首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
COMBOSA3D is a program that allows sequence conservation to be viewed in its proper three-dimensional environment. It superimposes sequence alignment information onto a protein structure using a customizable color scheme, which is also applied to a textual sequence alignment for reference. AVAILABILITY: The program can be tested at http://www.bioinformatics.org/combosa3d/, and the source code is freely available.  相似文献   

2.
Accurate multiple sequence alignments of proteins are very important to several areas of computational biology and provide an understanding of phylogenetic history of domain families, their identification and classification. This article presents a new algorithm, REFINER, that refines a multiple sequence alignment by iterative realignment of its individual sequences with the predetermined conserved core (block) model of a protein family. Realignment of each sequence can correct misalignments between a given sequence and the rest of the profile and at the same time preserves the family's overall block model. Large-scale benchmarking studies showed a noticeable improvement of alignment after refinement. This can be inferred from the increased alignment score and enhanced sensitivity for database searching using the sequence profiles derived from refined alignments compared with the original alignments. A standalone version of the program is available by ftp distribution (ftp://ftp.ncbi.nih.gov/pub/REFINER) and will be incorporated into the next release of the Cn3D structure/alignment viewer.  相似文献   

3.
We describe a program (and a website) to reformat the ClustalX/ClustalW outputs to a format that is widely used in the presentation of sequence alignment data in SNP analysis and molecular systematic studies. This program, CLOURE, CLustal OUtput REformatter, takes the multiple sequence alignment file (nucleic acid or protein) generated from Clustal as input files. The CLOURE-D format presents the Clustal alignment in a format that highlights only the different nucleotides/residues relative to the first query sequence. The program has been written in Visual Basic and will run on a Windows platform. The downloadable program, as well as a web-based server which has also been developed, can be accessed at http://imtech.res.in/~anand/cloure.html.  相似文献   

4.
SUMMARY: POAVIZ creates a visualization of a multiple sequence alignment that makes clear the overall structure of how sequences match and diverge in the alignment. POAVIZ can construct visualizations from any multiple sequence alignment source (e.g. PIR and CLUSTAL formats), and is valuable for revealing complex branching structure (such as domains, large-scale insertions / deletions or recombinations), especially in partnership with the Partial Order Alignment (POA) multiple sequence alignment program. AVAILABILITY: The Partial Order multiple sequence Alignment Visualizer (POAVIZ) program is available at http://www.bioinformatics.ucla.edu/poa  相似文献   

5.
TMCompare is an alignment and visualization tool for comparison of sequence information for membrane proteins contained in SWISS-PROT entries, with structural information contained in PDB files. The program can be used for: detection of breaks in alpha helical structure of transmembrane regions; examination of differences in coverage between PDB and SWISS-PROT files; examination of annotation differences between PDB files and associated SWISS-PROT files; examination and comparison of assigned PDB alpha helix regions and assigned SWISS-PROT transmembrane regions in linear sequence (one letter code) format; examination of these differences in 3D using the CHIME plugin, allowing; analysis of the alpha and non-alpha content of transmembrane regions. AVAILABILITY: TMCompare is available for use through selection of a query protein via the internet (http://www.membraneproteins.org/TMCompare) CONTACT: tmcompare@membraneproteins.org  相似文献   

6.
In this study, I explain the observation that a rather limited number of residues (about 10) establishes the immunoglobulin fold for the sequences of about 100 residues. Immunoglobulin fold proteins (IgF) comprise SCOP protein superfamilies with rather different functions and with less than 10% sequence identity; their alignment can be accomplished only taking into account the 3D structure. Therefore, I believe that discovering the additional common features of the sequences is necessary to explain the existence of a common fold for these SCOP superfamilies. We propose a method for analysis of pair-wise interconnections between residues of the multiple sequence alignment which helps us to reveal the set of mutually correlated positions, inherent to almost every superfamily of this protein fold. Hence, the set of constant positions (comprising the hydrophobic common core) and the set of variable but mutually correlated ones can serve as a basis of having the common 3D structure for rather distinct protein sequences.  相似文献   

7.
HSSP (http: //www.sander.embl-ebi.ac.uk/hssp/) is a derived database merging structure (3-D) and sequence (1-D) information. For each protein of known 3D structure from the Protein Data Bank (PDB), we provide a multiple sequence alignment of putative homologues and a sequence profile characteristic of the protein family, centered on the known structure. The list of homologues is the result of an iterative database search in SWISS-PROT using a position-weighted dynamic programming method for sequence profile alignment (MaxHom). The database is updated frequently. The listed putative homologues are very likely to have the same 3D structure as the PDB protein to which they have been aligned. As a result, the database not only provides aligned sequence families, but also implies secondary and tertiary structures covering 33% of all sequences in SWISS-PROT.  相似文献   

8.
Although multiple sequence alignments (MSAs) are essential for a wide range of applications from structure modeling to prediction of functional sites, construction of accurate MSAs for distantly related proteins remains a largely unsolved problem. The rapidly increasing database of spatial structures is a valuable source to improve alignment quality. We explore the use of 3D structural information to guide sequence alignments constructed by our MSA program PROMALS. The resulting tool, PROMALS3D, automatically identifies homologs with known 3D structures for the input sequences, derives structural constraints through structure-based alignments and combines them with sequence constraints to construct consistency-based multiple sequence alignments. The output is a consensus alignment that brings together sequence and structural information about input proteins and their homologs. PROMALS3D can also align sequences of multiple input structures, with the output representing a multiple structure-based alignment refined in combination with sequence constraints. The advantage of PROMALS3D is that it gives researchers an easy way to produce high-quality alignments consistent with both sequences and structures of proteins. PROMALS3D outperforms a number of existing methods for constructing multiple sequence or structural alignments using both reference-dependent and reference-independent evaluation methods.  相似文献   

9.
The function of a protein molecule is greatly influenced by its three-dimensional (3D) structure and therefore structure prediction will help identify its biological function. We have updated Sequence, Motif and Structure (SMS), the database of structurally rigid peptide fragments, by combining amino acid sequences and the corre-sponding 3D atomic coordinates of non-redundant (25%) and redundant (90%) protein chains available in the Protein Data Bank (PDB). SMS 2.0 provides information pertaining to the peptide fragments of length 5-14 resi-dues. The entire dataset is divided into three categories, namely, same sequence motifs having similar, intermedi-ate or dissimilar 3D structures. Further, options are provided to facilitate structural superposition using the pro-gram structural alignment of multiple proteins (STAMP) and the popular JAVA plug-in (Jmol) is deployed for visualization. In addition, functionalities are provided to search for the occurrences of the sequence motifs in other structural and sequence databases like PDB, Genome Database (GDB), Protein Information Resource (PIR) and Swiss-Prot. The updated database along with the search engine is available over the World Wide Web through the following URL http://cluster.physics.iisc.ernet.in/sms/.  相似文献   

10.
Visualization of residue positions in protein alignments and mapping onto suitable structural models is an important first step in the interpretation of mutations or polymorphisms in terms of protein function, interaction, and thermodynamic stability. Selecting and highlighting large numbers of residue positions in a protein structure can be time-consuming and tedious with currently available software. Previously, a series of tasks and analyses had to be performed one-by-one to map mutations onto 3D protein structures; STRAP-NT is an extension of STRAP that automates these tasks so that users can quickly and conveniently map mutations onto 3D protein structures. When the structure of the protein of interest is not yet available, a related protein can frequently be found in the structure databases. In this case the alignment of both proteins becomes the crucial part of the analysis. Therefore we embedded these program modules into the Java-based multiple sequence alignment program STRAP-NT. STRAP-NT can simultaneously map an arbitrary number of mutations denoted using either the nucleotide or amino acid sequence. When the designations of the mutations refer to genomic sites, STRAP-NT translates them into the corresponding amino acid positions, taking intron-exon boundaries into account. STRAP-NT tightly integrates a number of current protein structure viewers (currently PYMOL, RASMOL, JMOL, and VMD) with which mutations and polymorphisms can be directly displayed on the 3D protein structure model. STRAP-NT is available at the PDB site and at http://www.charite.de/bioinf/strap/ or http://strapjava.de.  相似文献   

11.
Hijikata A  Yura K  Noguti T  Go M 《Proteins》2011,79(6):1868-1877
In comparative modeling, the quality of amino acid sequence alignment still constitutes a major bottleneck in the generation of high quality models of protein three-dimensional (3D) structures. Substantial efforts have been made to improve alignment quality by revising the substitution matrix, introducing multiple sequences, replacing dynamic programming with hidden Markov models, and incorporating 3D structure information. Improvements in the gap penalty have not been a major focus, however, following the development of the affine gap penalty and of the secondary structure dependent gap penalty. We revisited the correlation between protein 3D structure and gap location in a large protein 3D structure data set, and found that the frequency of gap locations approximated to an exponential function of the solvent accessibility of the inserted residues. The nonlinearity of the gap frequency as a function of accessibility corresponded well to the relationship between residue mutation pattern and residue accessibility. By introducing this relationship into the gap penalty calculation for pairwise alignment between template and target amino acid sequences, we were able to obtain a sequence alignment much closer to the structural alignment. The quality of the alignments was substantially improved on a pair of sequences with identity in the "twilight zone" between 20 and 40%. The relocation of gaps by our new method made a significant improvement in comparative modeling, exemplified here by the Bacillus subtilis yitF protein. The method was implemented in a computer program, ALAdeGAP (ALignment with Accessibility dependent GAp Penalty), which is available at http://cib.cf.ocha.ac.jp/target_protein/.  相似文献   

12.
MOTIVATION: We introduce a novel approach to multiple alignment that is based on an algorithm for rapidly checking whether single matches are consistent with a partial multiple alignment. This leads to a sequence annealing algorithm, which is an incremental method for building multiple sequence alignments one match at a time. Our approach improves significantly on the standard progressive alignment approach to multiple alignment. RESULTS: The sequence annealing algorithm performs well on benchmark test sets of protein sequences. It is not only sensitive, but also specific, drastically reducing the number of incorrectly aligned residues in comparison to other programs. The method allows for adjustment of the sensitivity/specificity tradeoff and can be used to reliably identify homologous regions among protein sequences. AVAILABILITY: An implementation of the sequence annealing algorithm is available at http://bio.math.berkeley.edu/amap/  相似文献   

13.
The interactions between CD28/CTLA-4 (CD152) on T cells and their ligands CD80/CD86 on antigen presenting cells provide costimulatory signals critical for T cell activation. CD28/CTLA-4 and CD80/CD86 are members of the immunoglobulin superfamily (IgSF). CD28 and CTLA-4 both contain a single extracellular immunoglobulin (Ig) domain which binds CD80/CD86. Here we report modeling studies on the three-dimensional (3D) structure of the CTLA-4 binding domain. Since CTLA-4 displays only very weak sequence homology to proteins with known 3D structure, conventional modeling techniques were difficult to apply. Structure-oriented sequence comparison, consensus residue analysis, conformational searching, and inverse folding calculations were employed to aid in the generation of a comparative CTLA-4 model. Regions of high and low prediction confidence were identified, and the sequence-structure compatibility of the model was determined. Characteristics of the modeled structure, which resembles an Ig V domain, were analyzed, and the model was used to map N-linked glycosylation sites and residues critical for CTLA-4 function. The modeling approach described here can be applied to predict 3D structures of other IgSF proteins.Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1007/s008940050025  相似文献   

14.
Shatsky M  Nussinov R  Wolfson HJ 《Proteins》2006,62(1):209-217
Routinely used multiple-sequence alignment methods use only sequence information. Consequently, they may produce inaccurate alignments. Multiple-structure alignment methods, on the other hand, optimize structural alignment by ignoring sequence information. Here, we present an optimization method that unifies sequence and structure information. The alignment score is based on standard amino acid substitution probabilities combined with newly computed three-dimensional structure alignment probabilities. The advantage of our alignment scheme is in its ability to produce more accurate multiple alignments. We demonstrate the usefulness of the method in three applications: 1) computing more accurate multiple-sequence alignments, 2) analyzing protein conformational changes, and 3) computation of amino acid structure-sequence conservation with application to protein-protein docking prediction. The method is available at http://bioinfo3d.cs.tau.ac.il/staccato/.  相似文献   

15.
16.
17.
MOTIVATION: Identification of residues that account for protein function specificity is crucial, not only for understanding the nature of functional specificity, but also for protein engineering experiments aimed at switching the specificity of an enzyme, regulator or transporter. Available algorithms generally use multiple sequence alignments to identify residue positions conserved within subfamilies but divergent in between. However, many biological examples show a much subtler picture than simple intra-group conservation versus inter-group divergence. RESULTS: We present multi-RELIEF, a novel approach for identifying specificity residues that is based on RELIEF, a state-of-the-art Machine-Learning technique for feature weighting. It estimates the expected 'local' functional specificity of residues from an alignment divided in multiple classes. Optionally, 3D structure information is exploited by increasing the weight of residues that have high-weight neighbors. Using ROC curves over a large body of experimental reference data, we show that (a) multi-RELIEF identifies specificity residues for the seven test sets used, (b) incorporating structural information improves prediction for specificity of interaction with small molecules and (c) comparison of multi-RELIEF with four other state-of-the-art algorithms indicates its robustness and best overall performance. AVAILABILITY: A web-server implementation of multi-RELIEF is available at www.ibi.vu.nl/programs/multirelief. Matlab source code of the algorithm and data sets are available on request for academic use.  相似文献   

18.
ViTO: tool for refinement of protein sequence-structure alignments   总被引:2,自引:0,他引:2  
SUMMARY: ViTO is a graphical application, including an editor, of multiple sequence alignment and a three-dimensional (3D) structure viewer. It is possible to manipulate alignments containing hundreds of sequences and to display a dozen structures. ViTO can handle so-called 'multiparts' alignments to allow the visualization of complex structures (multi-chain proteins and/or small molecules and DNA) and the editing of the corresponding alignment. The 3D viewer and the alignment editor are connected together allowing rapid refinement of sequence-structure alignment by taking advantage of the immediate visualization of resulting insertions/deletions and strict conservations in their structural context. More generally, it allows the mapping of informations about the sequence conservation extracted from the alignment onto the 3D structures in a dynamic way. ViTO is also connected to two comparative modelling programs, SCWRL and MODELLER. These features make ViTO a powerful tool to characterize protein families and to optimize the alignments for comparative modelling. AVAILABILITY: http://bioserv.cbs.cnrs.fr/VITO/DOC/. SUPPLEMENTARY INFORMATION: http://bioserv.cbs.cnrs.fr/VITO/DOC/index.html.  相似文献   

19.
Brody SS  Gough SP  Kannangara CG 《Proteins》1999,37(3):485-493
The conserved residues of glutamyl tRNA reductase (GTR) from Hordeum vulgare (GTRhorvu) were found from an alignment/pile-up of 24 homologous sequences found using BLAST searches. A multiple alignment of sequences was used to obtain a prediction of the secondary structure of the GTR's. This secondary structure was submitted to the THREADER program to find possible homologous 3D structures. To help select the template for predicting the fold for GTRhorvu, we employed both molecular-biological and biochemical information about GTRhorvu. After fitting the secondary structure of GTRhorvu to the selected template, the MODELLER program was used to determine the fold for GTRhorvu. This model was built using the B subunit of succinyl CoA synthetase, 1scuB, as a template for the 3D structure of GTRhorvu. From the predicted structure, possible regions were identified for the binding of glutamyl-tRNA, NADPH and a heme inhibitor. The predicted structure was used to propose a detailed biochemical mechanism for the GTR, involving Mg catalyzed thioester formation and reduction by NADPH to glutamate-1-semialdehyde. Sites for these reactions are identified. The predicted structure has been deposited in the Brookhaven database as ID 1b61.  相似文献   

20.
FUGUE, a program for recognizing distant homologues by sequence-structure comparison (http://www-cryst.bioc.cam.ac.uk/fugue/), has three key features. (1) Improved environment-specific substitution tables. Substitutions of an amino acid in a protein structure are constrained by its local structural environment, which can be defined in terms of secondary structure, solvent accessibility, and hydrogen bonding status. The environment-specific substitution tables have been derived from structural alignments in the HOMSTRAD database (http://www-cryst.bioc. cam.ac.uk/homstrad/). (2) Automatic selection of alignment algorithm with detailed structure-dependent gap penalties. FUGUE uses the global-local algorithm to align a sequence-structure pair when they greatly differ in length and uses the global algorithm in other cases. The gap penalty at each position of the structure is determined according to its solvent accessibility, its position relative to the secondary structure elements (SSEs) and the conservation of the SSEs. (3) Combined information from both multiple sequences and multiple structures. FUGUE is designed to align multiple sequences against multiple structures to enrich the conservation/variation information. We demonstrate that the combination of these three key features implemented in FUGUE improves both homology recognition performance and alignment accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号