8.5 +/- 3.8 kPa). The results indicate: (a) that xylem cavitation plays a major role in the reduction of plant hydraulic conductance during drought, and (b) that rice can readily reverse cavitation, possibly aided by nocturnal root pressure.  相似文献   

11.
12.
Lung volume reduction surgery (LVRS) improves lung function, respiratory symptoms, and exercise tolerance in selected patients with chronic obstructive pulmonary disease, who have heterogeneous emphysema. However, the reported effects of LVRS on gas exchange are variable, even when lung function is improved. To clarify how LVRS affects gas exchange in chronic obstructive pulmonary disease, 23 patients were studied before LVRS, 14 of whom were again studied afterwards. We performed measurements of lung mechanics, pulmonary hemodynamics, and ventilation-perfusion (Va/Q) inequality using the multiple inert-gas elimination technique. LVRS improved arterial Po? (Pa(O?)) by a mean of 6 Torr (P = 0.04), with no significant effect on arterial Pco? (Pa(CO?)), but with great variability in both. Lung mechanical properties improved considerably more than did gas exchange. Post-LVRS Pa(O?) depended mostly on its pre-LVRS value, whereas improvement in Pa(O(2)) was explained mostly by improved Va/Q inequality, with lesser contributions from both increased ventilation and higher mixed venous Po(2). However, no index of lung mechanical properties correlated with Pa(O?). Conversely, post-LVRS Pa(CO?) bore no relationship to its pre-LVRS value, whereas changes in Pa(CO?) were tightly related (r2 = 0.96) to variables, reflecting decrease in static lung hyperinflation (intrinsic positive end-expiratory pressure and residual volume/total lung capacity) and increase in airflow potential (tidal volume and maximal inspiratory pressure), but not to Va/Q distribution changes. Individual gas exchange responses to LVRS vary greatly, but can be explained by changes in combinations of determining variables that are different for oxygen and carbon dioxide.  相似文献   

13.
14.
Human decompression sickness is presumed to result from excess inert gas in the body when ambient pressure is reduced. Although the most common symptom is pain in the skeletal joints, no direct study of nitrogen exchange in this region has been undertaken. For this study, nitrogen tagged with radioactive 13N was prepared in a linear accelerator. Nine human subjects rebreathed this gas from a closed circuit for 30 min, then completed a 40- to 100-min washout period breathing room air. The isotope 13N was monitored continuously in the subject's knee during the entire period using positron detectors. After correction for isotope decay (half-life = 9.96 min), the concentration in most knees continued to rise for at least 30 min into the washout period. Various causes of this unexpected result are discussed, the most likely of which is an extensive redistribution of gas within avascular knee tissues.  相似文献   

15.
昆虫不连续气体交换   总被引:3,自引:1,他引:2  
姚青  沈佐锐 《昆虫学报》2005,48(2):273-278
许多昆虫呼吸时气体交换是不连续的循环式进行的。根据气门开闭,一个典型的不连续气体交换循环(discontinuous gas exchangecycle, DGC)可以明显分为3个阶段: 关闭阶段,极少或没有气体交换;颤动阶段,气门迅速微开和关闭,O2进入气管,少量CO2释放;最后是开放阶段,大量的CO2释放。该文综述了DGC特征及昆虫活动、温度、体重对DGC的影响,并讨论了DGC与呼吸失水、缺氧或高CO2浓度环境有关的进化适应意义。  相似文献   

16.
Summary Cutaneous aquatic gas exchange and pulmonary gas exchange have been compared in an aquatic snakeAchrochordus javanicus and the terrestrial snakeConstrictor constrictor.Gas exchange was measured by closed respirometry with the snakes in air and in water with access to air. Frequency of air breathing, tidal volumes and total lung volumes were also compared in the two species. All measurements were done at 20–22 ° C.The aquaticAchrochordus showed long periods of apnea in submerged condition interrupted by short periods of breathing activity at the surface. Average frequency of air breathing activity was 2.6 times per hour. Breathing in constrictor was more frequent but irregular with an average frequency of 143 breaths per hour.Total lung volume was 66±31 ml/kg body weight and 72.5±59 ml/kg body weight inAchrochordus andConstrictor, respectively. Tidal volumes were 41.5±4.4 ml/kg body weight and 29.5±14.8 ml/kg body weight, largest inAchrochordus. Constrictor had the highest total O2 uptake ( ) correlating with a higher activity. Total gas exchange ratio (R E ) was 0.69 forConstrictor and 0.77 forAchrochordus. InConstrictor air breathing accounted for 97% of the total whereas 21% of the CO2 exchange was aquatic. Corresponding figures forAchrochordus were 92% of total by air breathing with as much as 33% of the CO2 elimination as aquatic gas exchange.The results demonstrate that the trend among early air breathing vertebrates (fishes and amphibians) of a conservative evolution of CO2 elimination by air breathing also extends to snakes.Significantly the cutaneous exchange component was highest in the more aquatic species.The results are discussed in relation to recent reports of a higher than alleged role of the skin of reptiles in evaporative water loss.This study was supported by grant HE 12071 from the National Institutes of Health in the U. S. A.  相似文献   

17.
The steady-state and dynamic photosynthetic response of two poplar species (Populus tremuloides and P. fremontii) to variations in photon flux density (PFD) were observed with a field portable gas exchange system. These poplars were shown to be very shade intolerant with high light saturation (800 to 1300 mol photons m–2 s–1) and light compensation (70 to 100 mol m–2 s–1) points. Understory poplar leaves showed no physiological acclimation to understory light environments. These plants become photosynthetically induced quickly (10 min). Activation of Rubisco was the primary limitation for induction, with stomatal opening playing only a minor role. Leaves maintained high stomatal conductances and stomata were unresponsive to variations in PFD. Leaves were very efficient at utilizing rapidly fluctuating light environments similar to those naturally occurring in canopies. Post-illumination CO2 fixation contributed proportionally more to the carbon gain of leaves during short frequent lightflecks than longer less frequent ones. The benefits of a more dynamic understory light environment for the carbon economy of these species are discussed.  相似文献   

18.
对不同程度土壤干旱胁迫下夏玉米非水力根信号的产生以及气体交换过程对大气环境的响应进行了试验研究。充足底墒播种后采用3个土壤水分处理等级(0~200cm土壤相对湿度为>80%、60%~70%、40%~50%,代号为W T1、W T2和W T3)。生育期内遮去自然降水。试验结果表明,在拔节期轻度和中度土壤干旱胁迫的情况下,玉米根系合成大量ABA传输到地上部分,参与控制气孔开度和气体交换过程对大气环境变化的响应并调节水分消耗。在日变化过程中,当光强和水汽压亏缺较高时,由于蒸腾速率较高,非水力根信号物质向冠层的传输速率也较高,ABA在叶片中的累积影响了气孔开张对光强响应的敏感度,气孔开度受到抑制,并且随着ABA累积和浓度的增加,气孔抑制作用越强;在水汽压亏缺较低的情况下,非水力根信号物质向冠层的传输速率较低,ABA的代谢过程以及再分配过程能够保证这种信号物质保持在低水平,从而保证一定程度的气孔开度和光合、蒸腾速率。这种策略能够使夏玉米在轻、中等干旱条件下保证最大的光合作用,同时在可能的胁迫情况下降低蒸腾作用以提高水分利用效率。  相似文献   

19.
20.
The permeability (P) of the gaseous diffusion barrier in the nodules of soybean [Glycine max (L.) Merr.] decreases when water deficits are extended over a 7 to 10 d period. The mechanism controlling P changes is unclear, but may result from the release of water to intercellular pathways, and an associated change in the nodule water potential. The purpose of these experiments was to impose water deficit treatments rapidly in order to determine the early sequence of the responses of nodule water potential and nodule gas exchange without the complications that arise from long-term water deficit treatments. A vertical, split-root system was used to separate nodule drying effects from plant water deficits by replacing humidified air that was passed over upper root nodules in well-watered plants with dry air, or by replacing the nutrient solution that surrounded lower roots with -1.0 MPa polyethylene glycol (PEG) solution, or by a combination of the dry air and PEG treatments. The PEG treatment caused large decreases in both the components of nodule water potential and nodule relative water content, but there was no indication that these factors had immediate, direct effects on either nitrogenase activity or P. After 7 h of the PEG treatment a significant decrease in nitrogenase activity was found but no decrease in P was detected. These results indicate that changes in nitrogenase activity in response to water deficits precede decreases in P. Exposure of nodules to dry air in well-watered plants had no significant effect on either nitrogenase activity or P during the 7 h treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号