首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
T cells devoid of tumor necrosis factor receptor associated factor-3 (Traf3) exhibit decreased proliferation, sensitivity to apoptosis, and an improper response to antigen challenge. We therefore hypothesized that TRAF3 is critical to the growth of malignant T cells. By suppressing TRAF3 protein in different cancerous T cells, we found that anaplastic large cell lymphoma (ALCL) cells require TRAF3 for proliferation. Since reducing TRAF3 results in aberrant activation of the noncanonical nuclear factor-κB (NF-κB) pathway, we prevented noncanonical NF-κB signaling by suppressing RelB together with TRAF3. This revealed that TRAF3 regulates proliferation independent of the noncanonical NF-κB pathway. However, suppression of NF-κB-inducing kinase (NIK) along with TRAF3 showed that high levels of NIK have a partial role in blocking cell cycle progression. Further investigation into the mechanism by which TRAF3 regulates cell division demonstrated that TRAF3 is essential for continued PI3K/AKT and JAK/STAT signaling. In addition, we found that while NIK is dispensable for controlling JAK/STAT activity, NIK is critical to regulating the PI3K/AKT pathway. Analysis of the phosphatase and tensin homolog (PTEN) showed that NIK modulates PI3K/AKT signaling by altering the localization of PTEN. Together our findings implicate TRAF3 as a positive regulator of the PI3K/AKT and JAK/STAT pathways and reveal a novel function for NIK in controlling PI3K/AKT activity. These results provide further insight into the role of TRAF3 and NIK in T cell malignancies and indicate that TRAF3 differentially governs the growth of B and T cell cancers.  相似文献   

6.
7.
The small G-protein ADP-ribosylation factor 6 (Arf6) belongs to the Ras GTPases superfamily and is mostly known for its actin remodeling functions and involvement in the processes of plasma membrane reorganization and vesicular transport. The majority of data indicates that Arf6 contributes to cancer progression through activation of cell motility and invasion. Alternatively, we found that the expression of a wild-type or a constitutively active Arf6 does not influence tumor cell motility and invasion but instead significantly stimulates cell proliferation and activates phospholipase D (PLD). Conversely the expression of a mutant Arf6 (Arf6N48I), that is, unable to interact with PLD has no effect on proliferation but promotes motility, invasion, and matrix degradation by uPA extracellular proteinase. Studying the mechanisms of Arf6-dependent stimulation of cell proliferation, we found some signaling pathways contributing to Arf6 promitogenic activity. Namely, we showed that Arf6 in a PLD-mTORC1-dependent manner activates S6K1 kinase, a well-known regulator of mitogen-stimulated translation initiation. Furthermore, we demonstrated an Arf6-dependent phosphorylation of mTORC1 downstream targets, 4E-BP1 and ribosomal S6 protein, confirming an existence of Arf6-PLD-mTORC1-S6K1/4E-BP1 signaling pathway and also demonstrated its impact on proliferation stimulation. Next, we found that Arf6 activation potentiates Erk1/2 and p38MAP kinases phosphorylation. Surprisingly, p38 opposite to Erk1/2 significantly contributes to Arf6-dependent proliferation increase promoting S6 ribosomal protein phosphorylation at Ser235/236 residues. Therefore, we demonstrated Arf6 proliferation stimulating activity and revealed PLD-mTORC1 and p38MAP kinase as Arf6 partners mediating promitogenic activity. These results highlight a new aspect of Arf6 functioning in cancer cell biology.  相似文献   

8.
9.
In multiple myeloma, which commonly depends on interleukin 6, IL-6, survival signaling induced by this cytokine is largely mediated by activation of STAT3. Interferon alpha (IFNalpha) treatment of cell lines derived from multiple myeloma or of myeloma tumor cells ex vivo leads to apoptosis. In this study we demonstrate that IFNalpha treatment of the two myeloma cell lines, U266-1984 and U-1958, results in the decrease of STAT3 activity as demonstrated by a diminished STAT3/3 DNA-binding activity and the shift from STAT3/3 towards STAT1/1 and STAT3/1 complexes in EMSA, leading to the down-regulation of known STAT3 target genes such as Bcl-X(L), Mcl-1 and survivin. Ectopic expression of a form of STAT3, STAT3C, rescued U266-1984 cells from IFNalpha-induced apoptosis. IFNalpha promoted sustained accumulation of tyrosine phosphorylated STAT3C in the nucleus and a prolonged DNA binding of the STAT3/3 homodimers in EMSA. The shift towards a sustained STAT3 response in IFNalpha-treated STAT3C-transfected cells led to a hyper-induction of Bcl-2 and Mcl-1 proteins. Thus our data demonstrated that IFNalpha is able to interfere with IL-6 signaling by inhibiting STAT3 activity and that the abrogation of STAT3 activity accounts for the ability of IFNalpha to induce apoptosis in myeloma cells.  相似文献   

10.
Oxoglutarate receptor 1 (OXGR1), as one of the intermediates in G protein-coupled receptors (GPCRs), plays a crucial role in the citric acid cycle receptor of α-ketoglutarate and metabolism. GPCR can control the cell proliferation by regulating the downstream signaling of G protein signaling pathways. The PI3K/AKT pathway transmits the downstream signals of GPCRs and receptor tyrosine kinases. However, the specific role of OXGR1 promoting cell proliferation and differentiation are still unknown. In current study, the over-expression vector and knockdown sequence of yak OXGR1 were transfected into yak fibroblasts, and the effects were detected by a series of assays. The results revealed that OXGR1 expression in yak lung parenchyma tissue was significantly higher than that of other tissues. In yak fibroblasts, the upregulated expression of OXGR1 resulted in activating the PIK3CG (downstream signal) of the PI3K/AKT1 pathway that can upregulated the expression of proliferation genes ( CDK1, PCNA, and CyclinD1) and promote cell proliferation. Conversely, the downregulated expression of OXGR1 inhibited cell proliferation via PI3K/AKT1 pathway. Cell cycle and cell proliferation assays demonstrated that over-expression of OXGR1 can enhanced the DNA synthesis and promoted yak fibroblasts proliferation. While the conversely, knockdown of OXGR1 can decreased DNA synthesis and inhibited cell proliferation. These results illustrated that changes of OXGR1 expression can trigger the fibroblasts proliferation via PI3K/AKT signaling pathway, which indicating that OXGR1 is a novel regulator for cell proliferation and differentiation. Furthermore, these results provide evidence supporting the functional role of GPCRs-PI3K-AKT1 and OXGR1 in cell proliferation.  相似文献   

11.
Periodontitis, an oral inflammatory disease caused by periodontal pathogen infection, is the most prevalent chronic inflammatory disease and a major burden on healthcare. The TAM receptor tyrosine kinases (Tyro3, Axl and Mertk) and their ligands (Gas6 and Pros1) play a pivotal role in the resolution of inflammation and have been associated with chronic inflammatory and autoimmune diseases. In this study, we evaluated the effects of exogenous Pros1 in in vitro and in vivo models of periodontitis. We detected higher Pros1 but lower Tyro3 levels in inflamed gingival specimens of periodontitis patients compared with healthy controls. Moreover, Pros1 was mostly localized in the gingival epithelium of all specimens. In cultured human gingival epithelial cells (hGECs), Porphyromonas gingivalis LPS (p.g‐LPS) stimulation down‐regulated Pros1 and Tyro3. Exogenous Pros1 inhibited p.g‐LPS–induced production of TNF‐α, IL‐6, IL‐1β, MMP9/2 and RANKL in a Tyro3‐dependent manner as revealed by PCR, Western blot analysis, ELISA and gelatin zymography. Pros1 also restored Tyro3 expression down‐regulated by p.g‐LPS in hGECs. In rats treated with ligature and p.g‐LPS, administration of Pros1 attenuated periodontitis‐associated gingival inflammation and alveolar bone loss. Our mechanistic studies implicated SOCS1/3 and STAT1/3 as mediators of the in vitro and in vivo anti‐inflammatory effects of Pros1. Collectively, the findings from this work supported Pros1 as a novel anti‐inflammatory therapy for periodontitis.  相似文献   

12.
Etscheid M  Beer N  Dodt J 《Cellular signalling》2005,17(12):1486-1494
The hyaluronan-binding protease (HABP) is a serine protease in human plasma which is structurally related to plasminogen activators, coagulation factor XII and hepathocyte growth factor activator. It can in vitro activate the coagulation factor FVII, kininogen and plasminogen activators. The present study was initiated to gain a more complete picture of the cell-associated activities of this fibrinolysis-related protease. Treatment of lung fibroblasts with HABP lead to a rapid activation of signalling pathways, including the mitogen-activated protein kinase (MAPK) pathway with c-Raf, MEK and ERK1/2. Additionally the activation of the PI3K/Akt pathway and of several translation-related proteins was found. Proliferation assays confirmed the assumption of a strong growth-stimulating effect of HABP on human lung and skin fibroblasts. Intracellular signalling and growth stimulation were strongly dependent on the proteolytic activity of HABP. Stimulation of signalling and proliferation by HABP involved the fibroblast growth factor receptor 1 (FGFR-1). HABP-stimulated proliferation of lung fibroblasts MRC-5 was accompanied by a significant intracellular increase in basic fibroblast growth factor (bFGF), the major ligand of FGFR-1; bFGF could however not be identified in the supernatant of HABP-treated cells. Though, the conditioned medium from HABP-treated cells showed a strong growth-promoting activity on quiescent fibroblasts, indicating the release of a yet unknown growth factor amplifying the initial growth stimulus. In a two-dimensional wound model HABP stimulated the invasion of fibroblasts into a scratch area, adding a strong pro-migratory activity to this plasma protease. In summary, HABP exhibits a significant growth factor-like activity on quiescent human lung and dermal fibroblasts. Our findings suggest that this fibrinolysis-related plasma protease may participate in physiologic or pathologic processes where cell proliferation and migration are pivotal, like tissue repair, vascular remodelling, wound healing or tumor development.  相似文献   

13.
14.
突触结合蛋白1 (synaptotagmin 1,Syt1)属于突触结合蛋白家族一员,在神经递质囊泡转运和胞吐中发挥作用。Syt1在肠道上皮中有表达,但其在结肠炎中的生物学功能尚不明确。本工作以Syt1转基因小鼠结合葡聚糖硫酸钠(dextran sodium sulfate, DSS)诱导型溃疡性结肠炎模型,通过qRT-PCR、免疫染色及Western印迹检测Syt1在生理状态及肠炎状态下在结肠中表达的动态变化;采用H&E染色、免疫染色、Western印迹等方法,观察Syt1在结肠炎的炎症反应及肠道上皮再生修复中的作用。结果显示:正常野生小鼠的结肠上皮及结直肠癌患者癌旁组织的肠上皮细胞中均有较高水平的Syt1表达;DSS处理使Syt1在结肠中表达显著升高(P<0.01)。DSS诱导小鼠肠炎模型中,相较于对照组,Syt1敲减小鼠体重降低情况、结肠炎性红肿和长度缩短等均显著减轻(P<0.05),而再生隐窝数量则增多、Ki67增殖细胞也增多(P<0.01);结肠组织中的CD45免疫细胞、F4/80巨噬细胞浸润减少(P<0.001),炎症性肠病相关的促炎因子IL...  相似文献   

15.
IL-6 is a growth and survival factor for myeloma cells, although the mechanism by which it induces myeloma cell proliferation through gene expression is largely unknown. Microarray analysis showed that some B-cell lymphoma-associated oncogenes such as Bcl6, which is absent in normal plasma cells, were upregulated by IL-6 in IL-6-dependent myeloma cell lines. We found that Bcl6 variant 2 was upregulated by STAT3. ChIP assay and EMSA showed that STAT3 bound to the upstream region of variant 2 DNA. Expression of p53, a direct target gene of Bcl6, was downregulated in the IL-6-stimulated cells, and this process was impaired by an HDAC inhibitor. Bcl6 was knocked down by introducing small hairpin RNA, resulting in decreased proliferation and increased sensitivity to a DNA damaging agent. Thus, STAT3-inducible Bcl6 variant 2 appears to generate an important IL-6 signal that supports proliferation and survival of IL-6-dependent myeloma cells.  相似文献   

16.
目的:通过建立过表达PC-1的前列腺癌LNCaP细胞系及敲低PC-1表达的C4-2细胞系,探究PC-1激活AKT信号通路的分子机制。方法:将PC-1基因及针对PC-1的siRNA序列,分别克隆至慢病毒表达载体pCDH-EF1-Myc-MCS-T2A-Puro及干扰载体pSIH1-H1-Puro,包装成慢病毒后分别感染前列腺癌LNCaP及C4-2细胞,通过Western印迹鉴定PC-1过表达及敲低效果,并检测PI3K/AKT/mTOR信号通路相关蛋白S6K、AKT的磷酸化水平。结果:PC-1过表达时,S6K磷酸化水平下降,而AKT的磷酸化水平上升。结论:PC-1可以通过抑制S6K激酶活性,解除其对AKT的负反馈抑制作用,从而激活AKT激酶的活性。  相似文献   

17.
Tannic acid (TA), a naturally occurring polyphenol, is a potent anti‐oxidant with anti‐proliferative effects on multiple cancers. However, its ability to modulate gene‐specific expression of tumour suppressor genes and oncogenes has not been assessed. This work investigates the mechanism of TA to regulate canonical and non‐canonical STAT pathways to impose the gene‐specific induction of G1‐arrest and apoptosis. Regardless of the p53 status and membrane receptors, TA induced G1‐arrest and apoptosis in breast cancer cells. Tannic acid distinctly modulated both canonical and non‐canonical STAT pathways, each with a specific role in TA‐induced anti‐cancer effects. Tannic acid enhanced STAT1 ser727 phosphorylation via upstream serine kinase p38. This STAT1 ser727 phosphorylation enhanced the DNA‐binding activity of STAT1 and in turn enhanced expression of p21Waf1/Cip1. However, TA binds to EGF‐R and inhibits the tyrosine phosphorylation of both STAT1 and STAT3. This inhibition leads to the inhibition of STAT3/BCL‐2 DNA‐binding activity. As a result, the expression and mitochondrial localization of BCl‐2 are declined. This altered expression and localization of mitochondrial anti‐pore factors resulted in the release of cytochrome c and the activation of intrinsic apoptosis cascade involving caspases. Taken together, our results suggest that TA modulates EGF‐R/Jak2/STAT1/3 and P38/STAT1/p21Waf1/Cip1 pathways and induce G1‐arrest and intrinsic apoptosis in breast carcinomas.  相似文献   

18.
Abstract

Context: Pathological upregulation of the RAS/MAPK pathway causes Costello, Noonan and cardio–facio–cutaneous (CFC) syndrome; however, little is known about PI3K/AKT signal transduction in these syndromes. Previously, we found a novel mutation of the SOS1 gene (T158A) in a patient with Costello/CFC overlapping phenotype. Objective: The aim of this study was to investigate how this mutation affects RAS/MAPK as well as PI3K/AKT pathway signal transduction.

Materials and methods: Wild-type and mutant (T158A) Son of Sevenless 1 (SOS1) were transfected into 293T cells. The levels of phospho- and total ERK1/2, AKT, p70S6K and pS6 were examined under epidermal growth factor (EGF) stimulation. Results: After EGF stimulation, the ratio of phospho-ERK1/2 to total ERK1/2 was highest at 5?min in mutant (T158A) SOS1 cells, and at 15?min in wild-type SOS1 cells. Phospho-AKT was less abundant at 60?min in mutant than in wild-type SOS1 cells. Phosphorylation at various sites in p70S6K differed between wild-type and mutant cells. Eighteen hours after activation by EGF, the ratio of phospho-ERK1/2 to total ERK1/2 remained significantly higher in mutant than in wild-type SOS1 cells, but that of phospho-AKT to total AKT was unchanged. Discussion: T158A is located in the histone-like domain, which may have a role in auto-inhibition of RAS exchanger activity of SOS1. T158A may disrupt auto-inhibition and enhance RAS signaling. T158A also affects PI3K/AKT signaling, probably via negative feedback via phospho-p70S6K. Conclusion: The SOS1 T158A mutation altered the phosphorylation of gene products involved in both RAS/MAPK and PI3K/AKT pathways.  相似文献   

19.
20.
寻找可抑制IL-6/STAT3信号通路的活化从而抑制肿瘤的生长和恶化的中药单体化合物具有重要意义及发展前景。文中通过基因重组技术构建出一种含有STAT3增强子序列和NanoLuc(NLuc)报告基因序列的新表达载体,并进一步建立受STAT3调控并稳定表达NLuc荧光素酶的细胞系,利用该细胞系定量检测多种中药单体化合物对IL-6/STAT3信号通路的调控作用,并对抑制IL-6/STAT3信号通路的中药单体的效果进行验证。酶切鉴定及测序结果表明报告基因表达载体pQCXIP-STAT3-NLuc构建成功。STAT3转录因子的刺激物白细胞介素-6(IL-6)作用于所构建的稳定表达NLuc的细胞系后出现特异性荧光素酶反应,且作用效果呈良好的剂量依赖性,表明受STAT3调控稳定表达NLuc荧光素酶的细胞系构建成功。Western blotting及Real-time PCR实验结果表明所筛选的中药单体化合物石斛碱及粉防己碱可抑制IL-6/STAT3信号通路并显著下调其下游基因Bcl-2及Bcl-x的表达,且作用呈剂量依赖性。综上所述,文中构建了可高效检测STAT3转录活性的报告基因系统,并利用该系统成功地筛选出可抑制IL-6/STAT3信号通路的中药单体化合物,具有一定的理论和应用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号