首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
To attain a superior in vitro model of mature muscle fibers, we modified the established protocol for isolating single muscle fibers from rat skeletal muscle. Muscle fiber cultures with high viability were obtained using flexor digitorum brevis muscle and lasted for at least 7 days. We compared the expression levels of adult myosin heavy chain (MyHC) isoforms in these single muscle fibers with myotubes formed from myoblasts; isolated fibers contained markedly more abundant adult MyHC isoforms than myotubes. This muscle fiber model, therefore, will be useful for studying the various functions and cellular processes of mature muscles in vitro.  相似文献   

2.
Striated muscle contraction is powered by actin-activated myosin ATPase. This process is regulated by Ca(2+) via the troponin complex. Slow- and fast-twitch fibers of vertebrate skeletal muscle express type I and type II myosin, respectively, and these myosin isoenzymes confer different ATPase activities, contractile velocities, and force. Skeletal muscle troponin has also diverged into fast and slow isoforms, but their functional significance is not fully understood. To investigate the expression of troponin isoforms in mammalian skeletal muscle and their functional relationship to that of the myosin isoforms, we concomitantly studied myosin, troponin T (TnT), and troponin I (TnI) isoform contents and isometric contractile properties in single fibers of rat skeletal muscle. We characterized a large number of Triton X-100-skinned single fibers from soleus, diaphragm, gastrocnemius, and extensor digitorum longus muscles and selected fibers with combinations of a single myosin isoform and a single class (slow or fast) of the TnT and TnI isoforms to investigate their role in determining contractility. Types IIa, IIx, and IIb myosin fibers produced higher isometric force than that of type I fibers. Despite the polyploidy of adult skeletal muscle fibers, the expression of fast or slow isoforms of TnT and TnI is tightly coupled. Fibers containing slow troponin had higher Ca(2+) sensitivity than that of the fast troponin fibers, whereas fibers containing fast troponin showed a higher cooperativity of Ca(2+) activation than that of the slow troponin fibers. These results demonstrate distinct but coordinated regulation of troponin and myosin isoform expression in skeletal muscle and their contribution to the contractile properties of muscle.  相似文献   

3.
Work is generated in muscle by myosin crossbridges during their interaction with the actin filament. The energy from which the work is produced is the free energy change of ATP hydrolysis and efficiency quantifies the fraction of the energy supplied that is converted into work. The purpose of this review is to compare the efficiency of frog skeletal muscle determined from measurements of work output and either heat production or chemical breakdown with the work produced per crossbridge cycle predicted on the basis of the mechanical responses of contracting muscle to rapid length perturbations. We review the literature to establish the likely maximum crossbridge efficiency for frog skeletal muscle (0.4) and, using this value, calculate the maximum work a crossbridge can perform in a single attachment to actin (33 × 10−21 J). To see whether this amount of work is consistent with our understanding of crossbridge mechanics, we examine measurements of the force responses of frog muscle to fast length perturbations and, taking account of filament compliance, determine the crossbridge force-extension relationship and the velocity dependences of the fraction of crossbridges attached and average crossbridge strain. These data are used in combination with a Huxley-Simmons-type model of the thermodynamics of the attached crossbridge to determine whether this type of model can adequately account for the observed muscle efficiency. Although it is apparent that there are still deficiencies in our understanding of how to accurately model some aspects of ensemble crossbridge behaviour, this comparison shows that crossbridge energetics are consistent with known crossbridge properties.  相似文献   

4.
Distribution of myosin isoenzymes among skeletal muscle fiber types.   总被引:17,自引:4,他引:13  
Using an immunocytochemical approach, we have demonstrated a preferential distribution of myosin isoenzymes with respect to the pattern of fiber types in skeletal muscles of the rat. In an earlier study, we had shown that fluorescein-labeled antibody against "white" myosin from the chicken pectoralis stained all the white, intermediate and about half the red fibers of the rat diaphragm, a fast-twitch muscle (Gauthier and Lowey, 1977). We have now extended this study to include antibodies prepared against the "head" (S1) and "rod" portions of myosin, as well as the alkali- and 5,5'dithiobis (2-nitrobenzoic acid) (DTNB)-light chains. Antibodies capable of distinguishing between alkali 1 and alkali 2 type myosin were also used to localize these isoenzymes in the same fast muscle. We observed, by both direct and indirect immunofluorescence, that the same fibers which had reacted previously with antibodies against white myosin reacted with antibodies to the proteolytic subfragments and to the low molecular-weight subunits of myosin. These results confirm our earlier conclusion that the myosins of the reactive fibers in rat skeletal muscle are sufficiently similar to share antigenic determinants. The homology, furthermore, is not confined to a limited region of the myosin molecule, but includes the head and rod portions and all classes of light chains. Despite the similarities, some differences exist in the protein compositions of these fibers: antibodies to S1 did not stain the reactive (fast) red fiber as strongly as they did the white and intermediate fibers. Non-uniform staining was also observed with antibodies specific for A2 myosin; the fast red fiber again showed weaker fluorescence than did the other reactive fibers. These results could indicate a variable distribution of myosin isoenzymes according to their alkali-light chain composition among fiber types. Alternatively, there may exist yet another myosin isoenzyme which is localized in the fast red fiber. Those red fibers which did not react with any of the antibodies to pectoralis myosin, did react strongly with an antibody against myosin isolated from the anterior latissimus dorsi (ALD), a slow red muscle of the chicken. The myosin in these fibers (slow red fibers) is, therefore, distinct from the other myosin isoenzymes. In the rat soleus, a slow-twitch muscle, the majority of the fibers reacted only with antibody against ALD myosin. A minority, however, reacted with antiboddies to pectoralis as well as ALD myosin, which indicates that both fast and slow myosin can coexist within the same fiber of a normal adult muscle. These immunocytochemical studies have emphasized that a wide range of isoenzymes may contribute to the characteristic physiological properties of individual fiber types in a mixed muscle.  相似文献   

5.
大鼠和家兔生后发育各阶段比目鱼肌纤维的比较   总被引:2,自引:2,他引:0  
为研究大鼠与家兔骨骼肌各类型肌纤维的数量和二维分布以及生后发育对其影响,取生后2d和2、4、6、8、10周龄(体重10g和32、95、190、280、320g)大鼠及生后2d和2、4、8、12、16、20、24周龄(体重100g和220、400、750、1200、1600、2100、2500g)家兔的比目鱼肌做琥珀酸脱氢酶染色。实验结果表明,大鼠和家兔比目鱼肌纤维被分成Ⅰ型(SO),ⅡX型(FO)和ⅡA型(FOG)3型。使用图像分析系统分析每型肌纤维在生后发育各阶段的相关变化,大鼠和家兔比目鱼肌中:Ⅰ型纤维分布于整块肌肉,其数量随着生后发育而增加。幼体ⅡX型纤维分布在整块肌肉中,其数量随生后发育而减少;ⅡA型分布在肌肉中深层,数量几乎无变化;至成体时只有少量的ⅡX和ⅡA分布在肌表层。整个发育期间未见ⅡB型纤维。ⅡA型纤维直径最大,Ⅰ型中等,而ⅡX型最小。家兔3型肌纤维的平均横切面积比大鼠的大。这些结果表明大鼠和家兔后肢肌各种类型肌纤维的数量比例和分布随生长过程发生改变。  相似文献   

6.
The functional recovery of skeletal muscles after peripheral nerve transection and microsurgical repair is generally incomplete. Several reinnervation abnormalities have been described even after nerve reconstruction surgery. Less is known, however, about the regenerative capacity of reinnervated muscles. Previously, we detected remarkable morphological and motor endplate alterations after inducing muscle necrosis and subsequent regeneration in the reinnervated rat soleus muscle. In the present study, we comparatively analyzed the morphometric properties of different fiber populations, as well as the expression pattern of myosin heavy chain isoforms at both immunohistochemical and mRNA levels in reinnervated versus reinnervated-regenerated muscles. A dramatic slow-to-fast fiber type transition was found in reinnervated soleus, and a further change toward the fast phenotype was observed in reinnervated-regenerated muscles. These findings suggest that the (fast) pattern of reinnervation plays a dominant role in the specification of fiber phenotype during regeneration, which can contribute to the long-lasting functional impairment of the reinnervated muscle. Moreover, because the fast II fibers (and selectively, a certain population of the fast IIB fibers) showed better recovery than did the slow type I fibers, the faster phenotype of the reinnervated-regenerated muscle seems to be actively maintained by selective yet undefined cues.  相似文献   

7.
Proteomic analysis of slow- and fast-twitch skeletal muscles   总被引:5,自引:0,他引:5  
Skeletal muscles are composed of slow- and fast-twitch muscle fibers, which have high potential in aerobic and anaerobic ATP production, respectively. To investigate the molecular basis of the difference in their functions, we examined protein profiles of skeletal muscles using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and two-dimensional gel electrophoresis with pH 4-7 and 6-11 isoelectric focusing gels. A comparison between rat soleus and extensol digitorum longus (EDL) muscles that are predominantly slow- and fast-twitch fibers, respectively, showed that the EDL muscle had higher levels of glycogen phosphorylase, most glycolytic enzymes, glycerol 3-phosphate dehydrogenase, and creatine kinase; while the soleus muscle had higher levels of myoglobin, TCA cycle enzymes, electron transfer flavoprotein, and carbonic anhydrase III. The two muscles also expressed different isoforms of contractile proteins including myosin heavy and light chains. These protein patterns were further compared with those of red and white gastrochnemius as well as red and white quadriceps muscles. It was found that metabolic enzymes showed a concerted regulation dependent on muscle fiber types. On the other hand, expression of contractile proteins seemed to be independent of the metabolic characteristics of muscle fibers. These results suggest that metabolic enzymes and contractile proteins show different expression patterns in skeletal muscles.  相似文献   

8.
Muscle contracts by the myosin cross-bridges ‘rowing’ the actin filaments past the myosin filaments. In the past year many structural details of this mechanism have become clear. Structural studies indicate distinct states for myosin S1 in the rigor, ATP or ‘down’ conformation and in the products complex (ADP·Pi) or ‘up’ state. Crystallographic studies substantiate this classification and yield details of the transformation. The isomerization ‘up’ to ‘down’ is the power stroke of muscle. This consists in the main of large changes of angle of the ‘lever arm’ (at the distal part of the myosin head) which can account for an 11 nm power stroke.  相似文献   

9.
10.
Myosin types in human skeletal muscle fibers   总被引:2,自引:0,他引:2  
By combining enzyme histochemistry for fiber typing with immunohistochemistry for slow and fast myosin a correlation between fiber type and myosin type was sought in human skeletal muscle. Fiber typing was done by staining for myofibrillar ATPases after preincubation at discriminating pH values. Myosin types were discriminated using type specific anti-rabbit myosin antibodies shown to cross-react with human myosin and were visualized by a protein A-peroxidase method. Type I fibers were shown to contain slow myosin only, type IIA and IIB fibers fast myosin only, and type IIC fibers both myosins in various proportions. When muscle biopsies from well-trained athletes were investigated essentially the same staining pattern was observed. However, rarely occurring type I fibers with high glycolytic activity were detected containing additional small amounts of fast myosin and occasional type IIA fibers had small amounts of slow myosin. Based on the observation of various fiber types in which slow and fast myosin coexist we propose a dynamic continuum of fibers encompassing all fiber types.  相似文献   

11.
Summary By combining enzyme histochemistry for fiber typing with immunohistochemistry for slow and fast myosin a correlation between fiber type and myosin type was sought in human skeletal muscle. Fiber typing was done by staining for myofibrillar ATPases after preincubation at discriminating pH values. Myosin types were discriminated using type specific anti-rabbit myosin antibodies shown to cross-react with human myosin and were visualized by a protein A-peroxidase method. Type I fibers were shown to contain slow myosin only, type IIA and IIB fibers fast myosin only, and type IIC fibers both myosins in various proportions. When muscle biopsies from well-trained athletes were investigated essentially the same staining pattern was observed. However, rarely occurring type I fibers with high glycolytic activity were detected containing additional small amounts of fast myosin and occasional type IIA fibers had small amounts of slow myosin. Based on the observation of various fiber types in which slow and fast myosin coexist we propose a dynamic continuum of fibers encompassing all fiber types.  相似文献   

12.
Competitive control of myosin expression: hypertrophy vs. hyperthyroidism   总被引:1,自引:0,他引:1  
The competition between two opposing influences on the phenotypic expression of skeletal muscle myosin were studied to determine which was the dominant regulator. Experimental hyperthyroidism, which induces fast myosin expression, was produced by subcutaneous implantation of a 40-day constant-time-release triiodothyronine pellet. Compensatory hypertrophy, which induces slow myosin expression, was produced by surgical removal of a synergistic hindlimb muscle. Hyperthyroidism increased the percentage of type II fibers and the fast myosin isoforms in both the plantaris and soleus muscles. Hypertrophy significantly increased the percentage of type I fibers and the slow myosin type in the plantaris and soleus muscles. However, with the simultaneous introduction of hyperthyroidism and hypertrophy, only the hyperthyroid effects were observed. Hyperthyroidism and not physiological demand was found to be the dominant regulator of skeletal muscle myosin expression.  相似文献   

13.
Purified myosin light chain kinases from skeletal muscle are reported to be significantly smaller (Mr = 75,000-90,000) than the kinases purified from smooth muscle (Mr = 130,000-155,000). It has been suggested that the smaller kinases from striated muscle are proteolytic fragments of a larger enzyme which is homologous, if not identical, to myosin light chain kinase from smooth muscle. Therefore, we have used an antiserum to rabbit skeletal muscle myosin light chain kinase and Western blot analysis to compare the subunit molecular weight of the kinase in skeletal muscle extracts of several mammalian species. In rabbit skeletal muscle, the antiserum only recognized a polypeptide of Mr = 87,000, with no indication that this polypeptide was a proteolyzed fragment of a larger protein. The apparent molecular weights observed in different animal species were 75,000 (mouse), 83,000 (guinea pig), 82,000 (rat), 87,000 (rabbit), 100,000 (dog), and 108,000 (steer). The molecular weight of myosin light chain kinase was constant within an animal species, regardless of skeletal muscle fiber type. The antiserum inhibited the catalytic activity of skeletal muscle myosin light chain kinase. Similar antibody dilution curves for inhibition of myosin light chain kinase activity in extracts were observed for all animal species (rabbit, rat, mouse, guinea pig, dog, cat, steer, and chicken) and different fibers (slow twitch oxidative, fast twitch oxidative glycolytic, and fast twitch glycolytic) tested. The antiserum did not inhibit the activity of rabbit smooth muscle myosin light chain kinase. These results suggest that there may be at least two classes of muscle myosin light chain kinase represented in skeletal and smooth muscles, respectively.  相似文献   

14.
We have utilized a key biochemical determinant of muscle fiber type, myosin isoform expression, to investigate the initial developmental program of future fast and slow skeletal muscle fibers. We examined myosin heavy chain (HC) phenotype from the onset of myogenesis in the limb bud muscle masses of the chick embryo through the differentiation of individual fast and slow muscle masses, as well as in newly formed myotubes generated in adult muscle by weight overload. Myosin HC isoform expression was analyzed by immunofluorescence localization with a battery of anti-myosin antibodies and by electrophoretic separation with SDS-PAGE. Results showed that the initial myosin phenotype in all skeletal muscle cells formed during the embryonic period (until at least 8 days in ovo) consisted of expression of a myosin HC which shares antigenic and electrophoretic migratory properties with ventricular myosin and a distinct myosin HC which shares antigenic and electrophoretic migratory properties with fast skeletal isomyosin. Similar results were observed in newly formed myotubes in adult muscle. Future fast and slow muscle fibers could only be discriminated from each other in developing limb bud muscles by the onset of expression of slow skeletal myosin HC at 6 days in ovo. Slow skeletal myosin HC was expressed only in myotubes which became slow fibers. These findings suggest that the initial commitment of skeletal muscle progenitor cells is to a common skeletal muscle lineage and that commitment to a fiber-specific lineage may not occur until after localization of myogenic cells in appropriate premuscle masses. Thus, the process of localization, or events which occur soon thereafter, may be involved in determining fiber type.  相似文献   

15.
The expression pattern of the RyR3 isoform of Ca2+ release channels was analysed by Western blot in neonatal and adult rabbit skeletal muscles. The results obtained show that the expression of the RyR3 isoform is developmentally regulated. In fact, RyR3 expression was detected in all muscles analysed at 2 and 15 days after birth while, in adult animals, it was restricted to a subset of muscles that includes diaphragm, masseter, pterygoideus, digastricus, and tongue. Interestingly, all of these muscles share a common embryonic origin being derived from the somitomeres or from the cephalic region of the embryo. Immunofluorescence analysis of rabbit skeletal muscle cross-sections showed that RyR3 staining was detected in all fibers of neonatal muscles. In contrast, in those adult muscles expressing RyR3 only a fraction of fibers was labelled. Staining of these muscles with antibodies against fast and slow myosins revealed a close correlation between expression of RyR3 and fibers expressing slow myosin isoform.  相似文献   

16.
去神经对快,慢肌纤维肌球蛋白ATPase影响的组织化学观察   总被引:2,自引:0,他引:2  
本文用组织化学方法观察了豚鼠比目鱼肌(SOL)和腓骨第三肌(PT)在去神经后其快、慢纤维肌球蛋白ATPase特性的变化。在正常肌肉中Ⅰ型(慢)纤维和Ⅱ型(快)纤维分别具有酸和碱稳定ATPase活性。慢纤维在去神经后出现了碱稳定ATPase活性,而快纤维则无明显变化。结果表明,只有慢纤维的肌球蛋白ATPase特性才与神经支配有关。  相似文献   

17.
Summary Combined histochemical and biochemical analyses were performed on rat skeletal muscles in order to determine the myosin heavy chain patterns in specific fiber types. Four myosin heavy chain isoforms were separated by gradient polyacrylamide gel electrophoresis of extracts from single fibers and whole muscle homogenates. Their electrophoretic mobility increased in the order HCIIa, HCIIb, and HCI. HCIIa, HCIIb and HCI were present as unique isoforms in histochemically defined fiber types IIA, IIB and I, respectively. The isoforms HCI and HCIIa coexisted at variable ratios in type IC and IIC fibers. An additional fast myosin heavy chain isoform with an electrophoretic mobility between HCIIa and HCIIb was designated as HCIId because of its abundance in fast fibers of large diameter in the diaphragm. With the exception of slight differences in mATPase staining intensity after acid preincubation, these fibers were almost indistinguishable from type IIB fibers. In view of their specific myosin heavy chain composition (HCIId), these fibers were named type IID. In the extensor digitorum longus muscle, type IID fibers were of smaller size than type IIB and differed from the latter by higher NADH tetrazolium reductase activities. Circumstantial evidence suggests that type IID fibers are identical with the 2X fibers, previously described by Schiaffino et al. (1986).  相似文献   

18.
Combined histochemical and biochemical analyses were performed on rat skeletal muscles in order to determine the myosin heavy chain patterns in specific fiber types. Four myosin heavy chain isoforms were separated by gradient polyacrylamide gel electrophoresis of extracts from single fibers and whole muscle homogenates. Their electrophoretic mobility increased in the order HCIIa, HCIIb, and HCI. HCIIa, HCIIb and HCI were present as unique isoforms in histochemically defined fiber types IIA, IIB and I, respectively. The isoforms HCI and HCIIa coexisted at variable ratios in type IC and IIC fibers. An additional fast myosin heavy chain isoform with an electrophoretic mobility between HCIIa and HCIIb was designated as HCIId because of its abundance in fast fibers of large diameter in the diaphragm. With the exception of slight differences in mATPase staining intensity after acid preincubation, these fibers were almost indistinguishable from type IIB fibers. In view of their specific myosin heavy chain composition (HCIId), these fibers were named type IID. In the extensor digitorum longus muscle, type IID fibers were of smaller size than type IIB and differed from the latter by higher NADH tetrazolium reductase activities. Circumstantial evidence suggests that type IID fibers are identical with the 2X fibers, previously described by Schiaffino et al. (1986).  相似文献   

19.
We examined the magnesium dependence of five class II myosins, including fast skeletal muscle myosin, smooth muscle myosin, β-cardiac myosin (CMIIB), Dictyostelium myosin II (DdMII), and nonmuscle myosin IIA, as well as myosin V. We found that the myosins examined are inhibited in a Mg2+-dependent manner (0.3–9.0 mm free Mg2+) in both ATPase and motility assays, under conditions in which the ionic strength was held constant. We found that the ADP release rate constant is reduced by Mg2+ in myosin V, smooth muscle myosin, nonmuscle myosin IIA, CMIIB, and DdMII, although the ADP affinity is fairly insensitive to Mg2+ in fast skeletal muscle myosin, CMIIB, and DdMII. Single tryptophan probes in the switch I (Trp-239) and switch II (Trp-501) region of DdMII demonstrate these conserved regions of the active site are sensitive to Mg2+ coordination. Cardiac muscle fiber mechanic studies demonstrate cross-bridge attachment time is increased at higher Mg2+ concentrations, demonstrating that the ADP release rate constant is slowed by Mg2+ in the context of an activated muscle fiber. Direct measurements of phosphate release in myosin V demonstrate that Mg2+ reduces actin affinity in the M·ADP·Pi state, although it does not change the rate of phosphate release. Therefore, the Mg2+ inhibition of the actin-activated ATPase activity observed in class II myosins is likely the result of Mg2+-dependent alterations in actin binding. Overall, our results suggest that Mg2+ reduces the ADP release rate constant and rate of attachment to actin in both high and low duty ratio myosins.  相似文献   

20.
Caveolin-3, the muscle-specific isoform of the caveolae-associated protein caveolin, is often thought to be localized exclusively in the surface membrane in mature fibers and associated with transverse (t)-tubular system only transiently during development. Skeletal muscle fibers present a model where the surface membrane (sarcolemma) can be completely separated from the cell by mechanical dissection. Western blotting of matching portions of individual fibers from adult rat muscle in which the sarcolemma was either removed (skinned segment), or left in place (intact segment), revealed that ≥ 70% of caveolin-3 is actually located deeper in the fiber rather than in the sarcolemma itself. Triton solubility of caveolin-3 was no different between sarcolemmal and t-tubule compartments. Confocal immunofluorescence microscopy showed caveolin-3 present throughout the t-system in adult fibers, with ‘hot-spots’ at the necks of the tubules in the sub-sarcolemmal space. A similar representation was seen for the muscle specific voltage-dependent sodium channel Nav1.4 and it was found that at least some Nav1.4 co-immunoprecipitated with caveolin-3 in skinned muscle fibers. The caveolin-3 hot-spots just inside the opening of t-tubules may form regions that localize ion channels and kinases at the key place needed for efficient electrical transmission into the t-tubules as well as for other signaling processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号