首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
[Arg14,Lys15]Nociceptin is a very potent for ORL1 receptor, showing a few times stronger binding activity and much more enhanced biological activity than endogenous nociceptin. This synergistic outcome has been suggested to be due to the interaction with the receptor aromatic and/or acidic amino acid residues crucial to receptor activation. In order to identify such receptor residues in the second ORL1 extracellular loop, we prepared a series of recombinant mutant receptors. The mutant receptor Gln205Ala was found to be as active as wild-type ORL1 for both nociceptin and [Arg14,Lys15]nociceptin. In contrast, Asp206Ala and Tyr207Ala exhibited considerably reduced activity for [Arg14,Lys15]nociceptin, exhibiting no synergistic activity enhancement. These results suggest that Asp206 and Tyr207 are directly involved in the interaction with nociceptin-[Arg14,Lys15]. Trp208Ala was found to bind strongly both nociceptin and [Arg14,Lys15]nociceptin, although it elicited no biological activity. All these results indicate that the consecutive amino acid residues Asp206, Tyr207, and Trp208 are critical to the activation of the ORL1 receptor, but not to nociceptin-binding.  相似文献   

2.
Erythroascorbic acid (eAsA) is a five-carbon analog of ascorbic acid, and it is synthesized from D-arabinose by D-arabinose dehydrogenase (ARA) and D-arabinono-gamma-lactone oxidase. We found an NAD+-specific ARA activity which is operative under submillimolar level of d-arabinose in the extracts of Saccharomyces cerevisiae. The hypothetical protein encoded by YMR041c showed a significant homology to a l-galactose dehydrogenase which plays in plant ascorbic acid biosynthesis, and we named it as Ara2p. Recombinant Ara2p showed NAD+-specific ARA activity with Km=0.78 mM to d-arabinose, which is 200-fold lower than that for the conventional NADP+-specific ARA, Ara1p. Gene disruptant of ARA2 lost entire NAD+-specific ARA activity and the conspicuous increase in intracellular eAsA by exogenous d-arabinose feeding, while the double knockout mutant of ARA1 and ARA2 still retained measurable amount of eAsA. It demonstrates that Ara2p, not Ara1p, mainly contributes to the production of eAsA from d-arabinose in S. cerevisiae.  相似文献   

3.
His354 and His358, two highly conserved histidines in Xenopus laevis (6-4) photolyase [equivalent to His401 and His405, in Dunaliella salina (6-4) photolyase], are critical for photoreactivation. They act as a base and an acid, respectively. However, the remaining high repair activity when the pH value is higher than the pKa of histidine suggests the involvement of other basic amino acids in photoreactivation. According to the results of in vivo enzyme assay and three-dimension structural model of Dunaliella salina (6-4) photolyase we hypothesized that Lys281 might be involved in the photoreactivation over the pH range from 10.0 to 11.0. To test this, we generated two mutant forms of the (6-4) photolyase, K281G and K281R mutant, by overlap extension polymerase chain reaction, and performed the enzyme assay with these mutants. From these results we conclude that the Lys281, which is highly conserved in (6-4) photolyases, participates in the photoreactivation and acts as an acid to donate a proton to His401 when the environmental pH is higher than the pKa value of histidine.  相似文献   

4.
USP28 (ubiquitin-specific protease 28) is a deubiquitinating enzyme that has been implicated in the DNA damage response, the regulation of Myc signaling, and cancer progression. The half-life stability of major regulators of critical cellular pathways depends on the activities of specific ubiquitin E3 ligases that target them for proteosomal degradation and deubiquitinating enzymes that promote their stabilization. One function of the post-translational small ubiquitin modifier (SUMO) is the regulation of enzymatic activity of protein targets. In this work, we demonstrate that the SUMO modification of the N-terminal domain of USP28 negatively regulates its deubiquitinating activity, revealing a role for the N-terminal region as a regulatory module in the control of USP28 activity. Despite the presence of ubiquitin-binding domains in the N-terminal domain, its truncation does not impair deubiquitinating activity on diubiquitin or polyubiquitin chain substrates. In contrast to other characterized USP deubiquitinases, our results indicate that USP28 has a chain preference activity for Lys11, Lys48, and Lys63 diubiquitin linkages.  相似文献   

5.
Asiatic acid (AsA), a naturally occurring pentacyclictriterpenoid found in Centella asiatica, plays a major role in neuroprotection, anticancer, antioxidant, and hepatoprotective activities. Human serum albumin (HSA), a blood plasma protein, participates in the regulation of plasma osmotic pressure and transports endogenous and exogenous substances. The study undertaken to analyze the drug-binding mechanisms of HSA is crucial in understanding the bioavailability of drugs. In this study, we analyzed the cytotoxic activity of AsA on HepG2 (human hepatocellular carcinoma) cell lines and its binding, conformational, docking, molecular simulation studies with HSA under physiological pH 7.2. These studies revealed a clear decrease in the viability of HepG2 cells upon exposure to AsA in a dose-dependent manner with an IC50 of 45?μM. Further studies showed the quenching of intrinsic fluorescence of HSA by AsA with a binding constant of KAsA?=?3.86?±?0.01?×?104?M?1, which corresponds to the free energy of (ΔG) ?6.3?kcal?M?1 at 25?°C. Circular dichroism (CD) studies revealed that there is a clear decrease in the α-helical content from 57.50?±?2.4 to 50%?±?2.3 and an increase in the β-turns from 25?±?0.65 to 29%?±?0.91 and random coils from 17.5%?±?0.95 to 21%?±?1.2, suggesting partial unfolding of HSA. Autodock studies revealed that the AsA is bound to the subdomain IIA with hydrophobic and hydrophilic interactions. From molecular dynamics, simulation data (RMSD, Rg and RMSF) emphasized the local conformational changes and rigidity of the residues of both HSA and HSA–AsA complexes.  相似文献   

6.
Transforming growth factor-β-activated kinase 1 (TAK1) plays an essential role in the tumor necrosis factor α (TNFα)- and interleukin-1β (IL-1β)-induced IκB kinase (IKK)/nuclear factor-κB (NF-κB) and c-Jun N-terminal kinase (JNK)/activator protein 1 (AP-1) activation. Here we report that TNFα and IL-1β induce Lys63-linked TAK1 polyubiquitination at the Lys158 residue within the kinase domain. Tumor necrosis factor receptor-associated factors 2 and 6 (TRAF2 and -6) act as the ubiquitin E3 ligases to mediate Lys63-linked TAK1 polyubiquitination at the Lys158 residue in vivo and in vitro. Lys63-linked TAK1 polyubiquitination at the Lys158 residue is required for TAK1-mediated IKK complex recruitment. Reconstitution of TAK1-deficient mouse embryo fibroblast cells with TAK1 wild type or a TAK1 mutant containing a K158R mutation revealed the importance of this site in TNFα and IL-1β-mediated IKK/NF-κB and JNK/AP-1 activation as well as IL-6 gene expression. Our findings demonstrate that Lys63-linked polyubiquitination of TAK1 at Lys158 is essential for its own kinase activation and its ability to mediate its downstream signal transduction pathways in response to TNFα and IL-1β stimulation.  相似文献   

7.
  • Ascorbic acid (AsA) biosynthesis in plants predominantly occurs via a pathway with d ‐mannose and l ‐galactose as intermediates. One alternative pathway for AsA synthesis, which is similar to the biosynthesis route in mammals, is controversially discussed for plants. Here, myo‐inositol is cleaved to glucuronic acid and then converted via l ‐gulonate to AsA. In contrast to animals, plants have an effective recycling pathway for glucuronic acid, being a competitor for the metabolic rate. Recycling involves a phosphorylation at C1 by the enzyme glucuronokinase.
  • Two previously described T‐DNA insertion lines in the gene coding for glucuronokinase1 show wild type‐like expression levels of the mRNA in our experiments and do not accumulate glucuronic acid in labelling experiments disproving that these lines are true knockouts. As suitable T‐DNA insertion lines were not available, we generated frameshift mutations in the major expressed isoform glucuronokinase1 (At3g01640) to potentially redirect metabolites to AsA.
  • However, radiotracer experiments with 3H‐myo‐inositol revealed that the mutants in glucuronokinase1 accumulate only glucuronic acid and incorporate less metabolite into cell wall polymers. AsA was not labelled, suggesting that Arabidopsis cannot efficiently use glucuronic acid for AsA biosynthesis.
  • All four mutants in glucuronokinase as well as the wild type have the same level of AsA in leaves.
  相似文献   

8.
Ubiquitin-specific proteases (USPs) consist of a family of deubiquitinating enzymes with more than 50 members in humans. Three of them, including USP37, contain ubiquitin-interacting motifs (UIMs), an ∼20-amino acid α-helical stretch that binds to ubiquitin. However, the roles of the UIMs in these USP enzymes remain unknown. USP37 has three UIMs, designated here as UIMs 1, 2, and 3 from the N-terminal side, between the Cys and His boxes comprising the catalytic core. Here, we examined the role of the UIMs in USP37 using its mutants that harbor mutations in the UIMs. The nuclear localization of USP37 was not affected by the UIM mutations. However, mutations in UIM2 or UIM3, but not UIM1, resulted in a significant decrease in USP37 binding to ubiquitinated proteins in the cell. In vitro, a region of USP37 harboring the three UIMs also bound to both Lys48-linked and Lys63-linked ubiquitin chains in a UIM2- and UIM3-dependent manner. The level of USP37 ubiquitination was also reduced by mutations in UIM2 or UIM3, suggesting their role in ubiquitination of USP37 itself. Finally, mutants lacking functional UIM2 or UIM3 exhibited a reduced isopeptidase activity toward ubiquitinated proteins in the cell and both Lys48-linked and Lys63-linked ubiquitin chains. These results suggested that the UIMs in USP37 contribute to the full enzymatic activity, but not ubiquitin chain substrate specificity, of USP37 possibly by holding the ubiquitin chain substrate in the proximity of the catalytic core.  相似文献   

9.
The polyubiquitin chain is generated by the sequential addition of ubiquitin moieties to target molecules, a reaction between specific lysine residues that is catalyzed by E3 ubiquitin ligase. The Lys48-linked and Lys63-linked polyubiquitin chains are well established inducers of proteasome-dependent degradation and signal transduction, respectively. The concept has recently emerged that polyubiquitin chain-mediated regulation is even more complex because various types of atypical polyubiquitin chains have been discovered in vivo. Here, we demonstrate that a novel complex ubiquitin chain functions as an internalization signal for major histocompatibility complex class I (MHC I) membrane proteins in vivo. Using a tetracycline-inducible expression system and quantitative mass spectrometry, we show that the polyubiquitin chain generated by the viral E3 ubiquitin ligase of Kaposi sarcoma-associated herpesvirus, MIR2, is a Lys11 and Lys63 mixed-linkage chain. This novel ubiquitin chain can function as an internalization signal for MHC I through its association with epsin1, an adaptor molecule containing ubiquitin-interacting motifs.  相似文献   

10.
R2R3-MYB genes play a pivotal role in regulating anthocyanin accumulation. Here, we report two tandemly duplicated R2R3-MYB genes in peach, PpMYB10.1 and PpMYB10.2, with the latter showing lower ability to induce anthocyanin accumulation than the former. Site-directed mutation assay revealed two amino acid changes in the R3 repeat, Arg/Lys66 and Gly/Arg93, responsible for functional divergence between these two PpMYB10 genes. Anthocyanin-promoting activity of PpMYB10.2 was significantly increased by a single amino acid replacement of Arg93 with Gly93. However, either the Gly93 → Arg93 or Arg66 → Lys66 substitutions alone showed little impact on anthocyanin-promoting activity of PpMYB10.1, but simultaneous substitutions caused a significant decrease. Reciprocal substitution of Arg/Gly93 could significantly alter binding affinity to PpbHLH3, while the Arg66 → Lys66 substitution is predicted to affect the folding of the MYB DNA-binding domain, instead of PpbHLH3-binding affinity. Overall, the change of anthocyanin-promoting activity was accompanied with that of bHLH-binding affinity, suggesting that DNA-binding affinity of R2R3-MYBs depends on their bHLH partners. Our study is helpful for understanding of functional evolution of R2R3-MYBs and their interaction with DNA targets.  相似文献   

11.
A nuclear tRNALys gene from Arabidopsis thaliana was cloned and mutated so as to express tRNAs with altered anticodons which bind to a UAG nonsense (amber) codon and to the Arg (AGG), Asn (AAC,AAT), Gln (CAG) or Glu (GAG) codons. Concomitantly, a codon in the firefly luciferase gene for a functionally important Lys was altered to an amber codon, or to Arg, Asn, Gln, Glu, Thr and Trp codons, so as to construct reporter genes reliant upon incorporation of Lys. The altered tRNALys and luciferase genes were introduced into Nicotiana benthamiana protoplasts and expression of the mutated tRNAs was verified by translational suppression of the mutant firefly luciferase genes. Expression of the amber suppressor tRNA CUA Lys from non-replicative vectors promoted 10–40% suppression of the luciferase nonsense reporters while expression of the amber and missense tRNALys suppressor genes from a geminivirus vector capable of replication promoted 30–80% suppression of the luciferase nonsense reporter and up to 10% suppression of the luciferase missense reporters with Arg, Asn, Gln and Glu codons.  相似文献   

12.
Modulation of the active versus inactive forms of the Gα protein is critical for the signaling processes mediated by the heterotrimeric G‐protein complex. We have recently established that in Arabidopsis, the regulator of G‐protein signaling (RGS1) protein and a lipid‐hydrolyzing enzyme, phospholipase Dα1 (PLDα1), both act as GTPase‐activity accelerating proteins (GAPs) for the Gα protein to attenuate its activity. RGS1 and PLDα1 interact with each other, and RGS1 inhibits the activity of PLDα1 during regulation of a subset of responses. In this study, we present evidence that this regulation is bidirectional. Phosphatidic acid (PA), a second messenger typically derived from the lipid‐hydrolyzing activity of PLDα1, is a molecular target of RGS1. PA binds and inhibits the GAP activity of RGS1. A conserved lysine residue in RGS1 (Lys259) is directly involved in RGS1–PA binding. Introduction of this RGS1 protein variant in the rgs1 mutant background makes plants hypersensitive to a subset of abscisic acid‐mediated responses. Our data point to the existence of negative feedback loops between these two regulatory proteins that precisely modulate the level of active Gα, consequently generating a highly controlled signal–response output.  相似文献   

13.
Regulation of cell surface expression of neurotransmitter receptors is crucial for determining synaptic strength and plasticity, but the underlying mechanisms are not well understood. We previously showed that proteasomal degradation of GABAB receptors via the endoplasmic reticulum (ER)-associated protein degradation (ERAD) machinery determines the number of cell surface GABAB receptors and thereby GABAB receptor-mediated neuronal inhibition. Here, we show that proteasomal degradation of GABAB receptors requires the interaction of the GABAB2 C terminus with the proteasomal AAA-ATPase Rpt6. A mutant of Rpt6 lacking ATPase activity prevented degradation of GABAB receptors but not the removal of Lys48-linked ubiquitin from GABAB2. Blocking ERAD activity diminished the interaction of Rtp6 with GABAB receptors resulting in increased total as well as cell surface expression of GABAB receptors. Modulating neuronal activity affected proteasomal activity and correspondingly the interaction level of Rpt6 with GABAB2. This resulted in altered cell surface expression of the receptors. Thus, neuronal activity-dependent proteasomal degradation of GABAB receptors by the ERAD machinery is a potent mechanism regulating the number of GABAB receptors available for signaling and is expected to contribute to homeostatic neuronal plasticity.  相似文献   

14.
High-dose ascorbic acid (AsA) treatment, known as pharmacological AsA, has been shown to exert carcinostatic effects in many types of cancer cells and in vivo tumour models. Although pharmacological AsA has potential as a complementary and alternative medicine for anticancer treatment, its effects on human tongue carcinoma have not yet been elucidated. In this study, we investigated the effect of AsA treatment on human tongue carcinoma HSC-4 cells compared with non-tumourigenic tongue epithelial dysplastic oral keratinocyte (DOK) cells. Our results show that treatment with 1 and 3?mM of AsA for 60?min preferentially inhibits the growth of human tongue carcinoma HSC-4 over DOK cells. Furthermore, AsA-induced effects were accompanied by increased intracellular oxidative stress and were repressed by treatment with a hydrogen peroxide (H2O2) scavenger catalase and a superoxide anion radical (O2?) scavenger, tempol. Time-lapse observation and thymidine analog EdU incorporation revealed that AsA treatment induces not only cell death but also suppression of DNA synthesis and cell growth. Moreover, the growth arrest was accompanied by abnormal cellular morphologies whereby cells extended dendrite-like pseudopodia. Taken together, our results demonstrate that AsA treatment can induce carcinostatic effects through induction of cell death, growth arrest, and morphological changes mediated by H2O2 and O2? generation. These findings suggest that high-dose AsA treatment represents an effective treatment for tongue cancer as well as for other types of cancer cells.  相似文献   

15.
Abstract: The human cannabinoid receptor associated with the CNS (CB1) binds Δ9-tetrahydrocannabinol, the psychoactive component of marijuana, and other cannabimimetic compounds. This receptor is a member of the seven transmembrane domain G protein-coupled receptor family and mediates its effects through inhibition of adenylyl cyclase. An understanding of the molecular mechanisms involved in ligand binding and receptor activation requires identification of the active site residues and their role. Lys192 of the third transmembrane domain of the receptor is noteworthy because it is the only nonconserved, charged residue in the transmembrane region. To investigate the properties of this residue, which are important for both ligand binding and receptor activation, we generated mutant receptors in which this amino acid was changed to either Arg (K192R), Gln (K192Q), or Glu (K192E). Wild-type and mutant receptors were stably expressed in Chinese hamster ovary cells and were evaluated in binding assays with the bicyclic cannabinoid CP-55,940 and the aminoalkylindole WIN 55,212-2. We found that only the most conservative change of Lys to Arg allowed retention of binding affinity to CP-55,940, whereas WIN 55,212-2 bound to all of the mutant receptors in the same range as it bound the wild type. Analysis of the ligand-induced inhibition of cyclic AMP production in cells expressing each of the receptors gave an EC50 value for each agonist that was comparable to its binding affinity, with one exception. Although the mutant K192E receptor displayed similar binding affinity as the wild type with WIN 55,212-2, an order of magnitude difference was observed for the EC50 for cyclic AMP inhibition with this compound. The results of this study indicate that binding of CP-55,940 is highly sensitive to the chemical nature of residue 192. In contrast, although this residue is not critical for WIN 55,212-2 binding, the data suggest a role for Lys192 in WIN 55,212-2-induced receptor activation.  相似文献   

16.
Human BUB3 is a key mitotic checkpoint factor that recognizes centromeric components and recruits other mitotic checkpoint molecules to the unattached kinetochore. The key amino acid residues responsible for its localization are not yet defined. In this study, we identified a motif from Lys216 to Lys222 in BUB3 as its nuclear localization signal. A BUB3 mutant with deletion of this motif (Del216–222) was found to localize to both the cytoplasm and the nucleus, distinct from the exclusively nuclear distribution of wild-type BUB3. Further analysis revealed that residues Glu213, Lys216, Lys217, Lys218, Tyr219, and Phe221, but not Lys222, contribute to nuclear localization. Interestingly, the nuclear localization signal was also critical for the kinetochore localization of BUB3. The deletion mutant Del216–222 and a subtle mutant with four residue changes in this region (E213Q/K216E/K217E/K218E (QE)) did not localize to the kinetochore efficiently or mediate mitotic checkpoint arrest. Protein interaction data suggested that the QE mutant was able to interact with BUB1, MAD2, and BubR1 but that its association with the centromeric components CENP-A and KNL1 was impaired. A motif from Leu61 to Leu65 in CENP-A was found to be involved in the association of BUB3 and CENP-A in cells; however, further assays suggested that CENP-A does not physically interact with BUB3 and does not affect BUB3 localization. Our findings help to dissect the mechanisms of BUB3 in mitotic checkpoint signaling.  相似文献   

17.
The role of ubiquitylation in signal-induced activation of nuclear factor -κB (NF-κB) has been well established, while its involvement in maintaining NF-κB basal activity is less certain. Recent evidences demonstrate that in unstimulated cells, NF-κB homeostasis is actually the result of opposing forces: pro-activating activity of the IκB Kinase (IKK) and inhibitory activity of the Inhibitor of -κB (IκB) proteins. It is well known that endogenous de-ubiquitylating mechanisms are less effective on Ub motifs containing UbG76A. Here, we show that overexpression of a ubiquitin (Ub) G76A mutant leads to persistent activation of the IKK/NF-κB pathway in the absence of extra-cellular stimuli. In contrast, no effects on NF-κB activation were observed upon expression of UbK48R and UbK63R mutants, which are known to impair elongation of Lys48- and Lys63-linked poly-ubiquitin chains, respectively. Overall, these findings indicate that under basal conditions, the rate of de-ubiquitylation, rather than that of substrate ubiquitylation, is critical for the maintenance of appropriate levels of IKK/NF-κB activity.  相似文献   

18.
RNF170 is an endoplasmic reticulum membrane ubiquitin ligase that contributes to the ubiquitination of activated inositol 1,4,5-trisphosphate (IP3) receptors, and also, when point mutated (arginine to cysteine at position 199), causes autosomal dominant sensory ataxia (ADSA), a disease characterized by neurodegeneration in the posterior columns of the spinal cord. Here we demonstrate that this point mutation inhibits RNF170 expression and signaling via IP3 receptors. Inhibited expression of mutant RNF170 was seen in cells expressing exogenous RNF170 constructs and in ADSA lymphoblasts, and appears to result from enhanced RNF170 autoubiquitination and proteasomal degradation. The basis for these effects was probed via additional point mutations, revealing that ionic interactions between charged residues in the transmembrane domains of RNF170 are required for protein stability. In ADSA lymphoblasts, platelet-activating factor-induced Ca2+ mobilization was significantly impaired, whereas neither Ca2+ store content, IP3 receptor levels, nor IP3 production were altered, indicative of a functional defect at the IP3 receptor locus, which may be the cause of neurodegeneration. CRISPR/Cas9-mediated genetic deletion of RNF170 showed that RNF170 mediates the addition of all of the ubiquitin conjugates known to become attached to activated IP3 receptors (monoubiquitin and Lys48- and Lys63-linked ubiquitin chains), and that wild-type and mutant RNF170 have apparently identical ubiquitin ligase activities toward IP3 receptors. Thus, the Ca2+ mobilization defect seen in ADSA lymphoblasts is apparently not due to aberrant IP3 receptor ubiquitination. Rather, the defect likely reflects abnormal ubiquitination of other substrates, or adaptation to the chronic reduction in RNF170 levels.  相似文献   

19.
The phospho-binding protein 14-3-3ζ acts as a signaling hub controlling a network of interacting partners and oncogenic pathways. We show here that lysines within the 14-3-3ζ binding pocket and protein-protein interface can be modified by acetylation. The positive charge on two of these lysines, Lys49 and Lys120, is critical for coordinating 14-3-3ζ-phosphoprotein interactions. Through screening, we identified HDAC6 as the Lys49/Lys120 deacetylase. Inhibition of HDAC6 blocks 14-3-3ζ interactions with two well described interacting partners, Bad and AS160, which triggers their dephosphorylation at Ser112 and Thr642, respectively. Expression of an acetylation-refractory K49R/K120R mutant of 14-3-3ζ rescues both the HDAC6 inhibitor-induced loss of interaction and Ser112/Thr642 phosphorylation. Furthermore, expression of the K49R/K120R mutant of 14-3-3ζ inhibits the cytotoxicity of HDAC6 inhibition. These data demonstrate a novel role for HDAC6 in controlling 14-3-3ζ binding activity.  相似文献   

20.
UBR5, a HECT-domain E3 ubiquitin ligase, is an attractive therapeutic target for aggressive breast cancers. Defining the substrates of UBR5 is crucial for scientific understanding and clinical intervention. Here, we demonstrate that CDC73, a component of the RNA polymerase II-associated factor 1 complex, is a key substrate that impedes UBR5’s profound tumorigenic and metastatic activities in triple-negative breast cancer (TNBC) via mechanisms of regulating the expression of β-catenin and E-cadherin, tumor cell apoptosis and CD8+ T cell infiltration. Expression of CDC73 is also negatively associated with the progression of breast cancer patients. Moreover, we show that UBR5 destabilizes CDC73 by polyubiquitination at Lys243, Lys247, and Lys257 in a non-canonical manner that is dependent on the non-phosphorylation state of CDC73 at Ser465. CDC73 could serve as a molecular switch to modulate UBR5’s pro-tumor activities and may provide a potential approach to developing breast cancer therapeutic interventions.Subject terms: Breast cancer, Ubiquitylation, Tumour-suppressor proteins  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号