首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Infrared spectroscopic tissue imaging is a potentially powerful adjunct tool to current histopathology techniques. By coupling the biochemical signature obtained through infrared spectroscopy to the spatial information offered by microscopy, this technique can selectively analyze the chemical composition of different features of unlabeled, unstained tissue sections. In the past, the tissue features that have received the most interest were parenchymal and epithelial cells, chiefly due to their involvement in dysplasia and progression to carcinoma; however, the field has recently turned its focus toward stroma and areas of fibrotic change. These components of tissue present an untapped source of biochemical information that can shed light on many diverse disease processes, and potentially hold useful predictive markers for these same pathologies. Here we review the recent applications of infrared spectroscopic imaging to stromal and fibrotic regions of diseased tissue, and explore the potential of this technique to advance current capabilities for tissue analysis.  相似文献   

2.
Confocal Raman microscopy is a useful tool to observe composition and constitution of label-free samples at high spatial resolution. However, accurate characterization of microstructure of tissue and its application in diagnostic imaging are challenging due to weak Raman scattering signal and complex chemical composition of tissue. We have developed a method to improve imaging speed, diffraction efficiency, and spectral resolution of confocal Raman microscopy. In addition to the novel imaging technique, the machine learning method enables confocal Raman microscopy to visualize accurate histology of tissue sections. Here, we have demonstrated the performance of the proposed method by measuring histological classification of atherosclerotic arteries and compared the histological confocal Raman images with the conventional staining method. Our new confocal Raman microscopy enables us to comprehend the structure and biochemical composition of tissue and diagnose the buildup of atherosclerotic plaques in the arterial wall without labeling.  相似文献   

3.
Label‐free quantitative imaging is highly desirable for studying live cells by extracting pathophysiological information without perturbing cell functions. Here, we demonstrate a novel label‐free multimodal optical imaging system with the capability of providing comprehensive morphological and molecular attributes of live cells. Our morpho‐molecular microscopy (3M) system draws on the combined strength of quantitative phase microscopy (QPM) and Raman microscopy to probe the morphological features and molecular fingerprinting characteristics of each cell under observation. While the commonr‐path geometry of our QPM system allows for highly sensitive phase measurement, the Raman microscopy is equipped with dual excitation wavelengths and utilizes the same detection and dispersion system, making it a distinctive multi‐wavelength system with a small footprint. We demonstrate the applicability of the 3M system by investigating nucleated and nonnucleated cells. This integrated label‐free platform has a promising potential in preclinical research, as well as in clinical diagnosis in the near future.   相似文献   

4.
An experimental evaluation of the information content of two complimentary techniques, linear Raman and coherent anti‐Stokes Raman scattering (CARS) microscopy, is presented. CARS is a nonlinear variant of Raman spectroscopy that enables rapid acquisition of images within seconds in combination with laser scanning microscopes. CARS images were recorded from thin colon tissue sections at 2850, 1660, 1450 and 1000 cm–1 and compared with Raman images. Raman images were obtained from univariate and multivariate (k‐means clustering) methods, whereas all CARS images represent univariate results. Variances within tissue sections could be visualized in chemical maps of CARS and Raman images. However, identification of tissue types and characterization of variances between different tissue sections were only possible by analysis of cluster mean spectra, obtained from k‐means cluster analysis. This first comparison establishes the foundation for further development of the CARS technology to assess tissue. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Light sheet fluorescence microscopy has become a research hotspot in biomedicine because of low phototoxicity, high speed, and high resolution. However, the conventional methods to acquire three-dimensional spatial information are mainly based on scanning, which inevitably increases photodamage and is not real-time. Here, we propose a method to generate controllable multi-planar illumination with a dielectric isosceles triangular array and a design of multi-planar light sheet fluorescence microscopy system. We carry out experiments of three-dimensional illumination beam measurement, volumetric imaging of fluorescent microspheres, and dynamic in vivo imaging of zebrafish heart to evaluate the performance of this system. In addition, we apply this system to study the effects of bisphenol fluorene on the heart shape and heart-beating rate of zebrafish. Our experiment results indicate that the multi-planar light sheet microscopy system provides a novel and feasible method for three-dimensional selected plane imaging and low-phototoxicity in vivo imaging.  相似文献   

6.
Most molecular imaging technologies require exogenous probes and may have some influence on the intracellular dynamics of target molecules. In contrast, Raman scattering light measurement can identify biomolecules in their innate state without application of staining methods. Our aim was to analyze intracellular dynamics of topoisomerase I inhibitor, CPT-11, by using slit-scanning confocal Raman microscopy, which can take Raman images with high temporal and spatial resolution. We could acquire images of the intracellular distribution of CPT-11 and its metabolite SN-38 within several minutes without use of any exogenous tags. Change of subcellular drug localization after treatment could be assessed by Raman imaging. We also showed intracellular conversion from CPT-11 to SN-38 using Raman spectra. The study shows the feasibility of using slit-scanning confocal Raman microscopy for the non-labeling evaluation of the intracellular dynamics of CPT-11 with high temporal and spatial resolution. We conclude that Raman spectromicroscopic imaging is useful for pharmacokinetic studies of anticancer drugs in living cells. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
High-resolution studies of dental tissues are of considerable interest for biomedical engineering and clinical applications. In this paper, we demonstrate the application of piezoresponse force microscopy (PFM) to nanoscale imaging of internal structure of human teeth by monitoring the local mechanical response to an electrical bias applied via a conductive tip. It is shown that PFM is capable of detecting dissimilar components of dental tissues, namely, proteins and calcified matrix, which have resembling morphology but different piezoelectric properties. It is demonstrated that collagen fibrils revealed in chemically treated intertubular dentin exhibit high piezoelectric activity and can be visualized in PFM with spatial resolution of 10 nm. Evidence of the presence of protein inclusions of 100-200 nm wide and several micrometers long in tooth enamel has been obtained. Furthermore, it is found that the peritubular dentin and intertubular dentin exhibit different piezoelectric behavior suggesting different concentration of collagen fibrils. The obtained results demonstrate a high potential of PFM in providing an additional insight into the structure of dental tissues. It is suggested that the PFM approach can be used to study the structure of a wide range of biological materials by monitoring their electromechanical behavior at the nanoscale.  相似文献   

8.
Colon tissue constitutes a valid model for the comparative analysis of soft tissue by Raman and Fourier transform infrared (FTIR) imaging because it contains four major tissue types such as muscle tissue, connective tissue, epithelium and nerve cells. Raman microscopic images were recorded in the mapping mode using 785 nm laser excitation and a step size of 10 μm from three regions within a thin section that encompassed mucus, mucosa, submucosa, and longitudinal and circular muscle layers. FTIR microscopic images that were composed of 4, 8 and 9 individual images of 4096 spectra each were recorded from the same regions using a FTIR spectrometer coupled to a microscope with a focal plane array detector. Furthermore, Raman microscopic images were recorded at a step size of 2.5 μm from three ganglia that belong to the myenteric plexus. The results are discussed with respect to lateral resolution, spectral resolution, acquisition time and sensitivity of both modalities. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
A method is presented for acquiring high‐spatial‐resolution spectral maps, in particular for Raman micro‐spectroscopy (RMS), by selectively sampling the spatial features of interest and interpolating the results. This method achieves up to 30 times reduction in the sampling time compared to raster‐scanning, the resulting images have excellent correlation with conventional histopathological staining, and are achieved with sufficient spectral signal‐to‐noise ratio to identify individual tissue structures. The benefits of this selective sampling method are not limited to tissue imaging however; it is expected that the method may be applied to other techniques which employ point‐by‐point mapping of large substrates. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
Spontaneous Raman scattering microspectroscopy, second harmonic generation (SHG) and 2‐photon excited fluorescence (2PF) were used in combination to characterize the morphology together with the chemical composition of the cell wall in native plant tissues. As the data obtained with unstained sections of Sorghum bicolor root and leaf tissues illustrate, nonresonant as well as pre‐resonant Raman microscopy in combination with hyperspectral analysis reveals details about the distribution and composition of the major cell wall constituents. Multivariate analysis of the Raman data allows separation of different tissue regions, specifically the endodermis, xylem and lumen. The orientation of cellulose microfibrils is obtained from polarization‐resolved SHG signals. Furthermore, 2‐photon autofluorescence images can be used to image lignification. The combined compositional, morphological and orientational information in the proposed coupling of SHG, Raman imaging and 2PF presents an extension of existing vibrational microspectroscopic imaging and multiphoton microscopic approaches not only for plant tissues.   相似文献   

11.
Alveolar type II (ATII) cells in the peripheral human lung spontaneously differentiate toward ATI cells, thus enabling air‐blood barrier formation. Here, linear Raman and coherent anti‐Stokes Raman scattering (CARS) microscopy are applied to study cell differentiation of freshly isolated ATII cells. The Raman spectra can successfully be correlated with gradual morphological and molecular changes during cell differentiation. Alveolar surfactant rich vesicles in ATII cells are identified based on phospholipid vibrations, while ATI‐like cells are characterized by the absence of vesicular structures. Complementary, CARS microscopy allows for three‐dimensional visualization of lipid vesicles within ATII cells and their secretion, while hyperspectral CARS enables the distinction between cellular proteins and lipids according to their vibrational signatures. This study paves the path for further label‐free investigations of lung cells and the role of the pulmonary surfactant, thus also providing a basis for rational development of future lung therapeutics.   相似文献   

12.
Non-alcoholic steatohepatitis (NASH) is a common liver disorder caused by fatty liver. Because NASH is associated with fibrotic and morphological changes in liver tissue, a direct imaging technique is required for accurate staging of liver tissue. For this purpose, in this study we took advantage of two label-free optical imaging techniques, second harmonic generation (SHG) and auto-fluorescence (AF), using two-photon excitation microscopy (TPEM). Three-dimensional ex vivo imaging of tissues from NASH model mice, followed by image processing, revealed that SHG and AF are sufficient to quantitatively characterize the hepatic capsule at an early stage and parenchymal morphologies associated with liver disease progression, respectively.  相似文献   

13.
Brown adipose tissue (BAT) consists of highly metabolically active adipocytes that catabolize nutrients to produce heat. Playing an active role in triacylglycerol (TAG) clearance, research has shown that dietary fatty acids can modulate the TAG chemistry deposition in BAT after weeks-long dietary intervention, similar to what has been shown in white adipose tissue (WAT). Our objective was to compare the influence of sustained, nonchronic dietary intervention (a 1-week interval) on WAT and interscapular BAT lipid metabolism and deposition in situ. We use quantitative, label-free chemical microscopy to show that 1 week of high fat diet (HFD) intervention results in dramatically larger lipid droplet (LD) growth in BAT (and liver) compared to LD growth in inguinal WAT (IWAT). Moreover, BAT showed lipid remodeling as increased unsaturated TAGs in LDs, resembling the dietary lipid composition, while WAT (and liver) did not show lipid remodeling on this time scale. Concurrently, expression of genes involved in lipid metabolism, particularly desaturases, was reduced in BAT and liver from HFD-fed mice after 1 week. Our data show that BAT lipid chemistry remodels exceptionally fast to dietary lipid intervention compared WAT, which further points towards a role in TAG clearance.  相似文献   

14.
The family of vibrational spectroscopic imaging techniques grows every few years and there is a need to compare and contrast new modalities with the better understood ones, especially in the case of demanding biological samples. Three vibrational spectroscopy techniques (high definition Fourier‐transform infrared [FT‐IR], Raman and atomic force microscopy infrared [AFM‐IR]) were applied for subcellular chemical imaging of cholesteryl esters in PC‐3 prostate cancer cells. The techniques were compared and contrasted in terms of image quality, spectral pattern and chemical information. All tested techniques were found to be useful in chemical imaging of cholesterol derivatives in cancer cells. The results obtained from FT‐IR and Raman imaging showed to be comparable, whereas those achieved from AFM‐IR study exhibited higher spectral heterogeneity. It confirms AFM‐IR method as a powerful tool in local chemical imaging of cells at the nanoscale level. Furthermore, due to polarization effect, p‐polarized AFM‐IR spectra showed strong enhancement of lipid bands when compared to FT‐IR.  相似文献   

15.
Cryopreservation is commonly used for the long-term storage of heart valve allografts. Despite the excellent hemodynamic performance and durability of cryopreserved allografts, reports have questioned whether cryopreservation affects the valvular structural proteins, collagen and elastin. This study uses two-photon laser scanning confocal microscopy (LSCM) to evaluate the effect of cryopreservation on collagen and elastin integrity within the leaflet and conduit of aortic and pulmonary human heart valves. To permit pairwise comparisons of fresh and cryopreserved tissue, test valves were bisected longitudinally with one segment imaged fresh and the other imaged after cryopreservation and brief storage in liquid nitrogen. Collagen was detected by second harmonic generation (SHG) stimulation and elastin by autofluorescence excitation. Qualitative analysis of all resultant images indicated the maintenance of collagen and elastin structure within leaflet and conduit post-cryopreservation. Analysis of the optimized percent laser transmission (OPLT) required for full dynamic range imaging of collagen and elastin showed that OPLT observations were highly variable among both fresh and cryopreserved samples. Changes in donor-specific average OPLT in response to cryopreservation exhibited no consistent directional trend. The donor-aggregated results predominantly showed no statistically significant change in collagen and elastin average OPLT due to cryopreservation. Since OPLT has an inverse relationship with structural signal intensity, these results indicate that there was largely no statistical difference in collagen and elastin signal strength between fresh and cryopreserved tissue. Overall, this study indicates that the conventional cryopreservation of human heart valve allografts does not detrimentally affect their collagen and elastin structural integrity.  相似文献   

16.
《Cell》2023,186(11):2475-2491.e22
  1. Download : Download high-res image (261KB)
  2. Download : Download full-size image
  相似文献   

17.
This study aims to characterize biochemical and morphological variations of the clinically relevant anatomical locations of in vivo oral tissue (ie, alveolar process, lateral tongue and floor of the mouth) by using hybrid Raman spectroscopy (RS) and optical coherence tomography (OCT) technique. A total of 1049 in vivo fingerprint (FP: 800‐1800 cm?1) and high wavenumber (HW: 2800‐3600 cm?1) Raman spectra were acquired from different oral tissue (alveolar process = 331, lateral tongue = 339 and floor of mouth = 379) of 26 normal subjects in the oral cavity under the OCT imaging guidance. The total Raman dataset were split into 2 parts: 80% for training and 20% for testing. Tissue optical attenuation coefficients of alveolar process, lateral tongue and the floor of the mouth were derived from OCT images, revealing the inter‐anatomical morphological differences; while RS uncovers subtle FP/HW Raman spectral differences among different oral tissues that can be attributed to the differences in inter‐ and intra‐cellular proteins, lipids, DNA and water structures and conformations, enlightening biochemical variability of different oral tissues at the molecular level. Partial least squares‐discriminant analysis implemented on the training dataset show that the integrated tissue optical attenuation coefficients and FP/HW Raman spectra provide diagnostic sensitivities of 99.6%, 82.3%, 50.2%, and specificities of 97.0%, 75.1%, 92.1%, respectively, which are superior to using either RS (sensitivities of 90.2%, 77.5%, 48.8%, and specificities of 95.8%, 72.1%, 88.8%) or optical attenuation coefficients derived from OCT (sensitivities of 75.0%, 78.2%, 47.2%, and specificities of 96.2%, 67.7%, 85.0%) for the differentiation among alveolar process, lateral tongue and the floor of the mouth. Furthermore, the diagnostic algorithms applied to the independent testing dataset based on hybrid RS‐OCT technique gives predictive diagnostic sensitivities of 100%, 76.5%, 51.3%, and specificities of 95.1%, 77.6%, 89.6%, respectively, for the classifications among alveolar process, lateral tongue and the floor of the mouth, which performs much better than either RS or optical attenuation coefficient derived from OCT imaging. This work suggests that inter‐anatomical morphological and biochemical variability are significant which should be considered as an important parameter in the interpretation and rendering of hybrid RS‐OCT technique for oral tissue diagnosis and characterization.   相似文献   

18.
We present a microscope on chip for automated imaging of Drosophila embryos by light sheet fluorescence microscopy. This integrated device, constituted by both optical and microfluidic components, allows the automatic acquisition of a 3D stack of images for specimens diluted in a liquid suspension. The device has been fully optimized to address the challenges related to the specimens under investigation. Indeed, the thickness and the high ellipticity of Drosophila embryos can degrade the image quality. In this regard, optical and fluidic optimization has been carried out to implement dual-sided illumination and automatic sample orientation. In addition, we highlight the dual color investigation capabilities of this device, by processing two sample populations encoding different fluorescent proteins. This work was made possible by the versatility of the used fabrication technique, femtosecond laser micromachining, which allows straightforward fabrication of both optical and fluidic components in glass substrates.  相似文献   

19.
20.
The properties of an optical microscope are analyzed and analytically evaluated with a simple and effective model in order to understand the true meaning, limitations, and real capabilities of a defocusing technique. Major emphasis is given to the applications related to microscopic objects of biological interest using fluorescence and absorption light microscopy. A procedure for three-dimensional viewing is analyzed and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号