首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Chromatin structure and gene expression are regulated by posttranslational modifications (PTMs) on the N-terminal tails of histones. Mono-, di-, or trimethylation of lysine residues by histone lysine methyltransferases (HKMTases) can have activating or repressive functions depending on the position and context of the modified lysine. In Arabidopsis, trimethylation of lysine 9 on histone H3 (H3K9me3) is mainly associated with euchromatin and transcribed genes, although low levels of this mark are also detected at transposons and repeat sequences. Besides the evolutionarily conserved SET domain which is responsible for enzyme activity, most HKMTases also contain additional domains which enable them to respond to other PTMs or cellular signals. Here we show that the N-terminal WIYLD domain of the Arabidopsis SUVR4 HKMTase binds ubiquitin and that the SUVR4 product specificity shifts from di- to trimethylation in the presence of free ubiquitin, enabling conversion of H3K9me1 to H3K9me3 in vitro. Chromatin immunoprecipitation and immunocytological analysis showed that SUVR4 in vivo specifically converts H3K9me1 to H3K9me3 at transposons and pseudogenes and has a locus-specific repressive effect on the expression of such elements. Bisulfite sequencing indicates that this repression involves both DNA methylation-dependent and -independent mechanisms. Transcribed genes with high endogenous levels of H3K4me3, H3K9me3, and H2Bub1, but low H3K9me1, are generally unaffected by SUVR4 activity. Our results imply that SUVR4 is involved in the epigenetic defense mechanism by trimethylating H3K9 to suppress potentially harmful transposon activity.  相似文献   

3.
DNA methylation and H3K9 trimethylation are involved in gene silencing and heterochromatin assembly in mammals and fungi. In the filamentous fungus Neurospora crassa, it has been demonstrated that H3K9 trimethylation catalyzed by histone methyltransferase DIM-5 is essential for DNA methylation. Trimethylated H3K9 is recognized by HP1, which then recruits the DNA methyltransferase DIM-2 to methylate the DNA. Here, we show that in Neurospora, ubiquitin ligase components Cullin4 and DDB1 are essential for DNA methylation. These proteins regulate DNA methylation through their effects on the trimethylation of histone H3K9. In addition, we showed that the E3 ligase activity of the Cul4-based ubiquitin ligase is required for its function in histone H3K9 trimethylation in Neurospora. Furthermore, we demonstrated that Cul4 and DDB1 are associated with the histone methyltransferase DIM-5 protein in vivo. Together, these results suggest a mechanism for DNA methylation control that may be applicable in other eukaryotic organisms.  相似文献   

4.
5.

Background  

Histone lysine methylation plays a fundamental role in chromatin organization and marks distinct chromatin regions. In particular, trimethylation at lysine 9 of histone H3 (H3K9) and at lysine 20 of histone H4 (H4K20) governed by the histone methyltransferases SUV39H1/2 and SUV420H1/2 respectively, have emerged as a hallmark of pericentric heterochromatin. Controlled chromatin organization is crucial for gene expression regulation and genome stability. Therefore, it is essential to analyze mechanisms responsible for high order chromatin packing and in particular the interplay between enzymes involved in histone modifications, such as histone methyltransferases and proteins that recognize these epigenetic marks.  相似文献   

6.
7.
Nuclear core histone modifications influence chromosome structures and functions. Recently, the involvement of histone acetylations in the cell memory of gene expression has been suggested in mouse oocyte maturation. At present, there is little available data on histone modifications in mammalian oocyte maturation. In the present study, we examined changes in the acetylation of histone H3 lysines 9 (H3K9) and 14 (H3K14), and histone H4 lysines 5 (H4K5), 8 (H4K8) and 12 (H4K12), and trimethylation of H3K9 during in vitro maturation of porcine oocytes. Immunocytochemical analyses revealed that the all of the lysines examined were highly acetylated in the germinal vesicle stage, and this level of acetylation was maintained until the first prometaphase. In the first metaphase, the lysines near the N-terminal end, H3K9 and H4K5, were completely deacetylated. The acetylation of the lysines far from the N-terminal end, H3K14, H4K8, and H4K12, was markedly decreased but still present. The acetylations were increased transiently at the first anaphase and telophase, and then decreased again at the second metaphase to the same level as the first metaphase. Since effective concentrations of trichostatin A (TSA) to inhibit the deacetylation were different in various lysine residues, multiple histone deacetylases (HDACs) were suggested to function during meiotic maturation. The trimethylation of H3K9 was maintained in a high level throughout maturation. These results suggest that the histone acetylation during porcine oocyte maturation is precisely controlled by the cell cycle.  相似文献   

8.
Latent HIV-1 (human immunodeficiency virus-1) provirus is unaffected by current AIDS (acquired immunodeficiency syndrome) therapies. We show here that chaetocin, an SUV39H1 histone methyltransferase inhibitor, causes 25-fold induction of latent HIV-1 expression, while producing minimal toxicity and without causing T cell activation. Induction is associated with loss of histone H3 lysine 9 (H3K9) trimethylation at the long terminal repeat (LTR) promoter, and a corresponding increase in H3K9 acetylation. The effect of chaetocin is amplified synergistically in combination with histone deacetylase (HDAC) inhibitors. These results indicate that chaetocin may provide a therapy to purge cells of latent HIV-1, possibly in combination with other chromatin remodeling drugs.  相似文献   

9.
10.
DNA methylation is involved in gene silencing and genome stability in organisms from fungi to mammals. Genetic studies in Neurospora crassa previously showed that the CUL4-DDB1 E3 ubiquitin ligase regulates DNA methylation via histone H3K9 trimethylation. However, the substrate-specific adaptors of this ligase that are involved in the process were not known. Here, we show that, among the 16 DDB1- and Cul4-associated factors (DCAFs) encoded in the N. crassa genome, three interacted strongly with CUL4-DDB1 complexes. DNA methylation analyses of dcaf knockout mutants revealed that dcaf26 was required for all of the DNA methylation that we observed. In addition, histone H3K9 trimethylation was also eliminated in dcaf26KO mutants. Based on the finding that DCAF26 associates with DDB1 and the histone methyltransferase DIM-5, we propose that DCAF26 protein is the major adaptor subunit of the Cul4-DDB1-DCAF26 complex, which recruits DIM-5 to DNA regions to initiate H3K9 trimethylation and DNA methylation in N. crassa.  相似文献   

11.
12.
13.
Shi J  Dawe RK 《Genetics》2006,173(3):1571-1583
We report a detailed analysis of maize chromosome structure with respect to seven histone H3 methylation states (dimethylation at lysine 4 and mono-, di-, and trimethylation at lysines 9 and 27). Three-dimensional light microscopy and the fine cytological resolution of maize pachytene chromosomes made it possible to compare the distribution of individual histone methylation events to each other and to DNA staining intensity. Major conclusions are that (1) H3K27me2 marks classical heterochromatin; (2) H3K4me2 is limited to areas between and around H3K27me2-marked chromomeres, clearly demarcating the euchromatic gene space; (3) H3K9me2 is restricted to the euchromatic gene space; (4) H3K27me3 occurs in a few (roughly seven) focused euchromatic domains; (5) centromeres and CENP-C are closely associated with H3K9me2 and H3K9me3; and (6) histone H4K20 di- and trimethylation are nearly or completely absent in maize. Each methylation state identifies different regions of the epigenome. We discuss the evolutionary lability of histone methylation profiles and draw a distinction between H3K9me2-mediated gene silencing and heterochromatin formation.  相似文献   

14.
15.
16.
17.
Trimethylation of lysine 9 in histone H3 (H3K9me3) enrichment is a characteristic of pericentric heterochromatin. The hypothesis of a stepwise mechanism to establish and maintain this mark during DNA replication suggests that newly synthesized histone H3 goes through an intermediate methylation state to become a substrate for the histone methyltransferase Suppressor of variegation 39 (Suv39H1/H2). How this intermediate methylation state is achieved and how it is targeted to the correct place at the right time is not yet known. Here, we show that the histone H3K9 methyltransferase SetDB1 associates with the specific heterochromatin protein 1α (HP1α)–chromatin assembly factor 1 (CAF1) chaperone complex. This complex monomethylates K9 on non‐nucleosomal histone H3. Therefore, the heterochromatic HP1α–CAF1–SetDB1 complex probably provides H3K9me1 for subsequent trimethylation by Suv39H1/H2 in pericentric regions. The connection of CAF1 with DNA replication, HP1α with heterochromatin formation and SetDB1 for H3K9me1 suggests a highly coordinated mechanism to ensure the propagation of H3K9me3 in pericentric heterochromatin during DNA replication.  相似文献   

18.
19.
Role of chromatin modification in flowering-time control   总被引:17,自引:0,他引:17  
  相似文献   

20.
5-Aza-2′-deoxycitidine (5-Aza), an anticancer agent, results in substantial toxicity to male reproduction, causing a decline in sperm quality associated with reduced testosterone. Here, we report that 5-Aza increased the apoptotic protein Bad epigenetically in the testosterone-producing mouse TM3 Leydig cell line. 5-Aza decreased cell viability in a dose- and time-dependent manner with concomitant increase in Bad protein. This increase is accompanied by increased cleavages of both poly ADP ribose polymerase and caspase-3. Flow cytometric analysis further supported 5-Aza-derived apoptosis in TM3 cells. Bisulfite sequencing analysis failed to identify putative methylcytosine site(s) in CpG islands of the Bad promoter. A chromatin immunoprecipitation assay revealed decreased levels of trimethylation at lysine 27 of histone H3 (H3K27-3me) and H3K9-3me in the Bad promoter region in response to 5-Aza treatment. Knock-down by siRNA of enhancer of zeste homologue 2 (EZH2), a histone methyltransferase responsible for H3K27-3me, or demethylation of H3K9-3me by BIX-01294 showed significantly increased levels in Bad expression and consequent Leydig cell apoptosis. In conclusion, our results demonstrate for the first time that Bad expression is regulated at least by EZH2-mediated H3K27-3me or G9a-like protein/euchromatic histone methyltransferase 1 (GLP/Eu-HMTase1)-mediated H3K9-3me in mouse TM3 Leydig cells, which may be implicated in 5-Aza-derived toxicity to male reproduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号