首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The enteric nervous system (ENS) in vertebrate embryos is formed by neural crest-derived cells. During development, these cells undergo extensive migration from the vagal and sacral regions to colonize the entire gut, where they differentiate into neurons and glial cells. Guidance molecules like netrins, semaphorins, slits, and ephrins are known to be involved in neuronal migration and axon guidance. In the CNS, the repulsive guidance molecule (RGMa) has been implicated in neuronal differentiation, migration, and apoptosis. Recently, we described the expression of the subtypes RGMa and RGMb and their receptor neogenin during murine gut development. In the present study, we investigated the influence of RGMa on neurosphere cultures derived from fetal ENS. In functional in vitro assays, RGMa strongly inhibited neurite outgrowth of differentiating progenitors via the receptor neogenin. The repulsive effect of RGMa on processes of differentiated enteric neural progenitors could be demonstrated by collapse assay. The influence of the RGM receptor on ENS was also analyzed in neogenin knockout mice. In the adult large intestine of mutants we observed disturbed ganglia formation in the myenteric plexus. Our data indicate that RGMa may be involved in differentiation processes of enteric neurons in the murine gut.  相似文献   

2.
Repulsive guidance molecule (RGM) is a protein implicated in both axonal guidance and neural tube closure. We report RGMa as a potent inhibitor of axon regeneration in the adult central nervous system (CNS). RGMa inhibits mammalian CNS neurite outgrowth by a mechanism dependent on the activation of the RhoA-Rho kinase pathway. RGMa expression is observed in oligodendrocytes, myelinated fibers, and neurons of the adult rat spinal cord and is induced around the injury site after spinal cord injury. We developed an antibody to RGMa that efficiently blocks the effect of RGMa in vitro. Intrathecal administration of the antibody to rats with thoracic spinal cord hemisection results in significant axonal growth of the corticospinal tract and improves functional recovery. Thus, RGMa plays an important role in limiting axonal regeneration after CNS injury and the RGMa antibody offers a possible therapeutic agent in clinical conditions characterized by a failure of CNS regeneration.  相似文献   

3.
We used in-situ hybridization to analyze the expression patterns of three known members (a, b and c) of the RGM (“repulsive guidance molecule”) gene family and of the RGMa receptor neogenin in a glaucoma mouse model (DBA/2J strain) and the C57BL/6J strain, which served as a control. In order to understand the role of the RGMs and neogenin in glaucoma, we characterized their expression patterns in the developing and mature mouse retina and in the optic nerve. In all investigated stages from post-natal day (P) 0 to 15 months (M) RGMa, RGMb and neogenin expression was detected in the ganglion cell layer (GCL). From P10 to 15 M, we found RGMa, RGMb and neogenin expression in the inner nuclear layer (INL) and the outer nuclear layer (ONL). In P10- and older mice, the expression patterns of RGMa and its receptor neogenin were similar, while that of RGMb differed from both. As expected, no specific retinal expression of RGMc was detected in any of the age groups investigated. C57BL/6J mice and DBA/2J mice displayed no differences in the expression pattern of RGMa, RGMb, RGMc and neogenin in the developing retina (gestational age 14.5 days (E14.5), P0 & P10). Interestingly, we found a higher expression of RGMa, RGMb and neogenin in the retinas of all glaucoma-affected mice than in the age-matched control strain. Furthermore, we detected a higher RGMa and RGMb expression in the optic nerves of glaucoma-affected DBA/2J-mice older than 11 M than in C57BL/6J mice of the same age.  相似文献   

4.
We used in-situ hybridization to analyze the expression patterns of three known members (a, b and c) of the RGM ("repulsive guidance molecule") gene family and of the RGMa receptor neogenin in a glaucoma mouse model (DBA/2J strain) and the C57BL/6J strain, which served as a control. In order to understand the role of the RGMs and neogenin in glaucoma, we characterized their expression patterns in the developing and mature mouse retina and in the optic nerve. In all investigated stages from post-natal day (P) 0 to 15 months (M) RGMa, RGMb and neogenin expression was detected in the ganglion cell layer (GCL). From P10 to 15M, we found RGMa, RGMb and neogenin expression in the inner nuclear layer (INL) and the outer nuclear layer (ONL). In P10- and older mice, the expression patterns of RGMa and its receptor neogenin were similar, while that of RGMb differed from both. As expected, no specific retinal expression of RGMc was detected in any of the age groups investigated. C57BL/6J mice and DBA/2J mice displayed no differences in the expression pattern of RGMa, RGMb, RGMc and neogenin in the developing retina (gestational age 14.5 days (E14.5), P0 & P10). Interestingly, we found a higher expression of RGMa, RGMb and neogenin in the retinas of all glaucoma-affected mice than in the age-matched control strain. Furthermore, we detected a higher RGMa and RGMb expression in the optic nerves of glaucoma-affected DBA/2J-mice older than 11M than in C57BL/6J mice of the same age.  相似文献   

5.
Repulsive guidance molecule (RGM) is a membrane-bound protein that was originally identified as an axon guidance molecule in the chick retinotectal system. RGMa, one of the 3 isoforms found in mammals, is involved in laminar patterning, cephalic neural tube closure, axon guidance, and inhibition of axonal regeneration. In addition to its roles in the nervous system, RGMa plays a role in enhancing helper T-cell activation. Binding of RGM to its receptor, neogenin, is considered necessary to transduce these signals; however, information on the binding of RGM to neogenin is limited. Using co-immunoprecipitation studies, we have identified that the RGMa region required for binding to neogenin contains amino acids (aa) 259-295. Synthesized peptide consisting of aa 284-293 directly binds to the extracellular domain (ECD) of recombinant neogenin, and addition of this peptide inhibits RGMa-induced growth cone collapse in mouse cortical neurons. Thus, we propose that this peptide is a promising lead in finding reagents capable of inhibiting RGMa signaling.  相似文献   

6.
The repulsive guidance molecule (RGM) is a membrane-bound protein that was originally identified as an axon guidance molecule in the visual system. Functional studies have revealed that it has roles in axon guidance and laminar patterning in Xenopus and chick embryos, and in controlling cephalic neural tube closure in mouse embryos. The recent identification of neogenin as a receptor for RGM has provided evidence of the diverse functions of this ligand-receptor pair. Re-expression of RGM is observed after injury in the adult human and rat central nervous systems. Inhibition of RGM enhances growth of injured axons and promotes functional recovery after spinal cord injury in rats. Thus, re-expression of embryonic repulsive cues in adult tissues contributes to failure of axon regeneration in the central nervous system.  相似文献   

7.
Repulsive guidance molecule (RGM) is a membrane-bound protein that was originally identified as an axon guidance molecule in the visual system. Functional studies in Xenopus and chick embryos revealed the roles of RGM in axon guidance and laminar patterning, while those in mouse embryos demonstrated its function in regulating cephalic neural tube closure. Moreover, RGM inhibition enhanced the growth of injured axons and promoted functional recovery after spinal cord injury in rats. Here, we demonstrate in vitro that RGMa, an RGM homolog, inhibits neurite growth and cortical neuron branching on mouse embryonic day 16. Further, exposure of cultured neurons to RGMa significantly reduced the number of colocalized immunoreactive clusters of synapsin 1 and PSD-95 in the spines. This RGMa-mediated inhibition of the assembly of presynaptic and postsynaptic components suggests a role of RGMa in inhibiting mature synapse formation. Thus, RGMa may negatively regulate neuronal network formation in cortical neurons.  相似文献   

8.
Neogenin has been implicated in a variety of developmental processes such as neurogenesis, neuronal differentiation, apoptosis, migration and axon guidance. Binding of repulsive guidance molecules (RGMs) to Neogenin inhibits axon outgrowth of different neuronal populations. This effect requires Neogenin to interact with co-receptors of the uncoordinated locomotion-5 (Unc5) family to activate downstream Rho signaling. Although previous studies have reported RGM, Neogenin, and/or Unc5 expression, a systematic comparison of RGM and Neogenin expression in the developing nervous system is lacking, especially at later developmental stages. Furthermore, information on RGM and Neogenin expression at the protein level is limited. To fill this void and to gain further insight into the role of RGM-Neogenin signaling during mouse neural development, we studied the expression of RGMa, RGMb, Neogenin and Unc5A-D using in situ hybridization, immunohistochemistry and RGMa section binding. Expression patterns in the primary olfactory system, cortex, hippocampus, habenula, and cerebellum were studied in more detail. Characteristic cell layer-specific expression patterns were detected for RGMa, RGMb, Neogenin and Unc5A-D. Furthermore, strong expression of RGMa, RGMb and Neogenin protein was found on several major axon tracts such as the primary olfactory projections, anterior commissure and fasciculus retroflexus. These data not only hint at a role for RGM-Neogenin signaling during the development of different neuronal systems, but also suggest that Neogenin partners with different Unc5 family members in different systems. Overall, the results presented here will serve as a framework for further dissection of the role of RGM-Neogenin signaling during neural development.  相似文献   

9.
Emerging roles for neogenin and its ligands in CNS development   总被引:1,自引:0,他引:1  
It is now well established that the netrin guidance cues and their receptors comprise a major molecular guidance system driving axon pathfinding during nervous system development. One netrin receptor, neogenin, is now emerging as a key regulator of many developmental processes throughout the embryo. Unexpectedly, a new family of neogenin ligands, the repulsive guidance molecule (RGM) family, has recently been identified. The functional outcome of neogenin activation is dictated by both the nature of the ligand as well as the developmental context. Netrin-1–neogenin interactions mediate chemoattractive axon guidance, while RGMa–neogenin interactions repel axons. Neogenin is required for the establishment of the pseudostratified epithelium of the neural tube, probably by promoting cell adhesion. In addition, a role for RGMa and neogenin in neuronal differentiation has been demonstrated. While neogenin signaling cascades are poorly understood, the opposing responses of neogenin to RGMa and netrin-1 in the context of axon guidance indicates that neogenin signaling is complex and subject to tight spatiotemporal regulation. In summary, neogenin is a multifunctional receptor regulating diverse developmental processes. Thus, its contribution to neural development is proving to be considerably more extensive than originally predicted.  相似文献   

10.
Dragon is one of the three members of the repulsive guidance molecule (RGM) family, i.e. RGMa, RGMb (Dragon), and RGMc (hemojuvelin). We previously identified the RGM members as bone morphogenetic protein (BMP) co-receptors that enhance BMP signaling. Our previous studies found that Dragon is highly expressed in the tubular epithelial cells of mouse kidneys. However, the roles of Dragon in renal epithelial cells are yet to be defined. We now show that overexpression of Dragon increased cell death induced by hypoxia in association with increased cleaved poly(ADP-ribose) polymerase and cleaved caspase-3 levels in mouse inner medullary collecting duct (IMCD3) cells. Dragon also inhibited E-cadherin expression but did not affect epithelial-to-mesenchymal transition induced by TGF-β in IMCD3 cells. Previous studies suggest that the three RGM members can function as ligands for the receptor neogenin. Interestingly, our present study demonstrates that the Dragon actions on apoptosis and E-cadherin expression in IMCD3 cells were mediated by the neogenin receptor but not through the BMP pathway. Dragon expression in the kidney was up-regulated by unilateral ureteral obstruction in mice. Compared with wild-type mice, heterozygous Dragon knock-out mice exhibited 45–66% reduction in Dragon mRNA expression, decreased epithelial apoptosis, and increased tubular E-cadherin expression and had attenuated tubular injury after unilateral ureteral obstruction. Our results suggest that Dragon may impair tubular epithelial integrity and induce epithelial apoptosis both in vitro and in vivo.  相似文献   

11.
The repulsive guidance molecule (RGM) is a membrane-bound protein originally isolated as an axon guidance molecule in the visual system. Recently, the transmembrane protein, neogenin, has been identified as the RGM receptor. In vitro analysis with retinal explants showed that RGM repels temporal retinal axons and collapses their growth cones through neogenin-mediated signaling. However, RGM and neogenin are also broadly expressed at the early embryonic stage, suggesting that they do not only control the guidance of visual axons. Gene expression perturbation experiments in chick embryos showed that neogenin induces cell death, and its ligand, RGM, blocks the pro-apoptotic activity of neogenin. Thus, RGM/neogenin is a novel dependence ligand/receptor couple as well as an axon guidance molecular complex.  相似文献   

12.
Neuronal axons are guided by attractive and repulsive cues in their local environment. Because the repulsive guidance molecule A (RGMa) was originally identified as an axon repellent in the visual system, diverse functions in the developing and adult central nervous system have been ascribed to it. RGMa binding to its receptor neogenin induces RhoA activation, leading to inhibitory/repulsive behavior and collapse of the neuronal growth cone. However, the precise mechanisms that regulate RhoA activation are poorly understood. In this study, we show that Unc5B, a member of the netrin receptor family, interacts with neogenin as a coreceptor for RGMa. Moreover, leukemia-associated guanine nucleotide exchange factor (LARG) associates with Unc5B to transduce the RhoA signal. Focal adhesion kinase (FAK) is involved in RGMa-induced tyrosine phosphorylation of LARG as well as RhoA activation. These findings uncover the molecular basis for diverse functions mediated by RGMa.  相似文献   

13.
By causing damage to neural networks, spinal cord injuries (SCI) often result in severe motor and sensory dysfunction. Functional recovery requires axonal regrowth and regeneration of neural network, processes that are quite limited in the adult central nervous system (CNS). Previous work has shown that SCI lesions contain an accumulation of activated microglia, which can have multiple pathophysiological influences. Here, we show that activated microglia inhibit axonal growth via repulsive guidance molecule a (RGMa). We found that microglia activated by lipopolysaccharide (LPS) inhibited neurite outgrowth and induced growth cone collapse of cortical neurons in vitro--a pattern that was only observed when there was direct contact between microglia and neurons. After microglia were activated by LPS, they increased expression of RGMa; however, treatment with RGMa-neutralizing antibodies or transfection of RGMa siRNA attenuated the inhibitory effects of microglia on axonal outgrowth. Furthermore, minocycline, an inhibitor of microglial activation, attenuated the effects of microglia and RGMa expression. Finally, we examined whether these in vitro patterns could also be observed in vivo. Indeed, in a mouse SCI model, minocycline treatment reduced the accumulation of microglia and decreased RGMa expression after SCI, leading to reduced dieback in injured corticospinal tracts. These results suggest that activated microglia play a major role in inhibiting axon regeneration via RGMa in the injured CNS.  相似文献   

14.
Repulsive guidance molecule (RGM) is a membrane-bound protein that was originally identified as an axon guidance molecule in the visual system [T. Yamashita, B.K. Mueller, K. Hata, Neogenin and RGM signaling in the central nervous system, Curr. Opin. Neurobiol. 17 (2007) 29-34]. Functional studies in Xenopus and chick embryos have revealed the roles of RGM in axon guidance and laminar patterning, while those in mouse embryos have demonstrated its function in regulating the cephalic neural tube closure. Importantly, RGM inhibition enhanced the growth of injured axons and promoted functional recovery after spinal cord injury in rats. Here, we identified two RGMa-derived peptides that functioned as antagonists against RGMa. The peptides studied in vitro dose-dependently suppressed the neurite growth inhibition and growth cone collapse induced by RGMa. Thus, these peptides are promising reagents to treat injuries of the central nervous system.  相似文献   

15.
RGMa (repulsive guidance molecule a) was the first identified molecule that possessed the necessary functional activity to repulse and steer growth cones to their target in the brain. By binding to its neogenin receptor, RGMa caused the collapse of growth cones and encouraged axons to grow along specific trajectories in vitro. Although originally characterized in 1990, RGMa was not conclusively shown to mediate axon guidance in vivo for another 12 years. Loss-of-function analysis in mice revealed that RGMa may play a more important role in neural tube morphogenesis. RGMa has now emerged as a molecule with pleiotropic roles involving cell adhesion, cell migration, cell polarity and cell differentiation which together strongly influence early morphogenetic events as well as immune responses. RGMa can be regarded as a molecule for all seasons.  相似文献   

16.
RGMa (repulsive guidance molecule a) was the first identified molecule that possessed the necessary functional activity to repulse and steer growth cones to their target in the brain. By binding to its neogenin receptor, RGMa caused the collapse of growth cones and encouraged axons to grow along specific trajectories in vitro. Although originally characterized in 1990, RGMa was not conclusively shown to mediate axon guidance in vivo for another 12 years. Loss-of-function analysis in mice revealed that RGMa may play a more important role in neural tube morphogenesis. RGMa has now emerged as a molecule with pleiotropic roles involving cell adhesion, cell migration, cell polarity and cell differentiation which together strongly influence early morphogenetic events as well as immune responses. RGMa can be regarded as a molecule for all seasons.  相似文献   

17.
The repulsive guidance molecule A (RGMa) is a contact-mediated axon guidance molecule that has significant roles in central nervous system (CNS) development. Here we have examined whether RGMa has novel roles in cell migration and cell adhesion outside the nervous system. RGMa was found to stimulate cell migration from Xenopus animal cap explants in a neogenin-dependent and BMP-independent manner. RGMa also stimulated the adhesion of Xenopus animal cap cells, and this adhesion was dependent on neogenin and independent of calcium. To begin to functionally characterize the role of specific domains in RGMa, we assessed the migratory and adhesive activities of deletion mutants. RGMa lacking the partial von Willebrand factor type D (vWF) domain preferentially perturbed cell adhesion, while mutants lacking the RGD motif affected cell migration. We also revealed that manipulating the levels of RGMa in vivo caused major migration defects during Xenopus gastrulation. We have revealed here novel roles of RGMa in cell migration and adhesion and demonstrated that perturbations to the homeostasis of RGMa expression can severely disrupt major morphogenetic events. These results have implications for understanding the role of RGMa in both health and disease.  相似文献   

18.
The repulsive guidance molecule RGMa has been shown to induce outgrowth inhibition of neurites by interacting with the transmembrane receptor neogenin. Here we show that RGMa-induced growth cone collapse is mediated by activation of the small GTPase RhoA, its downstream effector Rho kinase and PKC. In contrast to DRG cultures from neogenin-/- mice, in which no RGMa-mediated growth cone collapse and activation of RhoA occurred, treatment of wild type DRG neurites with soluble RGMa led to a marked activation of RhoA within 3 min followed by collapse, but left Rac1 and Cdc42 unaffected. Furthermore, preincubation of DRG axons with the bone morphogenetic protein (BMP) antagonist noggin had no effect on RGMa-mediated growth cone collapse, implying that the role of RGM in axonal guidance is neogenin- and not BMP receptor-dependent. Pretreatment with 1) C3-transferase, a specific inhibitor of the Rho GTPase; 2) Y-27632, a specific inhibitor of Rho kinase; and 3) G?6976, the general PKC inhibitor, strongly inhibited the collapse rate of PC12 neurites. Growth cone collapse induced by RGMa was abolished by the expression of dominant negative RhoA, but not by dominant negative Rac1. In contrast to RGMa, netrin-1 induced no growth cone retraction but instead reduced RGMa-mediated growth cone collapse. These results suggest that activation of RhoA, Rho kinase, and PKC are physiologically relevant and important elements of the RGMa-mediated neogenin signal transduction pathway involved in axonal guidance.  相似文献   

19.
Background information. RGM A (repulsive guidance molecule A) is a GPI (glycosylphosphatidylinositol)‐anchored glycoprotein which has repulsive properties on axons due to the interaction with its receptor neogenin. In addition, RGM A has been demonstrated to function as a BMP (bone morphogenetic protein) co‐receptor. Results. In the present study, we provide the first analysis of early RGM A and neogenin expression and function in Xenopus laevis neural development. Tissue‐specific RGM A expression starts at stage 12.5 in the anterior neural plate. Loss‐of‐function analyses suggest a function of RGM A and neogenin in regulating anterior neural marker genes, as well as eye development and neural crest cell migration. Furthermore, overexpression of RGM A leads to ectopic expression of neural crest cell marker genes. Conclusions. These data indicate that RGM A and neogenin have important functions during early neural development, in addition to their role during axonal guidance and synapse formation.  相似文献   

20.
In multiple sclerosis, activated CD4(+) T cells initiate an immune response in the brain and spinal cord, resulting in demyelination, degeneration and progressive paralysis. Repulsive guidance molecule-a (RGMa) is an axon guidance molecule that has a role in the visual system and in neural tube closure. Our study shows that RGMa is expressed in bone marrow-derived dendritic cells (BMDCs) and that CD4(+) T cells express neogenin, a receptor for RGMa. Binding of RGMa to CD4(+) T cells led to activation of the small GTPase Rap1 and increased adhesion of T cells to intracellular adhesion molecule-1 (ICAM-1). Neutralizing antibodies to RGMa attenuated clinical symptoms of mouse myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE) and reduced invasion of inflammatory cells into the CNS. Silencing of RGMa in MOG-pulsed BMDCs reduced their capacity to induce EAE following adoptive transfer to naive C57BL/6 mice. CD4(+) T cells isolated from mice treated with an RGMa-specific antibody showed diminished proliferative responses and reduced interferon-γ (IFN-γ), interleukin-2 (IL-2), IL-4 and IL-17 secretion. Incubation of PBMCs from patients with multiple sclerosis with an RGMa-specific antibody reduced proliferative responses and pro-inflammatory cytokine expression. These results demonstrate that an RGMa-specific antibody suppresses T cell responses, and suggest that RGMa could be a promising molecular target for the treatment of multiple sclerosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号