首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The SSU (16S) rRNA gene was used to investigate the phylogeny of the cyanobacterial genus Lyngbya as well as examined for its capacity to discriminate between different marine species of Lyngbya. We show that Lyngbya forms a polyphyletic genus composed of a marine lineage and a halophilic/brackish/freshwater lineage. In addition, we found morphological and genetic evidence that Lyngbya spp. often grow in association with other microorganisms, in particular smaller filamentous cyanobacteria such as Oscillatoria, and propose that these associated microorganisms have led to extensive phylogenetic confusion in identification of Lyngbya spp. At the species level, the phylogenetic diversity obtained from the comparison of 16S rRNA genes exceeded morphological diversity in Lyngbya. However, the expectation that this improved phylogeny would be useful to species and subspecies identification was eliminated by the fact that phylogenetic species did not correlate in any respect with the species obtained from current taxonomic systems. In addition, phylogenetic identification was adversely affected by the presence of multiple gene copies within individual Lyngbya colonies. Analysis of clonal Lyngbya cultures and multiple displacement amplified (MDA) single‐cell genomes revealed that Lyngbya genomes contain two 16S rRNA gene copies, and that these typically are of variable sequence. Furthermore, intragenomic and interspecies 16S rRNA gene heterogeneity was approximately of the same magnitude. Hence, the intragenomic heterogeneity of the 16S rRNA gene overestimates the microdiversity of different strains and does not accurately reflect speciation within cyanobacteria, including the genus Lyngbya.  相似文献   

2.
The various marine cyanobacterial strains tested showed wide variation in growth patterns and decolourization patterns of the lignin model polymeric dye Poly R-478. The study revealed the presence of laccases (LACs) and polyphenol oxidases (PPOs) in marine cyanobacteria. All the ten tested strains were found to possess constitutive PPOs, whereas only four strains showed the presence of constitutive laccases. Within 7 days of incubation the highest percentage of decolourization was shown by Phormidium valderianum BDU140441 (65%), and Oscillatoria chlorina BDU 140691 (12%) showed the least. Isoforms of LACs were found to be induced by the laccase elicitors veratryl aldehyde, caffeic acid, guaiacol and tannic acid. Cyanobacterial strains that possess both LACs and PPOs were relatively more efficient in decolourizing the dye. Altering the concentrations of nitrogen, phosphorus, potassium and sulphur from the basal medium influenced the efficiency of dye decolourization.  相似文献   

3.
4.
Cyanobacteria comprise an extraordinarily diverse group of microorganisms and, as revealed by increasing molecular information, this biodiversity is even more extensive than previously estimated. In this sense, the cyanobacterial genus Lyngbya is a highly polyphyletic group composed of many unrelated taxa with morphological similarities. In this study, the new genus Dapis was erected from the genus Lyngbya, based on a combined molecular, chemical, and morphological approach. Herein, two new species of cyanobacteria are described: D. pleousa and D. pnigousa. Our analyses found these species to be widely distributed and abundant in tropical and subtropical marine habitats. Seasonally, both species have the ability to form extensive algal blooms in marine habitats: D. pleousa in shallow‐water, soft bottom habitats and D. pnigousa on coral reefs below depths of 10 m. Electron microscopy showed that D. pleousa contains gas vesicles, a character not previously reported in Lyngbya. These gas vesicles, in conjunction with a mesh‐like network of filaments that trap oxygen released from photosynthesis, provide this species with an unusual mechanism to disperse in coastal marine waters, allowing D. pleousa to be present in both benthic and planktonic forms. In addition, both D. pleousa and D. pnigousa contained nitrogen‐fixing genes as well as bioactive secondary metabolites. Several specimens of D. pnigousa biosynthesized the secondary metabolite lyngbic acid, a molecule that has also been isolated from many other marine cyanobacteria. Dapis pleousa consistently produced the secondary metabolite malyngolide, which may provide a promising chemotaxonomic marker for this species.  相似文献   

5.
6.
Benthic cyanobacteria of the genus Lyngbya can form prominent mats and blooms in tropical and subtropical coral reef and seagrass habitats worldwide. A Lyngbya bloom on the reef tract offshore of Broward County, Florida, was first noted in 2002, and although it is seasonally variable in its distribution and abundance, it has persisted and spread over the past 3 years. In this study, the most abundant species of Lyngbya found in the blooms have been identified and compared to other species of Lyngbya by morphological and molecular methods. The most common species of Lyngbya is consistent with the properties of Lyngbya confervoides C. Agardh. The 16S ribosomal DNA sequence shares 88–92% identity with other known Lyngbya sequences, suggesting that this bloom consists primarily of a new, previously unsequenced species of Lyngbya. The second most common Lyngbya in the bloom is consistent with Lyngbya polychroa. This persistent bloom is a concern because it smothers octocorals and other invertebrates and negatively impacts these southeastern Florida reefs.  相似文献   

7.
Marine cyanobacteria are prolific producers of bioactive secondary metabolites responsible for harmful algal blooms as well as rich sources of promising biomedical lead compounds. The current study focused on obtaining a clearer understanding of the remarkable chemical richness of the cyanobacterial genus Lyngbya. Specimens of Lyngbya from various environmental habitats around Curaçao were analysed for their capacity to produce secondary metabolites by genetic screening of their biosynthetic pathways. The presence of biosynthetic pathways was compared with the production of corresponding metabolites by LC‐ESI‐MS2 and MALDI‐TOF‐MS. The comparison of biosynthetic capacity and actual metabolite production revealed no evidence of genetic silencing in response to environmental conditions. On a cellular level, the metabolic origin of the detected metabolites was pinpointed to the cyanobacteria, rather than the sheath‐associated heterotrophic bacteria, by MALDI‐TOF‐MS and multiple displacement amplification of single cells. Finally, the traditional morphology‐based taxonomic identifications of these Lyngbya populations were combined with their phylogenetic relationships. As a result, polyphyly of morphologically similar cyanobacteria was identified as the major explanation for the perceived chemical richness of the genus Lyngbya, a result which further underscores the need to revise the taxonomy of this group of biomedically important cyanobacteria.  相似文献   

8.
Ten different strains of marine cyanobacteria were tested for their ability to decolourise and degrade a recalcitrant diazo dye, C.I. Acid Black 1. Of them, Oscillatoria curvicepsBDU92191 was able to grow up to a tested concentration of 500 mG L−1. The organism degraded 84% of the dye at 100 mG L−1 in 8 days in a medium free of combined nitrogen. The dye degrading ability is attributed to the activities of the enzymes: laccase, polyphenol oxidase and azoreductase. The absence of the doublet amine peak in addition to the overall reduction of absorption in the IR spectra confirmed the mineralisation of the tested azo dye. The nitrogen assimilating enzyme studies along with nitrogenase assay strongly suggested the ability of the non-heterocystous, filamentous marine cyanobacterium, O. curvicepsBDU92191 to use C.I. Acid Black 1 as a nitrogen source in an oligotrophic environment.  相似文献   

9.

Background

Cyanobacteria are recognized as the primordial organisms to grace the earth with molecular oxygen ~3.5 billion years ago as a result of their oxygenic photosynthesis. This laid a selection pressure for the evolution of antioxidative defense mechanisms to alleviate the toxic effect of active oxygen species (AOS) in cyanobacteria. Superoxide dismutases (SODs) are metalloenzymes that are the first arsenal in defense mechanism against oxidative stress followed by an array of antioxidative system. Unlike other living organisms, cyanobacteria possess multiple isoforms of SOD. Hence, an attempt was made to demonstrate the oxidative stress tolerance ability of marine cyanobacterium, Leptolyngbya valderiana BDU 20041 and to PCR amplify and sequence the SOD gene, the central enzyme for alleviating stress.

Result

L. valderiana BDU 20041, a filamentous, non-heterocystous marine cyanobacterium showed tolerance to the tested dye (C.I. Acid Black 1) which is evident by increased in biomass (i.e.) chlorophyll a. The other noticeable change was the total ROS production by culture dosed with dye compared to the control cultures. This prolonged incubation showed sustenance, implying that cyanobacteria maintain their antioxidant levels. The third significant feature was a two-fold increase in SOD activity of dye treated L. valderiana BDU20041 suggesting the role of SOD in alleviating oxidative stress via Asada-Halliwell pathway. Hence, the organism was PCR amplified for SOD gene resulting in an amplicon of 550 bp. The sequence analysis illustrated the presence of first three residues involved in motif; active site residues at H4, 58 and D141 along with highly conserved Mn specific residues. The isolated gene shared 63.8% homology with MnSOD of bacteria confirmed it as Mn isoform. This is the hitherto report on SOD gene from marine cyanobacterium, L. valderiana BDU20041 of Indian subcontinent.

Conclusion

Generation of Reactive Oxygen Species (ROS) coupled with induction of SOD by marine cyanobacterium, L. valderiana BDU20041 was responsible for alleviating stress caused by an azo dye, C. I. Acid Black 1. The partial SOD gene has been sequenced and based on the active site, motif and metal specific residues; it has been identified as Mn metalloform.  相似文献   

10.
11.
Genomes of 23 strains of cyanobacteria were comparatively analyzed using quantitative methods of estimation of gene order similarity. It has been found that reconstructions of phylogenesis of cyanobacteria based on the comparison of the orders of genes in chromosomes and nucleotide sequences appear to be similar. This confirms the applicability of quantitative measures of similarity of gene orders for phylogenetic reconstructions. In the evolution of marine unicellular planktonic cyanobacteria, genome rearrangements are fixed with a low rate (about 3% of gene order changes per 1% of 16S rRNA changes), whereas in other groups of cyanobacteria the gene order can change several times more rapidly. The gene orders in genomes of cyanobacteria and chloroplasts preserve a considerable degree of similarity. The closest relatives of chloroplasts among the analyzed cyanobacteria are likely to be strains from hot springs belonging to the genus Synechococcus. Comparative analysis of gene orders and nucleotide sequences strongly suggests that Synechococcus strains from different environments (sea, fresh waters, hot springs) are not related and belong to evolutionally distant lines.  相似文献   

12.
Cyanobacteria blooms may produce toxins thatare harmful to invertebrates and fishinhabiting aquatic systems. The objectives ofthis risk evaluation were: (1) to investigatethe potential toxicity (i.e., adverse effectsof cyanobacteria on the survival, reproduction,and behavior) of Lyngbya-dominated algalblooms from a North Louisiana reservoir to Daphnia magna and Pimephales promelas;and (2) to develop mitigation strategies forthis cyanobacteria infestation using physicaland chemical methods. Survival and reproductionof D. magna populations significantlydecreased after exposure to reservoircyanobacteria collected in spring in comparisonwith populations of test organisms exposed toeither Chlorophyta species or a combination ofreservoir cyanobacteria and Chlorophytaspecies. In April 1998, reservoir cyanobacteriaalso elicited a significant avoidance reactionby juvenile P. promelas (20–30 d).However, cyanobacteria collected in August andDecember (1997) did not cause adverse effectsfor either D. magna or P. promelasin terms of survival, reproduction, orbehavior. A physical control method, loweringthe water level of the reservoir (i.e.,drawdown), was simulated in the laboratory for8, 20, and 35 d. After re-saturation of algalpopulations with nutrient enriched medium, theyrecovered to 132.9, 129.4, and 23.7% oforiginal chlorophyll a concentrations,respectively. Herbicide application resulted in>78% decrease in chlorophyll aconcentration of reservoir cyanobacteria by7-d after initial herbicide application. Todecrease risk(s) of Lyngbya-dominatedcyanobacteria and maintain seasonal control inthis reservoir, drawdown in conjunction withherbicide application or recurrent herbicideapplication is recommended prior to onset ofcyanobacteria proliferation.  相似文献   

13.
Blooms of the toxic cyanobacteria Lyngbya spp. have been increasing in frequency and severity in southeast Florida in recent years. Lyngbya produces many active secondary metabolites which often act as feeding deterrents to generalist herbivores, possibly increasing the longevity of these nuisance blooms. Whilst diverse arrays of small invertebrate consumers are often found in association with Lyngbya, little is known of their grazing selectivity among species of Lyngbya. This study examines the feeding preference of grazers for four local Lyngbya species (Lyngbya majuscula, Lyngbya confervoides, Lyngbya polychroa and Lyngbya spp.). Stylocheilus striatus and Haminoea antillarum showed no dietary selectivity between L. polychroa, L. majuscula and Lyngbya spp. in multiple choice feeding assays, whereas Bulla striata showed a distinct preference for L. polychroa (P < 0.001). To determine whether preference might be related to species-specific secondary metabolites, L. majuscula, L. confervoides and L. polychroa non-polar and polar extracts were incorporated into artificial diets and offered to a range of mesograzers. No significant difference was noted in feeding stimulation or deterrence amongst extracts and the controls for any of the grazers. When fed a monospecific diet of L. polychroa, S. striatus consumed more (P < 0.001) and attained a higher daily biomass (P = 0.004) than S. striatus fed L. confervoides. As L. polychroa and L. confervoides often co-exist on local coral reefs and yield dense numbers of S. striatus, host switching to a more palatable species of Lyngbya may have important implications regarding top-down control of local blooms leading to proliferation of one species and decimation of another. S. striatus fed a diet of L. polychroa consumed more (P = 0.003), had a greater increase in body mass (P = 0.020) and higher conversion efficiency (P = 0.005) than those fed L. confervoides regardless of host origin. Possible explanations for host switching between species of Lyngbya related to morphology, toxicity and nutrient requirements for growth are discussed.  相似文献   

14.
Summary The tropical spotted munia,Lonchura punctulata, exhibits a pronounced seasonality in reproduction, body weight and food intake. The body weight cycle parallels the reproductive cycle, whereas the food intake cycle is almost in antiphase to it. There is evidence that constant dietary restriction (50% of the maximum intake) causes dissociation of the body weight and reproductive cycles. Because of these relationships we performed experiments on the food intake cycle and its phase relationships with the reproductive and body weight cycles in birds held under constant light. The results indicate persistence of all three cycles. The phase relationships of these three parameters were almost normal, which may indicate that the endogenous oscillators for the cycles of reproduction, body weight and food intake are linked.  相似文献   

15.
C. R. Joiris 《Polar Biology》1996,16(6):423-429
At-sea distribution of seabirds and marine mammals was quantitatively determined during the Arctic EPOS cruise of RV Polarstern, from 21 June till 28 July 1991, during 377 half-an-hour counts. Data were expressed as numbers per count and as density, and daily food intake was calculated using allometric equations from literature. Mean densities for the whole expedition were 29 seabirds per km2 (mainly little auk,Alle alle: 8.7, kittiwake,Rissa tridactyla: 8.2, Brünnich’s guillemot,Uria lomvia: 6.5 and fulmar,Fulmarus glacialis: 3.4), 0.06 pinnipeds, 0.01 cetaceans and 0.002 polar bears. Total food intake by seabirds and marine mammals was 3.9 kg fresh weight/km2 per day, with extreme values of 6.6 in the northern west-to-east transect and 2.5 in the Storfjorden. The major ecological influence were fish eaters (1.7), and more especially Brünnich’s guillemot (1.2). Geographic differences were also detected: food intake by Brünnich’s guillemot represented 62% of total intake in Storfjorden, and by the kittiwake, 45% in the first eastern transect. The first and last transects in the western Barents Sea are described and discussed in more detail. Within different sectors, high concentrations of seabirds were noted, corresponding to hydrological features such as fronts between Atlantic and polar waters, as well as ice edges. Values of seabirds’ density and food intake are higher than in the Greenland Sea, even than at the biologically very active ice edge there. Figures for pinnipeds and cetaceans are similar; numbers of polar bears were higher around Spitsbergen. The data presented were collected during the European “Polarstern” Study (Arctic EPOS) sponsored by the European Science Foundation  相似文献   

16.
17.
The physicochemical variations of soil, such as temperature, pH, nutrients, and the type of plant cultivation, affect the diversity of cyanobacteria, whether heterocystous or not. The aim of this study was to identify the species of cyanobacteria in a soil and the effect of environmental characteristics on cyanobacteria. Soil samples collected from six different agricultural sites in Al Diwaniyah city/Iraq during September 2016 in the autumn season were analyzed, and the physicochemical characteristics of the samples were measured using approved methods.

The results showed significant correlation and differences between cyanobacteria composition, distribution, and physicochemical factors among soil sites. The Agricultural soil was slightly alkaline and moderately saline and contained abundant nutrients, cations and a high percentage of organic matter. All these characteristics influenced the distribution and diversity of cyanobacteria. Ninety-six species were identified, including four heterocystous species represented by Anabaena, Calothrix, Cylnidrospermum, and Nostoc. However, the non-heterocystous were represented by 13 species: Aphanocapsa, Aphanothece, Arthrospira, Chroococcus, Gloeocapsa, Lyngbya, Merismopedia, Microcystis, Microcoleus, Oscillatoria, Phormidium, Schizothrix, and Spirulina. The dominant species of cyanobacteria was Oscillatoria, followed by Phormidium, Chroococcus, Gleocapsa and Lyngbya. The highest value of Shannon’s and Simpson’s diversities were registered in the Ghammas site, which is a paddy field, but the lowest was registered in the Afak site, cultivated with the alfalfa plant. Soil was classified as finely textured with silty clayey characterization, favorable for cyanobacteria growth.  相似文献   


18.
Cyanobacterial diversity in the Salton Sea, a high-salinity, eutrophic lake in Southern California, was investigated using a combination of molecular and morphological approaches. Representatives of a total of 10 described genera (Oscillatoria, Spirulina, Arthrospira, Geitlerinema, Lyngbya, Leptolyngbya, Calothrix, Rivularia, Synechococcus, Synechocystis) were identified in the samples; additionally, the morphology of two cultured strains do not conform to any genus recognized at present by the bacteriological system. Genetic analysis, based on partial 16S rRNA sequences suggested considerable cryptic genetic variability among filamentous strains of similar or identical morphology and showed members of the form-genus Geitlerinema to be distributed among three major phylogenetic clades of cyanobacteria. Cyanobacterial mats, previously described from the Sea were, in fact, composed of both filamentous cyanobacteria and a roughly equivalent biomass of the sulfur-oxidizing bacterium Beggiatoa, indicating their formation in sulfide rich regions of the lake. Flow cytometric analysis of the water samples showed three striking differences between samples from the Salton Sea and representative marine waters: (1) phycoerythrin-containing unicells, while abundant, were much less abundant in the Salton Sea than they were in typical continental shelf waters, (2) Prochlorococcus appears to be completely absent, and (3) small (3–5 m) eukaryotic algae were more abundant in the Salton Sea than in typical neritic waters by one-to-two orders-of-magnitude. Based on flow cytometric analysis, heterotrophic bacteria were more than an order of magnitude more abundant in the Salton Sea than in seawater collected from continental shelf environments. Virus particles were more abundant in the Salton Sea than in typical neritic waters, but did not show increases proportionate with the increase in bacteria, picocyanobacteria, or eukaryotic algae.  相似文献   

19.
Although molecular phylogenetic studies of cyanobacteria on the basis of the 16S rRNA gene sequence have been reported, the topologies were unstable, especially in the inner branchings. Our analysis of 16S rRNA gene phylogeny by the maximum-likelihood and neighbor-joining methods combined with rate homogeneous and heterogeneous models revealed seven major evolutionary lineages of the cyanobacteria, including prochlorophycean organisms. These seven lineages are always stable on any combination of these methods and models, fundamentally corresponding to phylogenetic relationships based on other genes, e.g., psbA, rbcL, rnpB, rpoC, and tufA. Moreover, although known genotypic and phenotypic characters sometimes appear paralleled in independent lineages, many characters are not contradictory within each group. Therefore we propose seven evolutionary groups as a working hypothesis for successive taxonomic reconstruction. New 16S rRNA sequences of five unicellular cyanobacterial strains, PCC 7001, PCC 7003, PCC 73109, PCC 7117, and PCC 7335 of Synechococcus sp., were determined in this study. Although all these strains have been assigned to ``marine clusters B and C,' they were separated into three lineages. This suggests that the organisms classified in the genus Synechococcus evolved diversely and should be reclassified in several independent taxonomic units. Moreover, Synechococcus strains and filamentous cyanobacteria make a monophyletic group supported by a comparatively high statistical confidence value (80 to 100%) in each of the two independent lineages; therefore, these monophylies probably reflect the convergent evolution of a multicellular organization. Received: 3 September 1998 / Accepted: 30 November 1998  相似文献   

20.
We report normal ranges of haematological indices in healthy Corydoras paleatus from an unpolluted area. Haematological parameters studied include: erythrocyte counts (Er), haematocrit (Ht), haemoglobin concentration (Hb), mean cell volume (MCV), mean cell haemoglobin (MCH) and mean cell haemoglobin concentration (MCHC). Normal red blood parameters did not change according to maturation stages, sex or seasons. Then, we compared them with those coming from fish captured in a site polluted by sewage. Fish exposed to pollution presented significantly higher values of Er, Ht, Hb, MCH and MCHC than those captured in an unpolluted area. Discriminant analysis showed that Hb is a key parameter to point out differences between populations exposed to different environmental conditions. We suggest that haematological values of C. paleatus, registered during this study, could be used as biomarkers in future works evaluating the incidence of environmental stress on fish as well as pointing out changes in the water quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号