首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Class III alcohol dehydrogenase, whose activity toward ethanol is negligible, has defined, specific properties and is not just a "variant" of the class I protein, the traditional liver enzyme. The primary structure of the horse class III protein has now been determined, and this allows the comparison of alcohol dehydrogenases from human, horse, and rat for both classes III and I, providing identical triads for both these enzyme types. Many consistent differences between the classes separate the two forms as distinct enzymes with characteristic properties. The mammalian class III enzymes are much less variable in structure than the corresponding typical liver enzymes of class I: there are 35 versus 84 positional differences in these identical three-species sets. The class III and class I subunits contain four versus two tryptophan residues, respectively. This makes the differences in absorbance at 280 nm a characteristic property. There are also 4-6 fewer positive charges in the class III enzymes accounting for their electrophoretic differences. The substrate binding site of class III differs from that of class I by replacements at positions that form the hydrophobic barrel typical for this site. In class III, two to four of these positions contain residues with polar or even charged side chains (positions 57 and 93 in all species, plus positions 116 in the horse and 140 in the human and the horse), while corresponding intraclass variation is small. All these structural features correlate with functional characteristics and suggest that the enzyme classes serve different roles. In addition, the replacements between these triad sets illustrate further general properties of the two mammalian alcohol dehydrogenase classes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The Asp-His-Ser triad of serine proteases has been regarded, in the present study, as an independent catalytic motif, because in nature it has been incorporated at the active sites of enzymes as diverse as the serine proteases and the lipases. Incorporating this motif into non-protease scaffolds, by rational design and mutagenesis, might lead to the generation of novel catalysts. As an aid to such experiments, a knowledge-based computer modeling procedure has been developed to model the protease Asp-His-Ser triad into non-proteases. Catalytic triads from a set of trypsin family proteases have been analyzed and criteria that characterize the geometry of the triads have been obtained. Using these criteria, the modeling procedure first identifies sites in non-proteases that are suitable for modeling the protease triad. H-bonded Asp-His-Ser triads, that mimic the protease catalytic triad in geometry, are then modeled in at these sites, provided it is stereochemically possible to do so. Thus non-protease sites at which H-bonded Asp-His-Ser triads are successfully modeled in may be considered for mutagenesis experiments that aim at introducing the protease triad into non-proteases. The triad modeling procedure has been used to identify sites for introducing the protease triad in three binding proteins and an immunoglobulin. A scoring function, depending on inter-residue distances, solvent accessibility and the substitution potential of amino acid residues at the modeling sites in the host proteins, has been used to assess the quality of the model triads.  相似文献   

3.
Metallo-β-lactamases (MBLs) or class B β-lactamases are zinc-dependent enzymes capable of inactivating almost all classes of β-lactam antibiotics. To date, no MBL inhibitors are available for clinical use. Of the three MBL subclasses, B2 enzymes, unlike those from subclasses B1 and B3, are fully active with one zinc ion bound and possess a narrow spectrum of activity, hydrolyzing carbapenem substrates almost exclusively. These remain the least studied MBLs. Sfh-I, originally identified from the aquatic bacterium Serratia fonticola UTAD54, is a divergent member of this group. Previous B2 MBL structures, available only for the CphA enzyme from Aeromonas hydrophila, all contain small molecules bound in their active sites. In consequence, the mechanism by which these enzymes activate the water nucleophile required for β-lactam hydrolysis remains to be unambiguously established. Here we report crystal structures of Sfh-I as a complex with glycerol and in the unliganded form, revealing for the first time the disposition of water molecules in the B2 MBL active site. Our data indicate that the hydrolytic water molecule is activated by His118 rather than by Asp120 and/or zinc. Consistent with this proposal, we show that the environment of His118 in B2 MBLs is distinct from that of the B1 and B3 enzymes, where this residue acts as a zinc ligand, and offer a structure-based mechanism for β-lactam hydrolysis by these enzymes.  相似文献   

4.
《Behavioural processes》1996,38(3):241-252
This study examines the role of observation during the formation of triads in female domestic hens. Results indicate that during hierarchy formation, a hen observing agonistic interactions and conflict settlement between its former dominant and a stranger uses this information when in turn confronted by the latter. Under a first condition (E, n = 15 triads), bystanders witnessed their prior dominant being defeated by a stranger before being introduced to them. In a second condition (C1, n = 16 triads), bystanders witnessed the victory of their prior dominant over a stranger. In a third condition (C2, n = 15 triads), bystanders witnessed two strangers establishing a dominance relationship before being introduced to their prior dominant and to a stranger the former had just defeated. The behavioural strategies of bystanders depended on the issue of the conflict they had witnessed. Bystanders of the E condition behaved as having no chance of defeating the stranger. They never initiated an attack against it, and upon being attacked, readily submitted in turn to the stranger. On the contrary, bystanders of the C1 condition behaved as having some chances against the stranger. They initiated attacks in 50% of cases, and won 50% of conflicts against the stranger. Under condition C2, bystanders first initiated contact with the strangers in only 27% of cases, which approximates the average of their chances for defeating the stranger. However, bystanders finally defeated the strangers in 40% of cases. These results suggest that bystanders of conditions E and C1 gained some information on the relationship existing between their prior dominant and the stranger and that they used it coherently, perhaps through transitive inference, thus contributing to the existence of transitive relationships within the triads. Alternate explanations are examined.  相似文献   

5.
Childhood acute lymphoblastic leukemia (ALL) is a condition that arises from complex etiologies. The absence of consistent environmental risk factors and the presence of modest familial associations suggest ALL is a complex trait with an underlying genetic component. The identification of genetic factors associated with disease is complicated by complex genetic covariance structures and multiple testing issues. Both issues can be resolved with appropriate Bayesian variable selection methods. The present study was undertaken to extend our hierarchical Bayesian model for case-parent triads to incorporate single nucleotide polymorphisms (SNPs) and incorporate the biological grouping of SNPs within genes. Based on previous evidence that genetic variation in the folate metabolic pathway influences ALL risk, we evaluated 128 tagging SNPs in 16 folate metabolic genes among 118 ALL case-parent triads recruited from the Texas Children’s Cancer Center (Houston, TX) between 2003 and 2010. We used stochastic search gene suggestion (SSGS) in hierarchical Bayesian models to evaluate the association between folate metabolic SNPs and ALL. Using Bayes factors among these variants in childhood ALL case-parent triads, two SNPs were identified with a Bayes factor greater than 1. There was evidence that the minor alleles of NOS3 rs3918186 (OR = 2.16; 95% CI: 1.51-3.15) and SLC19A1 rs1051266 (OR = 2.07; 95% CI: 1.25-3.46) were positively associated with childhood ALL. Our findings are suggestive of the role of inherited genetic variation in the folate metabolic pathway on childhood ALL risk, and they also suggest the utility of Bayesian variable selection methods in the context of case-parent triads for evaluating the role of SNPs on disease risk.  相似文献   

6.
Hamelryck T 《Proteins》2003,51(1):96-108
Convergent evolution often produces similar functional sites in nonhomologous proteins. The identification of these sites can make it possible to infer function from structure, to pinpoint the location of a functional site, to identify enzymes with similar enzymatic mechanisms, or to discover putative functional sites. In this article, a novel method is presented that (a) queries a database of protein structures for the occurrence of a given side chain pattern and (b) identifies interesting side-chain patterns in a given structure. For efficiency and to make a robust statistical evaluation of the significance of a similarity possible, patterns of three residues (or triads) are considered. Each triad is encoded as a high-dimensional vector and stored in an SR (Sphere/Rectangle) tree, an efficient multidimensional index tree. Identifying similar triads can then be reformulated as identifying neighboring vectors. The method deals with many features that otherwise complicate the identification of meaningful patterns: shifted backbone positions, conservative substitutions, various atom label ambiguities and mirror imaged geometries. The combined treatment of these features leads to the identification of previously unidentified patterns. In particular, the identification of mirror imaged side-chain patterns is unique to the here-described method. Interesting triads in a given structure can be identified by extracting all triads and comparing them with a database of triads involved in ligand binding. The approach was tested by an all-against-all comparison of unique representatives of all SCOP superfamilies. New findings include mirror imaged metal binding and active sites, and a putative active site in bacterial luciferase.  相似文献   

7.
DNA-dependent RNA polymerases isolated from yeast mitochondria   总被引:1,自引:0,他引:1  
Purified preparations of yeast mitochondria yield three species of DNA-dependent RNA polymerases. These enzymes have been separated and purified to homogeneity for analysis of their properties and for comparison with the properties of nuclear preparations of yeast RNA polymerases. Three enzymes have been separated by DEAE-Sephadex chromatography of each fraction. Both nuclear and mitochondrial preparations yield three components with nearly identical elution properties. The distributions of enzyme activity on DEAE-Sephadex chromatography differ with the three nuclear peaks, being found in ratios (uncorrected for the effect of increasing salt concentration) of 8:85:7 and the mitochondrial peaks in ratios of 8:32:60 at late log phase of growth under optimized conditions in which protease inhibitors and an antioxidant were included. The type of mitochondrial enzymes in 3-day-old cells differed from those grown to late logarithmic phase. It has been established that the enzymes of the mitochondrial preparation are associated with the membrane fraction. While extraction with 0.5 m KCl solubilizes considerable enzyme activity, greatly enhanced yields of enzyme MIII are obtained by addition of the antioxidant 2,6-di-t-butyl-4-hydroxymethyl phenol during enzyme extraction. Inhibition of protease activity has also been shown to have a major effect on the yield and distribution of enzymes obtained from mitochondrial preparations. The mitochondrial preparations of yeast polymerases are generally similar but not identical to corresponding nuclear polymerases in subunit molecular weights, inhibitor sensitivities, and in DNA template dependence. Comparative studies of nuclear and mitochondrial polymerases clearly establish that differences do exist among the isolated enzymes of these classes. It has not been ruled out to date that these enzymes may be derived in part or in total from the same cytoplasmic subunit pool, nor has it been established that any of these enzymes function in mitochondria in vivo.  相似文献   

8.
ß-Propeller phytases of Bacillus are unique highly conservative and highly specific enzymes capable of cleaving insoluble phytate compounds. In this review, we analyzed data on the properties of these enzymes, their differences from other phytases, and their unique spatial structures and substrate specificities. We considered influences of different factors on the catalytic activity and thermostability of these enzymes. There are few data on the hydrolysis mechanism of these enzymes, which makes it difficult to analyze their mechanism of action and their final products. We analyzed the available data on hydrolysis by ß-propeller phytases of calcium complexes with myo-inositol hexakisphosphate.  相似文献   

9.
The regular (CAA)n polyribonucleotide, as well as the omega leader sequence containing (CAA)-rich core, have recently been shown to form cooperatively melted and compact structures. In this report, we propose a structural model for the (CAA)n sequence in which the polyribonucleotide chain is folded upon itself, so that it forms an intramolecular triple helix. The triple helix is stabilized by hydrogen bonding between bases thus forming coplanar triads, and by stacking interactions between the base triads. A distinctive feature of the proposed triple helix is that it does not contain the canonical double-helix elements. The difference from the known triple helices is that Watson-Crick hydrogen bond pairings do not take place in the interactions between the bases within the base triads.  相似文献   

10.
DNA polymerases were purified from chloroplasts and mitochondria of cultured Glycine max cells. The chloroplast enzyme exists in two forms which are indistinguishable from each other biochemically. All three organellar enzymes have an estimated molecular weight of 85,000 to 90,000 and prefer poly(rA)dT12-18 over activated DNA as a template in vitro. Maximum activity of the chloroplast and mitochondrial DNA polymerases requires KCl and a reducing agent, and the enzymes are completely resistant to inhibitors of DNA polymerase α. Taken together, these properties classify the soybean organellar enzymes as DNA polymerases γ. A unique feature that distinguishes the plant enzymes from their animal counterparts is their resistance to dideoxyribonucleotides.  相似文献   

11.
Carotenoid cleavage dioxygenases (CCDs) comprise a superfamily of mononuclear non-heme iron proteins that catalyze the oxygenolytic fission of alkene bonds in carotenoids to generate apocarotenoid products. Some of these enzymes exhibit additional activities such as carbon skeleton rearrangement and trans-cis isomerization. The group also includes a subfamily of enzymes that split the interphenyl alkene bond in molecules such as resveratrol and lignostilbene. CCDs are involved in numerous biological processes ranging from production of light-sensing chromophores to degradation of lignin derivatives in pulping waste sludge. These enzymes exhibit unique features that distinguish them from other families of non-heme iron enzymes. The distinctive properties and biological importance of CCDs have stimulated interest in their modes of catalysis. Recent structural, spectroscopic, and computational studies have helped clarify mechanistic aspects of CCD catalysis. Here, we review these findings emphasizing common and unique properties of CCDs that enable their variable substrate specificity and regioselectivity.This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.  相似文献   

12.
In this review article, the extracellular enzymes production, their properties and cloning of the genes encoding the enzymes from marine yeasts are overviewed. Several yeast strains which could produce different kinds of extracellular enzymes were selected from the culture collection of marine yeasts available in this laboratory. The strains selected belong to different genera such as Yarrowia, Aureobasidium, Pichia, Metschnikowia and Cryptococcus. The extracellular enzymes include cellulase, alkaline protease, aspartic protease, amylase, inulinase, lipase and phytase, as well as killer toxin. The conditions and media for the enzyme production by the marine yeasts have been optimized and the enzymes have been purified and characterized. Some genes encoding the extracellular enzymes from the marine yeast strains have been cloned, sequenced and expressed. It was found that some properties of the enzymes from the marine yeasts are unique compared to those of the homologous enzymes from terrestrial yeasts and the genes encoding the enzymes in marine yeasts are different from those in terrestrial yeasts. Therefore, it is of very importance to further study the enzymes and their genes from the marine yeasts. This is the first review on the extracellular enzymes and their genes from the marine yeasts.  相似文献   

13.
Partial purification and characterization of DNA-dependent RNA-polymerases from nauplius larvae of the brine shrimp, Artemia salina, are described. Fractionation of solubilized RNA-polymerases on columns of DEAE-cellulose yielded partially purified preparations of RNA polymerases I and II. The properties of these enzymes were found to be similar to properties of corresponding enzymes from other animal sources. A significant change in the relative amounts of polymerases I and II occurs between 36 and 72 hr of development. Polymerase activity obtained from 36-hr nauplii consisted of approximately equal amounts of polymerases I and II, whereas polymerase II accounted for more than 80% of the activity recovered from 72-hr nauplii. Total polymerase activity was lower at 72 than at 36 hr. The significance of these changes in relation to the decrease in RNA synthesis in vivo that occurs after 36 hr is discussed.  相似文献   

14.
The tree shrew (Tupaia belangeri) is a rat-sized mammal, which is more closely related to humans than mice and rats. However, the use of tree shrew to explore the patho-mechanisms of human inflammatory disorders has been limited since nothing is known about eicosanoid metabolism in this mammalian species. Eicosanoids are important lipid mediators exhibiting pro- and anti-inflammatory activities, which are biosynthesized via lipoxygenase and cyclooxygenase pathways. When we searched the tree shrew genome for the presence of cyclooxygenase and lipoxygenase isoforms we found copies of functional COX1, COX2 and LOX genes. Interestingly, we identified four copies of ALOX15 genes, which encode for four structurally distinct ALOX15 orthologs (tupALOX15a-d). To explore the catalytic properties of these enzymes we expressed tupALOX15a and tupALOX15c as catalytically active proteins and characterized their enzymatic properties. As predicted by the Evolutionary Hypothesis of ALOX15 specificity we found that the two enzymes converted arachidonic acid predominantly to 12S-HETE and they also exhibited membrane oxygenase activities. However, their reaction kinetic properties (KM for arachidonic acid and oxygen, T- and pH-dependence) and their substrate specificities were remarkably different. In contrast to mice and humans, tree shrew ALOX15 isoforms are highly expressed in the brain suggesting a role of these enzymes in cerebral function. The genomic multiplicity and the tissue expression patterns of tree shrew ALOX15 isoforms need to be considered when the results of in vivo inflammation studies obtained in this animal are translated into the human situation.  相似文献   

15.
In this review we will describe how we have gathered structural and biochemical information from several homologous cellulases from one class of glycoside hydrolases (GH family 12), and used this information within the framework of a protein-engineering program for the design of new variants of these enzymes. These variants have been characterized to identify some of the positions and the types of mutations in the enzymes that are responsible for some of the biochemical differences in thermal stability and activity between the homologous enzymes. In this process we have solved the three-dimensional structure of four of these homologous GH 12 cellulases: Three fungal enzymes, Humicola grisea Cel12A, Hypocrea jecorina Cel12A and Hypocrea schweinitzii Cel12A, and one bacterial, Streptomyces sp. 11AG8 Cel12A. We have also determined the three-dimensional structures of the two most stable H. jecorina Cel12A variants. In addition, four ligand-complex structures of the wild-type H. grisea Cel12A enzyme have been solved and have made it possible to characterize some of the interactions between substrate and enzyme. The structural and biochemical studies of these related GH 12 enzymes, and their variants, have provided insight on how specific residues contribute to protein thermal stability and enzyme activity. This knowledge can serve as a structural toolbox for the design of Cel12A enzymes with specific properties and features suited to existing or new applications.  相似文献   

16.
DEAD-box proteins are RNA-dependent ATPase enzymes that have been implicated in nearly all aspects of RNA metabolism. Since many of these enzymes have been shown to possess common biochemical properties in vitro, including the ability to bind and hydrolyze ATP, to bind nucleic acid, and to promote helix unwinding, DEAD-box proteins are generally thought to modulate RNA structure in vivo. However, the extent to which these enzymatic properties are important for the in vivo functions of DEAD-box proteins remains unclear. To evaluate how these properties influence DEAD-box protein native function, we probed the importance of several highly conserved residues in the yeast DEAD-box protein Mss116p, which is required for the splicing of all mitochondrial catalytic introns in Saccharomyces cerevisiae. Using an MSS116 deletion strain, we have expressed plasmid-borne variants of MSS116 containing substitutions in residues predicted to be important for extensive networks of interactions required for ATP hydrolysis and helix unwinding. We have analyzed the importance of these residues to the splicing functions of Mss116p in vivo and compared these results with the biochemical properties of recombinant proteins determined here and in previously published work. We observed that the efficiency by which an Mss116p variant catalyzes ATP hydrolysis correlates with facilitating mitochondrial splicing, while efficient helix unwinding appears to be insufficient for splicing. In addition, we show that each splicing-defective variant affects the splicing of structurally diverse introns to the same degree. Together, these observations suggest that the efficiency by which Mss116p catalyzes the hydrolysis of ATP is critical for all of its splicing functions in vivo. Given that ATP hydrolysis stimulates the recycling of DEAD-box proteins, these observations support a model in which enzyme turnover is a crucial factor in Mss116p splicing function. These results are discussed in the context of current models of Mss116p-facilitated splicing.  相似文献   

17.

Background

Facial clefts are common birth defects with a strong genetic component. To identify fetal genetic risk factors for clefting, 1536 SNPs in 357 candidate genes were genotyped in two population-based samples from Scandinavia (Norway: 562 case-parent and 592 control-parent triads; Denmark: 235 case-parent triads).

Methodology/Principal Findings

We used two complementary statistical methods, TRIMM and HAPLIN, to look for associations across these two national samples. TRIMM tests for association in each gene by using multi-SNP genotypes from case-parent triads directly without the need to infer haplotypes. HAPLIN on the other hand estimates the full haplotype distribution over a set of SNPs and estimates relative risks associated with each haplotype. For isolated cleft lip with or without cleft palate (I-CL/P), TRIMM and HAPLIN both identified significant associations with IRF6 and ADH1C in both populations, but only HAPLIN found an association with FGF12. For isolated cleft palate (I-CP), TRIMM found associations with ALX3, MKX, and PDGFC in both populations, but only the association with PDGFC was identified by HAPLIN. In addition, HAPLIN identified an association with ETV5 that was not detected by TRIMM.

Conclusion/Significance

Strong associations with seven genes were replicated in the Scandinavian samples and our approach effectively replicated the strongest previously known association in clefting—with IRF6. Based on two national cleft cohorts of similar ancestry, two robust statistical methods and a large panel of SNPs in the most promising cleft candidate genes to date, this study identified a previously unknown association with clefting for ADH1C and provides additional candidates and analytic approaches to advance the field.  相似文献   

18.
Phosphopantetheinyl transferases (PPTases), which play an essential role in both primary and secondary metabolism, are magnesium binding enzymes. In this study, we characterized the magnesium binding residues of all known group II PPTases by biochemical and evolutionary analysis. Our results suggested that group II PPTases could be classified into two subgroups, two-magnesium-binding-residue-PPTases containing the triad Asp-Xxx-Glu and three-magnesium-binding-residue-PPTases containing the triad Asp-Glu-Glu. Mutations of two three-magnesium-binding-residue-PPTases and one two-magnesium-binding-residue-PPTase indicate that the first and the third residues in the triads are essential to activities; the second residues in the triads are non-essential. Although variations of the second residues in the triad Asp-Xxx-Glu exist throughout the whole phylogenetic tree, the second residues are conserved in animals, plants, algae, and most prokaryotes, respectively. Evolutionary analysis suggests that: the animal group II PPTases may originate from one common ancestor; the plant two-magnesium-binding-residue-PPTases may originate from one common ancestor; the plant three-magnesium-binding-residue-PPTases may derive from horizontal gene transfer from prokaryotes.  相似文献   

19.
Rat liver tyrosine aminotransferase and alanine aminotransferase are similar enzymes in most properties, but they differ markedly in their ease of coenzyme dissociation and rate of metabolic turnover. Dissociation of coenzyme does not determine rate of turnover (K.L. Lee, P. L. Darke, and F. T. Kenney, 1977, J. Biol. Chem.252, 4958–4961), but these parameters may reflect structural properties of the enzymes which determine both. To explore this possibility we studied these enzymes in livers of rats fed a pyridoxine-deficient diet in which both enzymes were largely in apoenzyme form. This form of alanine aminotransferase, not previously characterized, was identified as an immunologically cross-reactive material which was converted to active enzyme when extracts were incubated with pyridoxal phosphate in vitro. This apoenzyme behaved like the active holoenzyme in chromatographic and electrophoretic analyses but was more sensitive than the holoenzyme to heat, low pH, or proteolysis by trypsin or chymotrypsin. Relative rates of reconstitution of the two holoenzymes in vivo after injection of pyridoxine were determined as a measure of conformational stability of the two enzymes as they exist in the intracellular environment. Restoration of the tyrosine aminotransferase holoenzyme was completed within 30 to 45 min, but that of the alanine enzyme required 8 h. These results suggest that tyrosine aminotransferase in vivo is a relaxed structure which facilitates both coenzyme dissociation and rapid metabolic turnover, whereas alanine aminotransferase assumes a taut structure resistant to both dissociation and degradative processes.  相似文献   

20.
Pyruvate decarboxylases (PDCs) are a class of enzymes which carry out the non-oxidative decarboxylation of pyruvate to acetaldehyde. These enzymes are also capable of carboligation reactions and can generate chiral intermediates of substantial pharmaceutical interest. Typically, the decarboxylation and carboligation processes are carried out using whole cell systems. However, fermentative organisms such as Saccharomyces cerevisiae are known to contain several PDC isozymes; the precise suitability and role of each of these isozymes in these processes is not well understood. S. cerevisiae has three catalytic isozymes of pyruvate decarboxylase (ScPDCs). Of these, ScPDC1 has been investigated in detail by various groups with the other two catalytic isozymes, ScPDC5 and ScPDC6 being less well characterized. Pyruvate decarboxylase activity can also be detected in the cell lysates of Komagataella pastoris, a Crabtree-negative yeast, and consequently it is of interest to investigate whether this enzyme has different kinetic properties. This is also the first report of the expression and functional characterization of pyruvate decarboxylase from K. pastoris (PpPDC). This investigation helps in understanding the roles of the three isozymes at different phases of S. cerevisiae fermentation as well as their relevance for ethanol and carboligation reactions. The kinetic and physical properties of the four isozymes were determined using similar conditions of expression and characterization. ScPDC5 has comparable decarboxylation efficiency to that of ScPDC1; however, the former has the highest rate of reaction, and thus can be used for industrial production of ethanol. ScPDC6 has the least decarboxylation efficiency of all three isozymes of S. cerevisiae. PpPDC in comparison to all isozymes of S. cerevisiae is less efficient at decarboxylation. All the enzymes exhibit allostery, indicating that they are substrate activated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号