首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metaxin is required for tumor necrosis factor-induced cell death   总被引:4,自引:1,他引:3       下载免费PDF全文
We used retrovirus insertion-mediated random mutagenesis and tumor necrosis factor (TNF) selection to generate TNF-resistant lines from L929 cells. The metaxin gene, which encodes a protein located on the outer membrane of mitochondria, was identified to be the gene disrupted in one of the resistant lines. The requirement of metaxin in TNF-induced cell death of L929 was confirmed by the restoration of TNF sensitivity after ectopic reconstitution of metaxin expression. Analysis of the cell death induced by other stimuli revealed that metaxin deficiency-mediated death resistance was selective to certain stimuli. Studies using deletion mutants of metaxin showed that mitochondrial association of metaxin is required for the function of metaxin. Over-expression of truncated metaxin lacking the mitochondria anchoring sequence mimicked metaxin deficiency in wild-type cells. Interfering with metaxin prevented TNF-induced necrotic cell death in L929 cells and apoptosis in MCF-7 cells. Our work has thus defined a novel component in the death pathway used by TNF and some other death stimuli.  相似文献   

2.
Reactive oxygen species (ROS) have been implicated as mediators of tumor necrosis factor-alpha (TNF) -induced apoptosis. In addition to leading to cell death, ROS can also promote cell growth and/or survival. We investigated these two roles of ROS in TNF-induced endothelial cell apoptosis. Human umbilical vein endothelial cells (HUVECs) stimulated with TNF produced an intracellular burst of ROS. Adenoviral-mediated gene transfer of a dominant negative form of the small GTPase Rac1 (Rac1N17) partially suppressed the TNF-induced oxidative burst without affecting TNF-induced mitochondrial ROS production. HUVECs were protected from TNF-induced apoptosis. Expression of Rac1N17 blocked TNF-induced activation of nuclear factor-kappa B (NF-kappaB), increased activity of caspase-3, and markedly augmented endothelial cell susceptibility to TNF-induced apoptosis. Direct inhibition of NF-kappaB through adenoviral expression of the super repressor form of inhibitor of kappaBalpha (I-kappaB S32/36A) also increased susceptibility of HUVECs to TNF-induced apoptosis. Rotenone, a mitochondrial electron transport chain inhibitor, suppressed TNF-induced mitochondrial ROS production, proteolytic cleavage of procaspase-3, and apoptosis. These findings show that Rac1 is an important regulator of TNF-induced ROS production in endothelial cells. Moreover, they suggest that Rac1-dependent ROS, directly or indirectly, lead to protection against TNF-induced death, whereas mitochondrial-derived ROS promote TNF-induced apoptosis.  相似文献   

3.
Tumor necrosis factor (TNF) alpha is a cytokine capable of inducing caspase-dependent (apoptotic) cell death in some cells and caspase-independent (necrosis-like) cell death in others. Here, using a mutagenesis screen for genes critical in TNF-induced death in L929 cells, we have found that H-ferritin deficiency is responsible for TNF resistance in a mutant line and that, upon treatment with TNF, this line fails to elevate levels of labile iron pool (LIP), critical for TNF-induced reactive oxygen species (ROS) production and ROS-dependent cell death. Since we found that TNF-induced LIP in L929 cells is primarily furnished by intracellular storage iron, the lesser induction of LIP in H-ferritin-deficient cells results from a reduction of intracellular iron storage caused by less H-ferritin. Different from some other cell lines, the H-ferritin gene in L929 cells is not TNF inducible; however, when H-ferritin is expressed in L929 cells under a TNF-inducible system, the TNF-induced LIP and subsequent ROS production and cell death were all prevented. Thus, LIP is a common denominator of ferritin both in the enhancement of cell death by basal steady-state H-ferritin and in protection against cell death by induced H-ferritin, thereby acting as a key determinant of TNF-induced cell death.  相似文献   

4.
We have previously shown that protein kinase Cε (PKCε) acts as an antiapoptotic protein and protects breast cancer MCF-7 cells from tumor necrosis factor-α (TNF)-mediated apoptosis. In the present study, we have investigated the mechanism by which PKCε inhibits TNF-induced cell death. Overexpression of wild-type PKCε (WT-PKCε) in MCF-7 cells decreased TNF-induced mitochondrial depolarization. Depletion of Bax by small interfering RNA (siRNA) attenuated TNF-induced cell death. Overexpression of PKCε in MCF-7 cells decreased dimerization of Bax and its translocation to the mitochondria. Knockdown of PKCε using siRNA induced Bax dimerization and mitochondrial translocation. PKCε was coimmunoprecipitated with Bax in MCF-7 cells. These results suggest that PKCε mediates its antiapoptotic effect partly by preventing activation and translocation of Bax to the mitochondria.  相似文献   

5.
We have compared several breast cancer cell lines that differ in their responsiveness to TNF to determine the involvement of PKC isozymes in regulating sensitivity of breast cancer cells to TNF. While MCF-7 and BT-20 cells were responsive to TNF without any metabolic inhibitors, CAMA-1 and SKBR-3 cells responded to TNF in the presence of cycloheximide; MDA-MB-231 and Hs578t cells were resistant to TNF even in the presence of cycloheximide. Bisindolylmaleimide (BIM), an inhibitor of PKC, either alone (MCF-7 and BT-20) or in combination with cycloheximide enhanced sensitivity of these cells to TNF. The PKC isozyme profile of MCF-7 cells was similar to BT-20 cells and that of CAMA-1 cells was similar to SKBR-3 cells. MCF-7, BT-20 and MDA-MB-231 cells that were most responsive to BIM-mediated sensitization to TNF contained relatively high level of PKC epsilon and proteolytic cleavage of PKC epsilon correlated with TNF-induced cell death. BIM did not inhibit NF-kappa B activation by TNF but caused activation of caspases and enhanced cleavage of PKC delta and -epsilon. These results suggest that proteolytic cleavage of PKC epsilon may be associated with PKC inhibitor mediated sensitization of breast cancer cells to TNF.  相似文献   

6.
We have previously shown that protein kinase Cepsilon (PKCepsilon) protects breast cancer cells from tumor necrosis factor-alpha (TNF)-induced cell death. In the present study, we have investigated if the antiapoptotic function of PKCepsilon is mediated via Akt and the mechanism by which PKCepsilon regulates Akt activity. TNF caused a transient increase in Akt phosphorylation at Ser473 in MCF-7 cells. Overexpression of PKCepsilon in MCF-7 cells increased TNF-induced Akt phosphorylation at Ser473 resulting in its activation. Knockdown of PKCepsilon by small interfering RNA (siRNA) decreased TNF-induced Akt phosphorylation/activation and increased cell death. Introduction of constitutively active Akt protected breast cancer MCF-7 cells from TNF-mediated cell death and partially restored cell survival in PKCepsilon-depleted cells. Depletion of Akt in MCF-7 cells abolished the antiapoptotic effect of PKCepsilon on TNF-mediated cell death. Akt was constitutively associated with PKCepsilon and DNA-dependent protein kinase (DNA-PK), and this association was increased by TNF treatment. Overexpression of PKCepsilon enhanced the interaction between Akt and DNA-PK. Knockdown of DNA-PK by siRNA inhibited TNF-induced Akt phosphorylation and the antiapoptotic effect of Akt and PKCepsilon. These results suggest that PKCepsilon activates Akt via DNA-PK to mediate its antiapoptotic function. Furthermore, we report for the first time that DNA-PK can regulate receptor-initiated apoptosis via Akt.  相似文献   

7.
Arachidonic acid (AA) generated by cytosolic phospholipase A2 (cPLA2) has been suggested to function as a second messenger in tumor necrosis factor (TNF)-induced death signaling. Here, we show that cathepsin B-like proteases are required for the TNF-induced AA release in transformed cells. Pharmaceutical inhibitors of cathepsin B blocked TNF-induced AA release in human breast (MCF-7S1) and cervix (ME-180as) carcinoma as well as murine fibrosarcoma (WEHI-S) cells. Furthermore, TNF-induced AA release was significantly reduced in cathepsin B-deficient immortalized murine embryonic fibroblasts. Employing cPLA2-deficient MCF-7S1 cells expressing ectopic cPLA2 or cPLA2-deficient immortalized murine embryonic fibroblasts, we showed that cPLA2 is dispensable for TNF-induced AA release and death in these cells. Furthermore, TNF-induced cathepsin B-dependent AA release could be dissociated from the cathepsin B-independent cell death in MCF-7S1 cells, whereas both events required cathepsin B activity in other cell lines tested. These data suggest that cathepsin B inhibitors may prove useful not only in the direct control of cell death but also in limiting the damage-associated inflammation.  相似文献   

8.
The mechanism of tumor necrosis factor (TNF)-induced nonapoptotic cell death is largely unknown, although the mechanism of TNF-induced apoptosis has been studied extensively. In wild-type mouse embryonic fibroblast cells under a caspase-inhibited condition, TNF effectively induced cell death that morphologically resembled necrosis. In this study, we utilized gene knockout mouse embryonic fibroblasts cells and found that tumor necrosis factor receptor (TNFR) I mediates TNF-induced necrotic cell death, and that RIP, FADD, and TRAF2 are critical components of the signaling cascade of this TNF-induced necrotic cell death. Inhibitors of NF-kappaB facilitated TNF-induced necrotic cell death, suggesting that NF-kappaB suppresses the necrotic cell death pathway. JNK, p38, and ERK activation seem not to be required for this type of cell death because mitogen-activated protein kinase inhibitors did not significantly affect TNF-induced necrotic cell death. In agreement with the previous reports that the reactive oxygen species (ROS) may play an important role in this type of cell death, the ROS scavenger butylated hydroxyanisole efficiently blocked TNF-induced necrotic cell death. Interestingly, during TNF-induced necrotic cell death, the cellular ROS level was significantly elevated in wild type, but not in RIP(-/-), TRAF2(-/-), and FADD(-/-) cells. These results suggest that RIP, TRAF2, and FADD are crucial in mediating ROS accumulation in TNF-induced necrotic cell death.  相似文献   

9.
10.
The role of autophagy in cell death is under considerable debate. The process of autophagy has been shown to lead to either cell survival or cell death depending on cell type and stimulus. In the present study, we determined the contribution of ERK1/2 signalling to autophagy and cell death induced by tumour necrosis factor-α (TNF) in MCF-7 breast cancer cells. Treatment of MCF-7 cells with TNF caused a time-dependent increase in ERK1/2 activity. There was an induction of autophagy and cleavage of caspase-7, -8, -9 and PARP. Pharmacological inhibition of ERK1/2 phosphorylation with U0126 or PD98059 resulted in a decrease in TNF-induced autophagy that was accompanied by an increase in cleavage of caspase-7, -8, -9 and PARP Furthermore, inhibition of ERK1/2 signalling resulted in decreased clonogenic capacity of MCF-7 cells. These data suggest that TNF-induces autophagy through ERK1/2 and that inhibition of autophagy increases cellular sensitivity to TNF.  相似文献   

11.
Tumor necrosis factor-α (TNF) is described as a main regulator of cell survival and apoptosis in multiple types of cells, including hepatocytes. Dysregulation in TNF-induced apoptosis is associated with many autoimmune diseases and various liver diseases. Here, we demonstrated a crucial role of Bcl-3, an IκB family member, in regulating TNF-induced hepatic cell death. Specifically, we found that the presence of Bcl-3 promoted TNF-induced cell death in the liver, while Bcl-3 deficiency protected mice against TNF/D-GalN induced hepatoxicity and lethality. Consistently, Bcl-3-depleted hepatic cells exhibited decreased sensitivity to TNF-induced apoptosis when stimulated with TNF/CHX. Mechanistically, the in vitro results showed that Bcl-3 interacted with the deubiquitinase CYLD to synergistically switch the ubiquitination status of RIP1 and facilitate the formation of death-inducing Complex II. This complex further resulted in activation of the caspase cascade to induce apoptosis. By revealing this novel role of Bcl-3 in regulating TNF-induced hepatic cell death, this study provides a potential therapeutic target for liver diseases caused by TNF-related apoptosis.Subject terms: Protein folding, Genetics research  相似文献   

12.
The role of autophagy in cell death is under considerable debate. The process of autophagy has been shown to lead to either cell survival or cell death depending on cell type and stimulus. In the present study, we determined the contribution of ERK1/2 signalling to autophagy and cell death induced by tumour necrosis factor-alpha (TNF) in MCF-7 breast cancer cells. Treatment of MCF-7 cells with TNF caused a time-dependent increase in ERK1/2 activity. There was an induction of autophagy and cleavage of caspase-7, -8, -9 and PARP. Pharmacological inhibition of ERK1/2 phosphorylation with U0126 or PD98059 resulted in a decrease in TNF-induced autophagy that was accompanied by an increase in cleavage of caspase-7, -8, -9 and PARP Furthermore, inhibition of ERK1/2 signalling resulted in decreased clonogenic capacity of MCF-7 cells. These data suggest that TNF-induces autophagy through ERK1/2 and that inhibition of autophagy increases cellular sensitivity to TNF.  相似文献   

13.
Breast cancer is a leading cause of death for women. The estrogen receptors (ERs) ratio is important in the maintenance of mitochondrial redox status, and higher levels of ERβ increases mitochondrial functionality, decreasing ROS production. Our aim was to determine the interaction between the ERα/ERβ ratio and the response to cytotoxic treatments such as cisplatin (CDDP), paclitaxel (PTX) and tamoxifen (TAM). Cell viability, apoptosis, autophagy, ROS production, mitochondrial membrane potential, mitochondrial mass and mitochondrial functionality were analyzed in MCF-7 (high ERα/ERβ ratio) and T47D (low ERα/ERβ ratio) breast cancer cell lines. Cell viability decreased more in MCF-7 when treated with CDDP and PTX. Apoptosis was less activated after cytotoxic treatments in T47D than in MCF-7 cells. Nevertheless, autophagy was increased more in CDDP-treated MCF-7, but less in TAM-treated cells than in T47D. CDDP treatment produced a raise in mitochondrial mass in MCF-7, as well as the citochrome c oxidase (COX) and ATP synthase protein levels, however significantly reduced COX activity. In CDDP-treated cells, the overexpression of ERβ in MCF-7 caused a reduction in apoptosis, autophagy and ROS production, leading to higher cell survival; and the silencing of ERβ in T47D cells promoted the opposite effects. In TAM-treated cells, ERβ-overexpression led to less cell viability by an increment in autophagy; and the partial knockdown of ERβ in T47D triggered an increase in ROS production and apoptosis, leading to cell death. In conclusion, ERβ expression plays an important role in the response of cancer cells to cytotoxic agents, especially for cisplatin treatment.  相似文献   

14.
Redox regulation of TNF signaling   总被引:2,自引:0,他引:2  
TNF is produced during inflammation and induces, among other activities, cell death in sensitive tumour cells. We previously reported an increased generation of ROS in TNF-treated L929 fibrosarcoma cells prior to cell death. These ROS are of mitochondrial origin and participate in the cell death process. Presently, we focus on the identification of parameters that control ROS production and subsequent cytotoxicity. From the cytotoxic properties and susceptibility to scavenging of TNF-induced ROS as compared to pro-oxidant-induced ROS we conclude that TNF-mediated ROS generation and their lethal action are confined to the inner mitochondrial membrane. Oxidative substrates, electron-transport inhibitors, glutathione and thiol-reactive agents but also caspase inhibitors modulate TNF-induced ROS production and imply the existence of a negative regulator of ROS production. Inactivation of this regulator by a TNF-induced reduction of NAD(P)H levels and/or formation of intraprotein disulfides would be responsible for ROS generation.  相似文献   

15.
The surfactin can inhibit proliferation and induce apoptosis in cancer cells. Moreover, surfactin can induce cell death in human breast cancer MCF-7 cells through mitochondrial pathway. However, the molecular mechanism involved in this pathway remains to be elucidated. Here, the reactive oxygen species (ROS) and Ca2+ on mitochondria permeability transition pore (MPTP) activity, and MCF-7 cell apoptosis which induced by surfactin were investigated. It is found that surfactin evoked mitochondrial ROS generation, and the surfactin-induced cell death was prevented by N-acetylcysteine (NAC, an inhibitor of ROS). An increasing cytoplasmic Ca2+ concentration was detected in surfactin-induced MCF-7 apoptosis, which was inhibited by 1,2-bis (2-aminophenoxy) ethane-N,N,N′,N′-tetraacetic acid (BAPTA-AM, a chelator of calcium). In addition, the relationship between ROS generation and the increase of cytoplasm Ca2+ was determined. The results showed that surfactin initially induced the ROS formation, leading to the MPTP opening accompanied with the collapse of mitochondrial membrane potential (ΔΨm). Then the cytoplasmic Ca2+ concentration increased in virtue of the changes of mitochondrial permeability, which was prevented by BAPTA-AM. Besides, cytochrome c (cyt c) was released from mitochondria to cytoplasm through the MPTP and activated caspase-9, eventually induced apoptosis. In summary, surfactin has notable anti-tumor effect on MCF-7 cells, however, there was no obvious cytotoxicity on normal cells.  相似文献   

16.
Chronic inflammation of the gastrointestinal tract increasing the risk of cancer has been described to be linked to the high expression of the mitochondrial translocator protein (18 kDa; TSPO). Accordingly, TSPO drug ligands have been shown to regulate cytokine production and to improve tissue reconstruction. We used HT-29 human colon carcinoma cells to evaluate the role of TSPO and its drug ligands in tumor necrosis factor (TNF)-induced inflammation. TNF-induced interleukin (IL)-8 expression, coupled to reactive oxygen species (ROS) production, was followed by TSPO overexpression. TNF also destabilized mitochondrial ultrastructure, inducing cell death by apoptosis. Treatment with the TSPO drug ligand PK 11195 maintained the mitochondrial ultrastructure, reducing IL-8 and ROS production and cell death. TSPO silencing and overexpression studies demonstrated that the presence of TSPO is essential to control IL-8 and ROS production, so as to maintain mitochondrial ultrastructure and to prevent cell death. Taken together, our data indicate that inflammation results in the disruption of mitochondrial complexes containing TSPO, leading to cell death and epithelia disruption. Significance: This work implicates TSPO in the maintenance of mitochondrial membrane integrity and in the control of mitochondrial ROS production, ultimately favoring tissue regeneration.  相似文献   

17.
Ceramide has been proposed to be an important signaling intermediate in tumor necrosis factor (TNF)-induced apoptosis in human MCF-7 breast adenocarcinoma cells. We compared cell death and signal transduction pathways induced by TNF and ceramide in TNF-sensitive, parental MCF-7 cells to those in TNF-resistant, MCF-7 cells (3E9). TNF caused proteolysis of the caspase substrate, polyADP-ribose polymerase (PARP) in parental cells, but not in 3E9 cells. Both apoptosis and PARP cleavage were strongly prevented by co-incubation with caspase inhibitors. In contrast, ceramide-induced cell death was neither affected by TNF resistance nor was it associated with PARP cleavage, and death could not be prevented by co-incubation with caspase inhibitors in either cell line. TNF was able to activate JNK/SAPK approximately 30-fold and approximately 5-fold in parental MCF-7 and 3E9 cells, respectively; in contrast, cell-permeable ceramide only weakly stimulated JNK/SAPK activity in either cell type. Although JNK was activated by TNF, pharmacological blockade of the JNK pathway did not inhibit TNF- or ceramide-mediated cell death. Using mass spectroscopic analysis for ceramide, no increase, rather, a decrease in total ceramide content in TNF-treated parental cells was observed. These results suggest that the cell death signaling and execution pathways utilized by ceramide are distinct from those activated by TNF in MCF-7 cells.  相似文献   

18.
19.
Tumor necrosis factor-alpha (TNF) is a multifunctional cytokine which is cytotoxic for some tumor cells and transformed cells. The molecular mechanisms which render transformed and tumor cells sensitive to the cytotoxic action of TNF are unclear. We show here that an increased expression of the c-Myc oncoprotein strongly increases cellular sensitivity to TNF cytotoxicity. In Rat1A fibroblasts, which are resistant to TNF, the addition of TNF with a concomitant activation of a hormone-inducible c-Myc-estrogen receptor chimera (MycER) resulted in apoptotic cell death. Similarly, c-Myc overexpression enhanced the sensitivity of NIH3T3 fibroblasts to TNF-induced death. The c-Myc and TNF-induced apoptosis was inhibited by ectopic expression of the Bcl2 oncoprotein and by the free oxygen radical scavenging enzyme Mn superoxide dismutase. Furthermore, in highly TNF-sensitive fibrosarcoma cells, antisense c-myc oligodeoxynucleotides caused a specific inhibition of TNF cytotoxicity. Our results suggest that the deregulation of c-Myc, which is common in human tumors and tumor cell lines is one reason why these cells are TNF sensitive.  相似文献   

20.
We used retrovirus insertion-mediated random mutagenesis to generate tumor necrosis factor (TNF)-resistant lines from L929 cells. Using this approach, we discovered that the plasma membrane calcium ATPase 4 (PMCA4) is required for TNF-induced cell death in L929 cells. Under basal conditions, PMCA4-deficient (PMCA(mut)) cells have a normal phenotype. However, stimulation with TNF induces an abnormal increase in the intracellular calcium concentration ([Ca(2+)](i)). The substantially elevated [Ca(2+)](i) caused resistance to TNF-induced cell death. We found that an increase in the total volume of acidic compartments (VAC), mainly constituted by lysosomes, is a common event in cell death caused by a variety of agonists. The increased [Ca(2+)](i) in PMCA(mut) cells promoted lysosome exocytosis, which, at least in part, accounted for the inhibition of TNF-induced increase in VAC and cell death. Promoting lysosome exocytosis by calcium inhibited TNF-induced cell death in wild-type L929 cells, while inhibition of lysosome exocytosis or increase of VAC by sucrose restored the sensitivity of PMCA(mut) cells to TNF-induced cell death. Thus, increase of the volume of acidic compartment is a part of the cell death process, and the antideath effect of calcium is mediated, at least in part, by inhibition of the TNF-induced increase in VAC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号