首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metastatic colonization of a secondary organ site is initiated by the attachment of blood-borne tumor cells to organ-specific adhesion molecules expressed on the surface of microvascular endothelial cells. Using digital video imaging microscopy and fluorescence activated cell sorting techniques, we show here that highly metastatic cells (B16-F10 murine melanoma and R3230AC-MET rat mammary adenocarcinoma cells) previously labeled with the fluorescent dye BCECF begin to transfer dye to endothelial cell monolayers shortly after adhesion is established. The extent of BCECF transfer to endothelial cell monolayers is dependent upon the number of BCECF-labeled tumor cells seeded onto the endothelial cell monolayer and the time of coculture of the two cell types, as visualized by an increase in the number of BCECF-positive cells among cells stained with an endothelial cell-specific mAb. Dye transfer to BAEC monolayers proceeds with a progressive loss of fluorescence intensity in the BCECF-labeled tumor cell population with time of coculture. The transfer of dye is bidirectional and sensitive to inhibition by 1-heptanol. In contrast, poorly metastatic B16-F0 melanoma cells and non-metastatic R3230AC-LR mammary adenocarcinoma cells do not efficiently couple with vascular endothelial cells. It is inferred from these experiments and from the amounts of connexin43 mRNA expressed by tumor cells that tumor cell/endothelial cell communication is mediated by gap junctional channels and that this interaction may play a critical role in tumor cell extravasation at secondary sites.  相似文献   

2.
Hematogenous metastasis involves adhesive interactions between blood-borne tumor cells and the vessel wall. By the use of in vitro assays, the adhesion of human melanoma, osteosarcoma, and kidney carcinoma (but not colon carcinoma) cell lines was shown to involve the cytokine-inducible endothelial cell surface protein inducible cell adhesion molecule 110 (INCAM-110) and the alpha 4 beta 1 integrin, molecules normally involved in endothelial-leukocyte interactions. Tumor adhesion to human endothelial cell monolayers was increased 1.9- to 8.2-fold by endothelial activation with the cytokine tumor necrosis factor (TNF) and inhibited by the anti-INCAM-110 monoclonal antibody (mAb) E1/6. Each of these tumor cells expressed members of the beta 1 integrin family of adhesion molecules, and antibodies to the alpha 4 and beta 1 integrin subunits inhibited tumor-endothelial adhesion (48-87% inhibition). A cDNA encompassing the three N-terminal Ig-like domains of vascular cell adhesion molecule 1 (VCAM-1) encoded a protein recognized by the anti-INCAM-110 mAb E1/6 and, when captured onto plastic, supported melanoma cell adhesion by an alpha 4 integrin-dependent mechanism. In contrast to mAb E1/6, a second anti-INCAM-110 mAb Hu8/4 neither inhibited adhesion to activated endothelium nor bound the first three Ig-like domains of INCAM-110/VCAM-1. These data indicate that the adherence of several human tumors to activated endothelium is mediated by an interaction of alpha 4 beta 1 integrin and the N-terminal Ig-like domains of endothelial INCAM-110/VCAM-1. Tumor acquisition of the alpha 4 integrin subunit and endothelial expression of INCAM-110 may affect the frequency and distribution of metastasis.  相似文献   

3.
Quantum dot-antibody bioconjugates (QD-mAb) were synthesized incorporating PEG cross-linkers and Fc-shielding mAb fragments to increase in vivo circulation times and targeting efficiency. Microscopy of endothelial cell cultures incubated with QD-mAb directed against cell adhesion molecules (CAMs), when shielded to reduce Fc-mediated interactions, were more specific for their molecular targets. In vitro flow cytometry indicated that surface engineered QD-mAb labeled leukocyte subsets with minimal Fc-mediated binding. Nontargeted QD-mAb nanoparticles with Fc-blockade featured 64% (endothelial cells) and 53% (leukocytes) lower nonspecific binding than non-Fc-blocked nanoparticles. Spectrally distinct QD-mAb targeted to the cell adhesion molecules (CAMs) PECAM-1, ICAM-1, and VCAM-1 on the retinal endothelium in a rat model of diabetes were imaged in vivo using fluorescence angiography. Endogenously labeled circulating and adherent leukocyte subsets were imaged in rat models of diabetes and uveitis using QD-mAb targeted to RP-1 and CD45. Diabetic rats exhibited increased fluorescence in the retinal vasculature from QD bioconjugates to ICAM-1 and VCAM-1 but not PECAM-1. Both animal models exhibited leukocyte rolling and leukostasis in capillaries. Examination of retinal whole mounts prepared after in vivo imaging confirmed the fluorescence patterns seen in vivo. Comparison of the timecourse of retinal fluorescence from Fc-shielded and non-Fc-shielded bioconjugates indicated nonspecific uptake and increased clearance of the non-Fc-shielded QD-mAb. This combination of QD surface design elements offers a promising new in vivo approach to specifically label vascular cells and biomolecules of interest.  相似文献   

4.
This article describes various adhesion molecules and reviews evidence to support a mechanistic role for adhesion molecules in the process of cancer metastasis. A variety of evidence supports the involvement of specific adhesion molecules in metastasis.
  1. For example, some cancer cells metastasize to specific organs, irrespective of the first organ encountered by the circulating cancer cells. This ability to colonize a specific organ has been correlated with the preferential adhesion of the cancer cells to endothelial cells derived from the target organ. This suggests that cancer cell/endothelial cell adhesion is involved in cancer cell metastasis and that adhesion molecules are expressed on the endothelium in an organ-specific manner.
  2. Further, inclusion of peptides that inhibit cell adhesion, such as the YIGSR- or RGD-containing peptides, is capable of inhibiting experimental metastasis.
  3. Metastasis can be enhanced by acute or chronic inflammation of target vessels, or by treatment of animals with inflammatory cytokines, such as interleukin-1. In vitro, cancer cell/endothelial cell adhesion can be enhanced by pretreating the endothelial cell monolayer with cytokines, such as interleukin-1 or tumor necrosis factor-α. This suggests that, in addition to organ-specific adhesion molecules, a population of inducible endothelial adhesion molecules is involved and is relevant to metastasis.
  4. Further support for this model is found in the comparison to leukocyte/endothelial adhesion during leukocyte trafficking. Convincing evidence exists, both in vivo and in vitro, to demonstrate an absolute requirement for leukocyte/endothelial adhesion before leukocyte extravasation can occur. The relevance of this comparison to metastasis is reinforced by the observation that some of the adhesion molecules involved in leukocyte/endothelial adhesion are also implicated in cancer cell/endothelial adhesion. The involvement of adhesion molecules suggests a potential therapy for metastasis based on interrupting adhesive interactions that would augment other treatments for primary tumors.
  相似文献   

5.
Eicosanoid formation by transcellular routes can amplify the levels and types of lipid mediators within a local milieu. To evaluate the role of adhesion in this process, we assessed the influence of mAb against adhesion molecules on LTC4 generation by PMN-endothelial cell interaction. Transcellular LTC4 generation was initiated by addition of fMLP to coincubations of GM-CSF-primed PMN and TNF-activated endothelial cells cultured from kidney glomeruli. Both PMN-endothelial cell adhesion and transcellular LTC4 generation were inhibited by mAb against leukocyte L-selectin and CD18. These results indicate that cytokine-treated PMN and endothelial cells generate LTC4 via transcellular routes by receptor-triggered mechanisms. They suggest that adhesion promotes transcellular eicosanoid biosynthesis and that adhesion molecules may also be targets for blockade of transcellular biosynthesis of lipid mediators.  相似文献   

6.
We have produced a panel of mAb to the endothelial activation Ag endothelial leucocyte adhesion molecule-1 (ELAM-1), using both a conventional immunization protocol and one involving immunosuppression. By constructing ELAM-1 mutants we have demonstrated that seven of these antibodies recognize epitopes within the lectin domain of ELAM-1 and that one binds within the complement regulatory protein domains. These studies also suggest that the EGF-like domain is important in maintaining the conformation of the neighbouring lectin domain. In functional studies, U937 cells bound to Cos cells expressing either ELAM-1 or ELAM-1 with the complement regulatory protein domains deleted. No adhesion was observed to Cos cells expressing ELAM-1 mutants lacking either the lectin or EGF-like domains. The fact that antibodies directed against the lectin domain can inhibit adhesion suggest that this domain is directly involved in cell binding.  相似文献   

7.
We previously reported an unusual carboxylated modification on N:-glycans isolated from whole bovine lung. We have now raised IgG mAbs against the modification by immunization with biotinylated aminopyridine-derivatized glycans enriched for the anionic species and screening for Abs whose reactivities were abrogated by carboxylate neutralization of bovine lung glycopeptides. One such Ab (mAb GB3.1) was inhibited by carboxylated bovine lung glycopeptides and other multicarboxylated molecules, but not by glycopeptides in which the carboxylate groups were modified. The Ab recognized an epitope constitutively expressed on bovine, human, and other mammalian endothelial cells. Stimulated, but not resting, neutrophils bound to immobilized bovine lung glycopeptides in a carboxylate-dependent manner. The binding of activated neutrophils to immobilized bovine lung glycopeptides was inhibited both by mAb GB3.1 and by soluble glycopeptides in a carboxylate-dependent manner. The Ab also inhibited extravasation of neutrophils and monocytes in a murine model of peritoneal inflammation. This inhibition of cell trafficking correlated with the increased sequestration but reduced transmigration of leukocytes that were found to be adherent to the endothelium of the mesenteric microvasculature. Taken together, these results indicate that these novel carboxylated N:-glycans are constitutively expressed on vascular endothelium and participate in acute inflammatory responses by interaction with activated neutrophils.  相似文献   

8.
Adhesion of blood-borne cancer cells to the endothelium is a critical determinant of organ-specific metastasis. Here we show that colonization of the lungs by human breast cancer cells is correlated with cell surface expression of the alpha(6)beta(4) integrin and adhesion to human CLCA2 (hCLCA2), a Ca(2+)-sensitive chloride channel protein that is expressed on the endothelial cell luminal surface of pulmonary arteries, arterioles, and venules. Tumor cell adhesion to endothelial hCLCA2 is mediated by the beta(4) integrin, establishing for the first time a cell-cell adhesion property for this integrin that involves an entirely new adhesion partner. This adhesion is augmented by an increased surface expression of the alpha(6)beta(4) integrin in breast cancer cells selected in vivo for enhanced lung colonization but abolished by the specific cleavage of the beta(4) integrin with matrilysin. beta(4) integrin/hCLCA2 adhesion-blocking antibodies directed against either of the two interacting adhesion molecules inhibit lung colonization, while overexpression of the beta(4) integrin in a model murine tumor cell line of modest lung colonization potential significantly increases the lung metastatic performance. Our data clearly show that the beta(4)/hCLCA2 adhesion is critical for lung metastasis, yet expression of the beta(4) integrin in many benign breast tumors shows that this integrin is insufficient to bestow metastatic competence on cells that lack invasiveness and other established properties of metastatic cells.  相似文献   

9.
The mouse progenitor T lymphocyte (pro-T) cell line FTF1 binds in vitro to thymus blood vessels, the thymic capsule, and liver from newborn mice. A mAb, EA-1, raised against an embryonic mouse endothelial cell line, blocked adhesion. The antibody also interfered with pro-T cell adhesion to a thymus-derived mouse endothelial cell line; it had no effect on the adhesion of mature T lymphocytes and myeloid cells. The antigen recognized by EA-1 is located on the vascular endothelium of various mouse tissues and absent on pro-T cells. EA-1 antibody precipitates molecules with apparent molecular weights of 110,000, 140,000, 160,000, and 200,000. Immunoclearing and binding-inhibition studies with antibodies against known adhesion molecules suggest that the EA-1 antigen is a novel adhesion molecule involved in colonization of the embryonic thymus by T cell progenitors.  相似文献   

10.
Bone marrow is the primary site of metastasis in patients with advanced stage prostate cancer. Prostate carcinoma cells metastasizing to bone must initially adhere to endothelial cells in the bone marrow sinusoids. In this report, we have modeled that interaction in vitro using two bone marrow endothelial cell (BMEC) lines and four prostate adenocarcinoma cell lines to investigate the adhesion mechanism. Highly metastatic PC3 and PC3M-LN4 cells were found to adhere rapidly and specifically (70-90%) to BMEC-1 and trHBMEC bone marrow endothelial cells, but not to human umbilical vein endothelial cells (15-25%). Specific adhesion to BMEC-1 and trHBMEC was dependent upon the presence of a hyaluronan (HA) pericellular matrix assembled on the prostate carcinoma cells. DU145 and LNCaP cells were only weakly adherent and retained no cell surface HA. Maximal BMEC adhesion and HA encapsulation were associated with high levels of HA synthesis by the prostate carcinoma cells. Up-regulation of HA synthase isoforms Has2 and Has3 relative to levels expressed by normal prostate corresponded to elevated HA synthesis and avid BMEC adhesion. These results support a model in which tumor cells with up-regulated HA synthase expression assemble a cell surface hyaluronan matrix that promotes adhesion to bone marrow endothelial cells. This interaction could contribute to preferential bone metastasis by prostate carcinoma cells.  相似文献   

11.
The rat monoclonal antibody (mAb) termed EA-1 was originally selected for its capacity to block the adhesion of T lymphocyte progenitors to mouse thymic endothelium. Here we show that the mAb EA-1 recognizes the α6 chain of α6β1 and α6β4 integrins. Both molecules are present at a high level on the luminal and basolateral side of vascular endothelium and α6β1 integrin is expressed on the highly metastatic cell lines B16/129 (melanoma) and KLN-205 (carcinoma). These lung specific tumors bind preferentially to lung frozen sections, and EA-1 blocked this interaction in vitro. Moreover, mAb EA-1 inhibited experimental metastasis to the lung of B16/129 cells injected intravenously. Metastasis in vivo was blocked when the antibody was injected into mice before or simultaneously with the melanoma cells, as well as when melanoma cells were precoated with EA-1 before injection. We suggest that α6 integrins play a dual role in the metastatic process, mediating the adhesion of tumor cells to the luminal surface of the endothelium and the adhesion to laminin in the subendothelial extracellular matrix during extravasation. Despite the fact that α6 integrins are laminin receptors, EA-1 did not interfere with melanoma cell binding to laminin fragments. Our antibody EA-1 may therefore recognize a binding domain on α6 integrins of a novel ligand involved in cell-cell interaction.  相似文献   

12.
 We examined the influence of surgical stress on hematogenous metastasis of malignant tumor cells. The study was performed by focusing on the involvement of inflammatory cytokines in the serum, raised acutely after surgery, and endothelial adhesion molecules in the metastatic process. Surgical stress, given to C57BL/6 mice before B16-BL6 melanoma inoculation, significantly enhanced the pulmonary metastasis. This enhancement was seen when the surgery lasted for more than 2 h. After the 2-h surgery, the enhancement of pulmonary metastasis was seen most remarkably when B16-BL6 was inoculated 24 h after surgery. The serum level of tumor necrosis factor α (TNFα) in the mice that underwent the 2-h surgery peaked 12 h after the surgery. In contrast, serum interferon γ was not detectable. Administration of an anti-TNFα mAb before the surgery inhibited the enhanced metastasis by inhibiting the increased expression of vascular cell adhesion molecule 1 (VCAM-1) on lung vascular endothelium after the surgery. Pretreatment of B16-BL6 cells with an anti-very late activation antigen 4 (anti-VLA-4) mAb completely inhibited the enhanced metastasis after surgery. Administration of an anti-VCAM-1 mAb before surgery also inhibited the enhancement. These results indicate that serum TNFα , raised by surgical stress, is critically involved in the enhanced pulmonary metastasis of mouse melanoma by inducing VCAM-1 expression on lung vascular endothelium. Received: 22 January 1996 / Accepted: 1 April 1996  相似文献   

13.
Arrest and formation of stable adhesive interactions between circulating cells and the endothelium or exposed subendothelial matrix are important processes in many biological situations. We have developed a highly sensitive hydrodynamic assay that utilizes a parallel-plate flow chamber, video microscopy, and digital image processing to separate and measure the primary arrest and adhesion stabilization of flowing cells. Our data indicate that primary cell contact triggers secondary adhesion stabilization, and the secondary events are likely to be critical to metastasis formation. To study the relationship between tumor cell adhesion stabilization and organ-specific blood-borne metastasis, we investigated the adhesion stabilization of metastatic murine RAW117 large-cell lymphoma cells to the extracellular matrix proteins fibronectin and vitronectin, several Arg-Gly-Asp (RGD) containing peptides, and microvascular endothelial cells from the liver or lung. The highly liver metastatic RAW117-H10 subline showed the fastest stabilization to fibronectin, vitronectin, and RGD peptides. Poorly metastatic RAW117-P cells had stabilization times 3-10 times longer than for RAW117-H10 cells, while the lung- and liver-metastatic RAW117-L17 subline failed to stabilize at all. The adhesion stabilization of the RAW117-H10 cells to the extracellular matrix proteins and RGD peptides was inhibited by anti-beta(3) integrin monoclonal antibodies and RGD peptides. In contrast, the RAW117-L17 subline had the shortest stabilization time to unstimulated microvascular endothelial cells of the lung and hepatic sinusoids, followed by RAW117-H10 cells and RAW117-P cells. Monoclonal antibodies against the beta(3) integrin subunit and RGD peptides did not inhibit adhesion stabilization of RAW117-H10 cells to endothelial cells, suggesting that different metastatic variants of large-cell lymphoma cells use differing mechanisms to adhere to organ-specific endothelial cells. (c) 1996 John Wiley & Sons, Inc.  相似文献   

14.
We demonstrated previously that thrombin stimulation of human coronary artery endothelial cells (HCAEC) results in release of choline lysophospholipids [lysophosphatidylcholine (lysoPtdCho) and lysoplasmenylcholine (lysoPlsCho)]. These amphiphilic metabolites have been implicated in arrhythmogenesis following the onset of myocardial ischemia, but studies examining their direct effects on the vasculature remain limited. We and others have shown that thrombin and lysoPtdCho can increase cell surface adhesion molecules and adherence of circulating inflammatory cells to the endothelium. This study supports our hypothesis that these changes may be mediated, at least in part, by lysoPlsCho, thus implicating this metabolite as an inflammatory mediator in the coronary vasculature and a modulator of the progression of atherosclerosis. Apical stimulation of HCAEC with thrombin resulted in the production and release of choline lysophospholipids from the apical surface of the HCAEC monolayer. Basolateral stimulation had no effect on choline lysophospholipid production or release from either the apical or basolateral surface of the HCAEC monolayer. Incubation of HCAEC with lysoPlsCho or lysoPtdCho resulted in similar increases in HCAEC surface expression of P-selectin and E-selectin. Furthermore, lysoPlsCho increased cell surface expression of P-selectin, E-selectin, vascular cell adhesion molecule-1, and intercellular adhesion molecule-1 with a time course similar to that of thrombin stimulation. Increased presence of cell surface adhesion molecules may contribute to the significant increase in adherence of neutrophils to either thrombin- or lysoPlsCho-stimulated HCAEC. These results demonstrate that the presence of thrombin at sites of vascular injury in the coronary circulation, resulting in increased choline lysophospholipid release from the HCAEC apical surface, has the potential to propagate vascular inflammation by upregulation of adhesion molecules and recruitment of circulating inflammatory cells to the endothelium. endothelium; arrhythmogenesis; inflammation; lysophospholipids  相似文献   

15.
Pentoxifylline (PTX), a methylxanthine derivative widely used as a hemorheological agent in the treatment of peripheral vascular disease, was studied to unveil the mechanisms responsible for its inhibitory action on B16-F10 experimental metastasis. In vitro pretreatment of B16-F10 cells with noncytotoxic concentrations of PTX significantly inhibited their adhesion to reconstituted basement membrane Matrigel® and type IV collagen as well as the relative activity of secreted 92 kD metalloproteinase. However, PTX pretreatment of B16-F10 cells did not affect their in vitro invasiveness. Heterotypic organ adhesion assays carried out with B16-F10 cells and suspended organ tissues demonstrated that pretreatment with noncytotoxic concentrations of PTX of both, tumor cells or lung tissue, brought about a dose-dependent inhibition of melanoma cell adhesion to lung. Immunohistochemical studies using antibodies against CD31 adhesion molecule (PECAM-1) revealed that B16-F10 cells adhere to lung endothelial cells. Our results suggest that PTX may exert its inhibitory effect on tumor lodgment, and as a consequence of that on experimental metastases, through an inhibitory action on cell adhesion molecules.  相似文献   

16.
E- and N-cadherin are calcium-dependent cell adhesion molecules that mediate cell-cell adhesion and also modulate cell migration and tumor invasiveness. The loss of E-cadherin-mediated adhesion has been shown to play an important role in the transition of epithelial tumors from a benign to an invasive state. However, recent evidence indicates that another member of the cadherin family, N-cadherin, is expressed in highly invasive tumor cell lines that lacked E-cadherin expression. These findings have raised the possibility that N-cadherin contributes to the invasive phenotype. To determine whether N-cadherin promotes invasion and metastasis, we transfected a weakly metastatic and E-cadherin-expressing breast cancer cell line, MCF-7, with N-cadherin and analyzed the effects on cell migration, invasion, and metastasis. Transfected cells expressed both E- and N-cadherin and exhibited homotypic cell adhesion from both molecules. In vitro, N-cadherin-expressing cells migrated more efficiently, showed an increased invasion of Matrigel, and adhered more efficiently to monolayers of endothelial cells. All cells produced low levels of the matrix metalloproteinase MMP-9, which was dramatically upregulated by treatment with FGF-2 only in N-cadherin-expressing cells. Migration and invasion of Matrigel were also greatly enhanced by this treatment. When injected into the mammary fat pad of nude mice, N-cadherin-expressing cells, but not control MCF-7 cells, metastasized widely to the liver, pancreas, salivary gland, omentum, lung, lymph nodes, and lumbar spinal muscle. The expression of both E- and N-cadherin was maintained both in the primary tumors and metastatic lesions. These results demonstrate that N-cadherin promotes motility, invasion, and metastasis even in the presence of the normally suppressive E-cadherin. The increase in MMP-9 production by N-cadherin-expressing cells in response to a growth factor may endow them with a greater ability to penetrate matrix protein barriers, while the increase in their adherence to endothelium may improve their ability to enter and exit the vasculature, two properties that may be responsible for metastasis of N-cadherin-expressing cells.  相似文献   

17.
Arrest of circulating tumor cells in distant organs is required for hematogenous metastasis, but the tumor cell surface molecules responsible have not been identified. Here, we show that the tumor cell alpha3beta1 integrin makes an important contribution to arrest in the lung and to early colony formation. These analyses indicated that pulmonary arrest does not occur merely due to size restriction, and raised the question of how the tumor cell alpha3beta1 integrin contacts its best-defined ligand, laminin (LN)-5, a basement membrane (BM) component. Further analyses revealed that LN-5 is available to the tumor cell in preexisting patches of exposed BM in the pulmonary vasculature. The early arrest of tumor cells in the pulmonary vasculature through interaction of alpha3beta1 integrin with LN-5 in exposed BM provides both a molecular and a structural basis for cell arrest during pulmonary metastasis.  相似文献   

18.
P-selectin (CD62P) is a cell adhesion molecule expressed on stimulated endothelial cells and on activated platelets. It interacts with PSGL-1 (P-selectin glycoprotein ligand-1; CD162) on leukocytes and mediates recruitment of leukocytes during inflammation. P-selectin also binds to several types of cancer cells in vitro and facilitates growth and metastasis of colon carcinoma in vivo. Here we show that P-selectin, but not E-selectin, binds to NCI-H345 cells, a cell line derived from a human small cell lung cancer. EDTA or P7 (a leukocyte adhesion blocking mAb to P-selectin), but not PL5 (a leukocyte adhesion blocking mAb to PSGL-1), can inhibit this binding. P-selectin affinity chromatography can precipitate a approximately 110-kDa major band and a approximately 220-kDa minor band from [3H]-glucosamine-labeled NCI-H345 cells. No expression of PSGL-1 protein and mRNA can be detected in NCI-H345 cells. Taken together, these results suggest that NCI-H345 cells express glycoprotein ligands for P-selectin that are distinct from leukocyte PSGL-1.  相似文献   

19.
We have used a model system to explore the importance of long-range lateral diffusion of membrane proteins in specific membrane-membrane adhesion. Single, cell-size phospholipid vesicles containing a dinitrophenyl (DNP)-lipid hapten were maneuvered into contact with rat basophilic leukemia (RBL) cells carrying fluorescent anti-DNP IgE in their cell-surface Fc epsilon receptors. Upon cell-vesicle contact the antibody molecules underwent a marked lateral redistribution, accumulating at the site of contact and becoming significantly depleted from noncontacting membrane. As assayed with a micropipette suction method, there was a time-dependent increase in the strength of cell-vesicle adhesion. This development of adhesion paralleled the kinetics of accumulation of the adhesion-mediating antibody molecules at the zone of membrane-membrane contact. Both adhesion and redistribution were absolutely dependent upon a specific interaction of the IgE with the hapten: No redistribution occurred when vesicles lacking the DNP hapten were pushed against IgE-armed RBL cells, and on cells bearing a 1:1 mixture of nonimmune rat IgE and anti-DNP mouse IgE, only the latter underwent redistribution. Vesicles containing DNP-lipids bound to RBL cells carrying anti-DNP IgE but not to cells carrying nonimmune rat IgE. Measurable nonspecific binding did not develop even after 15 min of pushing DNP-bearing vesicles against RBL cells sensitized with nonimmune IgE. Neither redistribution nor adhesion was blocked by metabolic poisons such as NaN3 and NaF. Both redistribution and adhesion occurred in plasma membrane blebs previously shown to lack cytoskeletal filaments. The above observations are consistent with contact-induced redistribution of the IgE being a result of passive diffusion-mediated trapping rather than active cellular responses. Thus, long-range diffusion of specific proteins can in some cases contribute to the formation of stable adhesion between membranes.  相似文献   

20.
The role of L-selectin (LAM-1) as a regulator of leukocyte adhesion to kidney microvascular glomerular endothelial cells was assessed in vitro by using L-selectin-directed mAb and an L-selectin cDNA-transfected cell line. The initial attachment of neutrophils, monocytes, and lymphocytes to TNF-activated bovine glomerular endothelial cells was significantly inhibited by the anti-LAM1-3 mAb. Under static conditions, anti-LAM1-3 mAb inhibited neutrophil adhesion by 15 +/- 5%, whereas the anti-LAM1-10 mAb, directed against a functionally silent epitope of L-selectin, was without effect. The binding of a CD18 mAb inhibited adhesion by 47 +/- 6%. In contrast, when the assays were carried out under nonstatic conditions or at 4 degrees C, the anti-LAM1-3 mAb generated significantly greater inhibition (approximately 60%). CD18-dependent adhesion was minimal (approximately 10%) under these conditions. TNF-activated glomerular endothelial cells also supported adhesion of a mouse pre-B cell line transfected with L-selectin cDNA, but not wild-type cells. This process was also inhibited by the anti-LAM1-3 mAb. Leukocyte adhesion to unstimulated endothelial cells was independent of L-selectin, but, after TNF stimulation, L-selectin-mediated adhesion was observed at 4 h, with maximal induction persisting for 24 to 48 h. Leukocyte adhesion was not observed if glomerular endothelial cells were exposed to TNF in the presence of RNA or protein synthesis inhibitors. Leukocyte attachment to TNF-activated glomerular endothelial cells was also partially inhibited by treatment of the cells with mannose-6-phosphate or phosphomannan monoester, a soluble complex carbohydrate, or by prior treatment of glomerular endothelial cells with neuraminidase, suggesting that the glomerular endothelial cell ligand shares functional characteristics with those expressed by lymph node and large vessel endothelial cells. These data suggest that TNF activation induced the biosynthesis and surface expression of a ligand(s) for L-selectin on glomerular endothelial cells, which supports neutrophil, monocyte, and lymphocyte attachment under nonstatic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号