首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An N-acetylgalactosamine-specific lectin (GFL) was isolated from Grifola frondosa fruiting bodies by affinity chromatographies on acid-treated Sepharose CL-4B and then GalNAc-Toyopearl. The isolated lectin agglutinated all types of erythrocytes equally. Molecular masses estimated by gel filtration under various buffers and matrices varied from 30 to 52 kDa. On the other hand, SDS-PAGE in the presence or absence of 2-mercaptoethanol showed three major bands of 33, 66 and 100 kDa and a faint band of 65 kDa. This lectin exhibited GalNAc-specificity. The protein was a glycoprotein containing 3.3% total sugar, and the amino acid analysis revealed a high content of acidic and hydroxy amino acids and a low content of methionine and histidine. GFL was cytotoxic against HeLa cells. The toxicity did not appear after preincubating the lectin with the haptenic sugar N-acetylgalactosamine.  相似文献   

2.
A lectin named GFL was isolated from the fruiting body of the basidiomycete mushroom Grifola frondosa, which belongs to Aphyllophorales. The lectin had a molecular mass of 24 kDa on SDS-PAGE. The hemagglutinating activity of GFL was not inhibited by any monosaccharide, and inhibited only by porcine stomach mucin so far as tested. The occurrence of GFL was studied at three stages during fruiting body formation. The largest quantity of hemagglutinating activity was found in the fruiting body, and lesser amounts in the mycelial mat and the primordium. The 24-kDa band of GFL was found at all three stages, and the band-intensity corresponded to the level of activity in each sample. By cloning and sequencing the GFL-cDNA, the primary structure of this lectin was determined. GFL is composed of 181 amino acids, having no signal peptide. The amino acid sequence was found to be homologous to those of so-called jacalin-related plant lectins, suggesting that GFL is the first example of a jacalin-related lectin of fungal origin.  相似文献   

3.
A legume-type lectin (L-lectin) gene of the red algae Gracilaria fisheri (GFL) was cloned by rapid amplification of cDNA ends (RACE). The full-length cDNA of GFL was 1714 bp and contained a 1542 bp open reading frame encoding 513 amino acids with a predicted molecular mass of 56.5 kDa. Analysis of the putative amino acid sequence with NCBI-BLAST revealed a high homology (30–68%) with legume-type lectins (L-lectin) from Griffithsia japonica, Clavispora lusitaniae, Acyrthosiphon pisum, Tetraodon nigroviridis and Xenopus tropicalis. Phylogenetic relationship analysis showed the highest sequence identity to a glycoprotein of the red algae Griffithsia japonica (68%) (GenBank number AAM93989). Conserved Domain Database analysis detected an N-terminal carbohydrate recognition domain (CRD), the characteristic of L-lectins, which contained two sugar binding sites and a metal binding site. The secondary structure prediction of GFL showed a β-sheet structure, connected with turn and coil. The most abundant structural element of GFL was the random coil, while the α-helixes were distributed at the N- and C-termini, and 21 β-sheets were distributed in the CRD. Computer analysis of three-dimensional structure showed a common feature of L-lectins of GFL, which included an overall globular shape that was composed of a β-sandwich of two anti-parallel β-sheets, monosaccharide binding sites, were on the top of the structure and in proximity with a metal binding site. Northern blot analysis using a DIG-labelled probe derived from a partial GFL sequence revealed a hybridization signal of ~1.7 kb consistent with the length of the full-length GFL cDNA identified by RACE. No detectable band was observed from control total RNA extracted from filamentous green algae.  相似文献   

4.
Lectin from a leaf of Erythrina indica was isolated by affinity chromatography on Lactamyl-Seralose 4B. Lectin gave a single band in polyacrylamide gel electrophoresis (PAGE). In SDS-gel electrophoresis under reducing and non-reducing conditions Erythrina indica leaf lectin (EiLL) split into two bands with subunit molecular weights of 30 and 33 kDa, whereas 58 kDa was obtained for the intact lectin by gel filtration on Sephadex G-100. EiLL agglutinated all human RBC types, with a slight preference for the O blood group. Lectin was found to be a glycoprotein with a neutral sugar content of 9.5%. The carbohydrate specificity of lectin was directed towards D-galactose and its derivatives with pronounced preference for lactose. EiLL had pH optima at pH 7.0; above and below this pH lectin lost sugar-binding capability rapidly. Lectin showed broad temperature optima from 25 to 50 degrees C; however, at 55 degrees C EiLL lost more than 90% of its activity and at 60 degrees C it was totally inactivated. The pI of EiLL was found to be 7.6. The amino acid analysis of EiLL indicated that the lectin was rich in acidic as well as hydrophobic amino acids and totally lacked cysteine and methionine. The N-terminal amino acids were Val-Glu-Thr-IIe-Ser-Phe-Ser-Phe-Ser-Glu-Phe-Glu-Ala-Gly-Asn-Asp-X-Leu-Thr-Gln-Glu-Gly-Ala-Ala-Leu-. Chemical modification studies of both EiLL and Erythrina indica seed lectin (EiSL) with phenylglyoxal, DEP and DTNB revealed an absence of arginine, histidine and cysteine, respectively, in or near the ligand-binding site of both lectins. Modification of tyrosine with NAI led to partial inactivation of EiLL and EiSL; however, total inactivation was observed upon NBS-modification of two tryptophan residues in EiSL. Despite the apparent importance of these tryptophan residues for lectin activity they did not seem to have a direct role in binding haptenic sugar as D-galactose did not protect lectin from inactivation by NBS.  相似文献   

5.
A lectin (HTTL) was isolated from Helianthus tuberosus L. (wild sunflower) tubers using ion-exchange chromatography, gel filtration, and affinity chromatography. The lectin agglutinated both untreated and trypsin-treated rabbit erythrocytes and did not agglutinate human blood cells of groups A, B, and O. The gel filtration showed the native molecular mass of 72 kDa and subunit molecular masses of 17 and 18.5 kDa on 12% SDS-PAGE. The lectin activity was inhibited by D-mannose. The tetrameric protein revealed a unique characteristic by forming a broad zone of protein in native PAGE at pH 8.3, which dissociated into seven subunits of varying e/m ratios on acid gel at pH 4.3. These seven bands revealed two polypeptide species of molecular masses 17 and 18.5 kDa on 12% SDS-PAGE, as in the case of the native protein. The result indicated that of the seven subunits, three were homotetramers of 17 kDa, one was a homotetramer of 18.5 kDa, and three were heterotetramers of 17 and 18.5 kDa. The lectin was thermostable with broad pH optima (pH 4-8) and had no requirement for divalent metal cations for its activity. The amino acid composition showed that the lectin contained higher amounts of glycine, alanine, and lysine, but no methionine. The sugar content was estimated to be 5.3% mannose equivalent. The HTTL was mitogenic to mouse spleen (total) cells at 25 microg/ml concentration. The lectin showed characteristics different from those of the earlier reported H. tuberosus tuber lectins and hence opens up a new avenue to investigate the structure-function relationship of lectin in Helianthus species.  相似文献   

6.
From the serum of juvenile freshwater prawns, we isolated by affinity chromatography on glutaraldehyde-fixed rat erythrocytes stroma, immobilized in Sephadex G-25, a sialic acid specific lectin of 9.6[emsp4 ]kDa per subunit. Comparative analysis against adult organisms purified lectin, by chromatofocusing, showed that the lectin from juvenile specimens is composed by four main isoforms with a pl of 4.2, 4.6, 5.1, and 5.6, whereas the lectin from adults is eluted at pH 4.2. The amino acid composition of the lectin obtained from adult and juvenile stages suggest identity, but the compositions are not identical since a higher content of carbohydrates was found in the lectin from younger organisms. The freshwater prawn lectin showed specificity toward N-acetylated amino sugar residues such as GlcNAc, GalNAc, Neu5Ac and Neu5,9Ac; but in juvenile organisms the lectin showed three times less hemagglutinating activity than the lectin from adults. Both lectins agglutinated rat, rabbit and chicken erythrocytes, indicating that Neu5,9Ac in specific O-glycosydically linked glycans seems to be relevant for the interaction of M. rosenbergii lectins with their specific cellular receptor. Our results suggest that the physicochemical characteristics of the lectin from the freshwater prawn are regulated through maturation.  相似文献   

7.
Galactoside-binding lectin was purified from the snake venom of Crotalus ruber by affinity chromatography on a lactose-agarose column, and the complete amino acid sequence was determined. The C. ruber venom lectin (CRL) showed a single band of 28 kDa by SDS-polyacrylamide electrophoresis under non-reducing conditions, but it showed a single band of 15 kDa under reducing conditions, indicating that CRL is a disulfide-linked homodimer of 15 kDa subunit. CRL specifically recognized beta-galactosides such as thiodigalactoside followed by N-acetylgalactosamine when examined with their inhibitory effects on CRL-induced hemagglutination. A CRL subunit was composed of 135 residues containing nine Cys residues and showed a high similarity to other C-type galactoside-binding lectins from snake venoms. C. atrox lectin (CAL) showed almost the same sequence except for eight amino acid residues. Neither CRL nor CAL induced platelet aggregation by itself or inhibited platelet aggregation mediated by von Willebrand factor or fibrinogen with agonists. CRL showed a similar oligomeric form and the sugar specificity as CAL, but it showed different divalent cation sensitivity such as Mn(2+) and Ni(2+). Homology modeling suggested that the amino acid substitution found in CRL does not affect sugar recognition of the lectin but might alter the conformation and influence the sugar binding pocket induced by the metal-ion binding.  相似文献   

8.
A lectin with a high affinity for glucose/mannose was isolated from Annona muricata seeds (Annonaceae) by gel filtration chromatography on Sephacryl S-200, ion exchange chromatography on a DEAE SP-5 PW column, and molecular exclusion on a Protein Pak Glass 300 SW column. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (PAGE) yielded two protein bands of approximately 14 kDa and 22 kDa. However, only one band was seen in native PAGE. The Mr of the lectin estimated by fast-performance liquid chromatography-gel filtration on Superdex 75 was 22 kDa. The lectin was a glycoprotein with 8% carbohydrate (neutral sugar) and required divalent metal cations (Ca2+, Mg2+, and Mn2+) for full activity. Amino acid analysis revealed a large content of Glx, Gly, Phe, and Lys. The lectin agglutinated dog, chicken, horse, goose, and human erythrocytes and inhibited the growth of the fungi Fusarium oxysporum, Fusarium solani, and Colletotrichum musae.  相似文献   

9.
An anti-A1 lectin has been isolated from the extract of Amphicarpaea bracteata seeds by affinity chromatography on Epoxy-activated Sepharose 6B coupled to N-acetyl-D-galactosamine. The yield of the purified lectin was 86 microgram/g of seeds. The purified lectin shows one main band on electrophoresis in sodium dodecyl sulfate-polyacrylamide. The amino acid and neutral sugar composition indicate that this lectin is an acidic glycoprotein with a neutral sugar content of approx. 2%. The composition of the lectin is different from that of the Dolichos biflorus lectin but the two lectins have some common characteristics. The most powerful inhibitors of the agglutination of A1 red blood cells by the A. bracteata lectin is N-acetyl-D-galactosamine. Much weaker inhibitors of the agglutination are alpha-lactose, D-fucose, and five other sugars.  相似文献   

10.
A galactose-specific lectin has earlier been isolated from the seeds of Dolichos lablab in our laboratory by conventional protein purification methods. We now established conditions to bind the lectin on Sepharose-galactose gel in the presence of 1.5 M ammonium sulfate in Tris-buffered saline, pH 7.4. It can be specifically eluted with 0.3 M galactose. The purified lectin is a glycoprotein, binds to Con A, agglutinates erythrocytes, and has an apparent native molecular weight of 120 +/- 5 kDa. In SDS-PAGE under reducing conditions, it dissociates into two subunits of molecular mass (Mr) 31 and 29 kDa. Among a number of sugars tested for inhibitory activity of the lectin, galactose was found to be a potent inhibitor. Rabbit polyclonal antibody to the purified lectin specifically reacted with the lectin subunits in Western blot analysis and additionally, an antibody raised to the isolated 31 kDa subunit show reactivity with both the subunits. Amino terminal sequences of both the subunits are identical. The purified lectin is stable up to 40 degrees C with a pH optimum of 7.4. The lectin has a high content of acidic amino acids and lacks sulfur-containing amino acids. Chemical modification of the lectin with group-specific reagents indicates the possible role of histidine, lysine, and tyrosine residues in lectin activity.  相似文献   

11.
A novel lectin was isolated and characterized from Bryopsis plumosa (Hudson) Agardh and named BPL-3. This lectin showed specificity to N-acetyl-d-galactosamine as well as N-acetyl-d-glucosamine and agglutinated human erythrocytes of all blood types, showing slight preference to the type A. SDS-PAGE and MALDI-TOF MS data showed that BPL-3 was a monomeric protein with molecular weight of 11.5 kDa. BPL-3 was a non-glycoprotein with pI value of ∼7.0. It was stable in high temperatures up to 70°C and exhibited optimum activity in pH 5.5–10. The N-terminal and internal amino acid sequences of the lectin were determined by Edman degradation and enzymatic digestion, which showed no sequence homology to any other reported proteins. The full sequence of the cDNA encoding this lectin was obtained from PCR using cDNA library, and the degenerate primers were designed from the N-terminal amino acid sequence. The size of the cDNA was 622 bp containing single ORF encoding the lectin precursor. This lectin showed the same sugar specificity to previously reported lectin, Bryohealin, involved in protoplast regeneration of B. plumosa. However, the amino acid sequences of the two lectins were completely different. The homology analysis of the full cDNA sequence of BPL-3 showed that it might belong to H lectin group, which was originally isolated from Roman snails.  相似文献   

12.
Lectins are carbohydrate-binding proteins present in a wide variety of plants and animals, which serve various important physiological functions. A soluble β-galactoside binding lectin has been isolated and purified to homogeneity from buffalo brain using ammonium sulphate precipitation (40–70%) and gel permeation chromatography on Sephadex G50–80 column. The molecular weight of buffalo brain lectin (BBL) as determined by SDS-PAGE under reducing and non-reducing conditions was 14.2 kDa, however, with gel filtration it was 28.5 kDa, revealing the dimeric form of protein. The neutral sugar content of the soluble lectin was estimated to be 3.3%. The BBL showed highest affinity for lactose and other sugar moieties in glycosidic form, suggesting it to be a β-galactoside binding lectin. The association constant for lactose binding as evidenced by Scatchard analysis was 6.6 × 103 M−1 showing two carbohydrate binding sites per lectin molecule. A total inhibition of lectin activity was observed by denaturants like guanidine HCl, thiourea and urea at 6 M concentration. The treatment of BBL with oxidizing agent destroyed its agglutination activity, abolished its fluorescence, and shifted its UV absorption maxima from 282 to 250 nm. The effect of H2O2 was greatly prevented by lactose indicating that BBL is more stable in the presence of its specific ligand. The purified lectin was investigated for its brain cell aggregation properties by testing its ability to agglutinate cells isolated from buffalo and goat brains. Rate of aggregation of buffalo brain cells by purified protein was more than the goat brain cells. The data from above study suggests that the isolated lectin may belong to the galectin-1 family but is glycosylated unlike those purified till date.  相似文献   

13.
A novel lectin (CAA-II) was isolated and purified from the seeds of Cicer arietinum by ammonium sulphate fractionation and affinity chromatography on an N-acetyl-D-galactosamine-linked agarose column. The lectin is composed of four identical subunits of 30 kDa and the molecular mass of the native lectin was estimated to be 120 kDa by gel filtration chromatography and confirmed by mass spectrometry. The lectin showed agglutination activity against rabbit erythrocytes (trypsin-treated and untreated) as well as against human erythrocytes. Haemagglutination inhibition assays showed that the lectin is a galactose-specific protein having a high affinity for N-acetyl-D-galactosamine. The molecular weight, haemagglutination pattern, carbohydrate specificity and N-terminal amino acid sequence indicated that the lectin is clearly distinct from the previously reported chickpea lectin CAA-I.  相似文献   

14.
A lectin was isolated from Agrobacterium radiobacter cell surface and purified. It is a monomer of 40 kDa as shown by SDS-PAGE. The lectin has a pI of 9.15 and amino acid composition of the lectin shows that 44% of the amino acids are hydrophobic. The lectin agglutinates rabbit erythrocytes but does not agglutinate human erythrocytes. It does not show specificity for monosaccharides except for D-glucosamine. Fetuin and its N-linked glycopeptide also inhibit the activity of the lectin but greater inhibition is shown by locust bean gum and Nicotiana tobaccum (tobacco) tissue extracts.  相似文献   

15.
A rhamnose-specific lectin was isolated from ovaries of the grass carp (Ctenopharyngodon idellus). The grass carp lectin possesses a molecular mass of 205 kDa. It is composed of six subunits each with a molecular mass of 35 kDa. The N-terminal amino acid sequence of the grass carp shows similarity to those of other fish species with 26-35% amino acid identity. It is mitogenic toward murine splenocytes and peritoneal exudate cells.  相似文献   

16.
A galactose-binding lectin was isolated in electrophoretically pure form from the seeds of the snake gourd,Trichosanthes anguina, by affinity chromatography on an immobilised lactose column, as well as on a cross-linkedGuar Gum column. The lectin agglutinates native erythrocytes of human A, B and 0 phenotypes and of rabbit, rat and mouse. The molecular mass of the lectin, as estimated bySephadex G-200 gel chromatography, is 49 kDa. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis, after reduction with β-mercaptoethanol, revealed two polypeptide chains linked by disulphide bonds in the lectin molecule. It contains no covalently linked sugars. Amino acid analysis of the lectin revealed a high content of acidic amino acids, relatively lower proportion of basic amino acids and traces of cysteine and methionine. The lectin has good thermal stability, and is inactivated when oxidised by metaperiodate.  相似文献   

17.
A novel lectin (AMML) was isolated from a Chinese herb, i.e., the roots of Astragalus mongholicus, using a combination of ammonium sulfate fraction and ion exchange chromatographies. The molecular mass of intact AMML was determined to be 66,396 Da by MALDI-TOF mass spectrometry and 61.8 kDa by gel filtration, respectively. AMML was a dimeric protein composed of two identical subunits each with a molecular mass of 29.6 kDa. The lectin was a glycoprotein with a neutral carbohydrate content of 19.6%. The purified lectin hemagglutinated both rabbit and human erythrocytes, and showed preference for blood types O (native) and AB (trypsin-treated). Among various carbohydrates tested, the lectin was best inhibited by D-galactose and its derivatives with pronounced preference for lactose (3.13 mM). N-terminal amino acid sequence of AMML was determined as ESGINLQGDATLANN. The optimal pH range for lectin activity was between pH 4.5 and 7.5, and the lectin was active up to 65 degrees C. It also exerted antifungal activity against Botrytis cincerea, Fusarium oxysporum, Colletorichum sp., and Drechslera turcia but not against Rhizoctonia solani and Mycosphaerella arachidicola.  相似文献   

18.
A new galactose-specific lectin was isolated from African yam bean (Sphenostyles stenocarpa Harms) by affinity chromatography on galactose-Sepharose 4B. SDS-PAGE analysis resulted in four polypeptide bands of approximately 27, 29, 32 and 34 kDa, respectively. Based on the analysis of carbohydrate content and native PAGE, it is likely that the Sphenostyles lectin is a tetrameric glycoprotein with M(r) of approximately 122 kDa. N-terminal protein sequencing of purified lectins from four different Sphenostyles accessions shows that the four polypeptides have largely identical amino acid sequences. The sequences contain the conserved consensus sequence F-F-LILG characteristic of legume lectins, as well as Phaseolus vulgaris proteins in the arcelin-alpha-amylase inhibitor gene family. The lectin agglutinates both rabbit and human erythrocytes, but with a preference for blood types A and O. Using Western blotting, the lectin was shown to accumulate rapidly during seed development, but levels dropped slightly as seeds attained maturity. This is the first time a lectin has been purified from the genus Sphenostyles. The new lectin was assigned the abbreviation LECp.SphSte.se.Hga1.  相似文献   

19.
Poly(A)-rich RNA isolated from ripening ovaries of snowdrop (Galanthus nivalis L.) yielded a single 17-kDa lectin polypeptide upon translation in a wheat-germ cell-free system. This lectin was purified by affinity chromatography. Translation of the same RNA in Xenopus leavis oocytes revealed a lectin polypeptide which was about 2 kDa smaller than the in vitro synthesized precursor, suggesting that the oocyte system had removed a 2-kDa signal peptide. A second post-translational processing step was likely to be involved since both the in vivo precursor and the Xenopus translation products were about 2 kDa larger than the mature lectin polypeptide. This hypothesis was confirmed by the structural analysis of the amino acid sequence of the mature protein and the cloned mRNA. Edman degradation and carboxypeptidase Y digestion of the mature protein, and structural analysis of the peptides obtained after chemical cleavage and modification, allowed determination of the complete 105 amino acid sequence of the snowdrop lectin polypeptide. Comparison of this sequence with the deduced amino acid sequence of a lectin cDNA clone revealed that besides the mature lectin polypeptide, the lectin mRNA also encoded a 23 amino acid signal-sequence and a C-terminal extension of 29 amino acids, which confirms the results from in vitro translation experiments.  相似文献   

20.
长裙竹荪凝集素的分离纯化与部分生化性质   总被引:7,自引:0,他引:7  
凝集素是一类与糖专一结合的蛋白质或糖蛋白 ,具有众多的生物学性质[1~ 5] ,在细胞凝集、鉴别人类血型物质和分离纯化某些高分子化合物等都有着非常重要的作用 ,已成为生物化学、细胞学、免疫学及医学等领域中有用的科研材料 ,并被应用于临床诊断、治疗和某些工业生产[1] .自 1888年H .Stillmark首次从蓖麻籽中发现凝集素以来 ,已分离纯化 10 0多种凝集素 ,约有 60种已成为商品 ,其研究开发日益受到人们的重视 .竹荪是一种著名的食、药兼用菌 ,具有许多药用功效 .由于竹荪含有多种生理活性物质 ,从竹荪子实体或菌丝体中分离到的…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号