首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Jethva PN  Kardani JR  Roy I 《The FEBS journal》2011,278(10):1688-1698
The neurotransmitter dopamine has been shown to inhibit fibrillation of α-synuclein by promoting the formation of nonamyloidogenic oligomers. Fibrillation of α-synuclein is accelerated in the presence of pesticides and the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The aim of this study was to determine whether dopamine continues to have an adverse effect on the fibrillation of α-synuclein in the presence of MPTP and its metabolite 1-methyl-4-phenylpyridinum ion (MPP(+) ). We also attempted to answer the ambiguous question of whether conversion of MPTP to MPP(+) is required for the fibrillation of α-synuclein. For this, α-synuclein was incubated in the presence of MPTP and MPP(+) along with dopamine. The fibrillation of α-synuclein was monitored by Thioflavin T fluorescence and immunoblotting. The morphology of the aggregates formed was observed using scanning electron microscopy. The concentrations of the neurotoxin and its metabolite were estimated by reverse phase HPLC. We found definitive evidence that the conversion of MPTP to MPP(+) is not required for aggregation of α-synuclein. MPP(+) was found to accelerate the rate of α-synuclein aggregation even in the absence of components of mitochondrial complex I. In contrast to the effect of dopamine on the aggregation of α-synuclein alone, in the presence of MPTP or MPP(+) , the aggregates formed are Thioflavin T-positive and amyloidogenic. Thus, the effect of dopamine on the nature of aggregates formed in case of α-synuclein alone and in the presence of MPTP/MPP(+) is different.  相似文献   

2.
This review describes different ways to achieve and monitor reproducible aggregation of α-synuclein, a key protein in the development of Parkinson's disease. For most globular proteins, aggregation is promoted by partially denaturing conditions which compromise the native state without destabilizing the intermolecular contacts required for accumulation of regular amyloid structure. As a natively disordered protein, α-synuclein can fibrillate under physiological conditions and this process is actually stimulated by conditions that promote structure formation, such as low pH, ions, polyamines, anionic surfactants, fluorinated alcohols and agitation. Reproducibility is a critical issue since α-synuclein shows erratic fibrillation behavior on its own. Agitation in combination with glass beads significantly reduces the variability of aggregation time curves, but the most reproducible aggregation is achieved by sub-micellar concentrations of SDS, which promote the rapid formation of small clusters of α-synuclein around shared micelles. Although the fibrils produced this way have a different appearance and secondary structure, they are rich in cross-β structure and are amenable to high-throughput screening assays. Although such assays at best provide a very simplistic recapitulation of physiological conditions, they allow the investigator to focus on well-defined molecular events and may provide the opportunity to identify, e.g. small molecule inhibitors of aggregation that affect these steps. Subsequent experiments in more complex cellular and whole-organism environments can then validate whether there is any relation between these molecular interactions and the broader biological context.  相似文献   

3.
Liquid-liquid phase separation (LLPS) is currently recognized as a common mechanism involved in the regulation of a number of cellular functions. On the other hand, aberrant phase separation has been linked to the biogenesis of several neurodegenerative disorders since many proteins that undergo LLPS are also found in pathological aggregates. The formation of mixed protein coacervates may constitute a risk factor in overlapping neuropathologies, such as Parkinson's (PD) and Alzheimer's (AD) diseases. In this work, we evaluated the homotypic and heterotypic phase behaviour of the PD-related protein α-synuclein (AS) in the presence of the biologically relevant molecules ATP, polyamines, and the AD-related protein Tau. We found that AS exhibits a low propensity to form homotypic liquid droplets, yet phase separates into liquid-like or solid-like phases depending on the interacting biomolecule. We further demonstrated the synergistic droplet formation of AS and Tau providing support for a mechanism in which mixed condensates might contribute to the biogenesis of AS/Tau pathologies.  相似文献   

4.
The aggregation of α-synuclein plays a pivotal role in the pathogenesis of Parkinson's disease (PD). Epidemiological evidence indicates that high level of homocysteine (Hcy) is associated with an increased risk of PD. However, the molecular mechanisms remain elusive. Here, we report that homocysteine thiolactone (HTL), a reactive thioester of Hcy, covalently modifies α-synuclein on the K80 residue. The levels of α-synuclein K80Hcy in the brain are increased in an age-dependent manner in the TgA53T mice, correlating with elevated levels of Hcy and HTL in the brain during aging. The N-homocysteinylation of α-synuclein stimulates its aggregation and forms fibrils with enhanced seeding activity and neurotoxicity. Intrastriatal injection of homocysteinylated α-synuclein fibrils induces more severe α-synuclein pathology and motor deficits when compared with unmodified α-synuclein fibrils. Increasing the levels of Hcy aggravates α-synuclein neuropathology in a mouse model of PD. In contrast, blocking the N-homocysteinylation of α-synuclein ameliorates α-synuclein pathology and degeneration of dopaminergic neurons. These findings suggest that the covalent modification of α-synuclein by HTL promotes its aggregation. Targeting the N-homocysteinylation of α-synuclein could be a novel therapeutic strategy against PD.  相似文献   

5.
The fibrillization of α-synuclein (α-syn) is a key event in the pathogenesis of α-synucleinopathies. Mutant α-syn (A53T, A30P, or E46K), each linked to familial Parkinson's disease, has altered aggregation properties, fibril morphologies, and fibrillization kinetics. Besides α-syn, Lewy bodies also contain several associated proteins including small heat shock proteins (sHsps). Since α-syn accumulates intracellularly, molecular chaperones like sHsps may regulate α-syn folding and aggregation. Therefore, we investigated if the sHsps αB-crystallin, Hsp27, Hsp20, HspB8, and HspB2B3 bind to α-syn and affect α-syn aggregation. We demonstrate that all sHsps bind to the various α-syns, although the binding kinetics suggests a weak and transient interaction only. Despite this transient interaction, the various sHsps inhibited mature α-syn fibril formation as shown by a Thioflavin T assay and atomic force microscopy. Interestingly, HspB8 was the most potent sHsp in inhibiting mature fibril formation of both wild-type and mutant α-syn. In conclusion, sHsps may regulate α-syn aggregation and, therefore, optimization of the interaction between sHsps and α-syn may be an interesting target for therapeutic intervention in the pathogenesis of α-synucleinopathies.  相似文献   

6.
Hyperphosphorylation of tau protein (tau) causes neurodegenerative diseases such as Alzheimer's disease (AD). Recent studies of the physiological correlation between tau and α-synuclein (α-SN) have demonstrated that: (a) phosphorylated tau is also present in Lewy bodies, which are cytoplasmic inclusions formed by abnormal aggregation of α-SN; and (b) the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) increases the phosphorylation of tau as well as the protein level of α-SN in cultured neuronal cells, and also in mice. However, the molecular mechanism responsible for the α-SN-mediated hyperphosphorylation of tau remains to be elucidated. In this in vitro study, we found that: (a) α-SN directly stimulates the phosphorylation of tau by glycogen synthase kinase-3β (GSK-3β), (b) α-SN forms a heterotrimeric complex with tau and GSK-3β, and (c) the nonamyloid beta component (NAC) domain and an acidic region of α-SN are responsible for the stimulation of GSK-3β-mediated tau phosphorylation. Thus, it is concluded that α-SN functions as a connecting mediator for tau and GSK-3β, resulting in GSK-3β-mediated tau phosphorylation. Because the expression of α-SN is promoted by oxidative stress, the accumulation of α-SN induced by such stress may directly induce the hyperphosphorylation of tau by GSK-3β. Furthermore, we found that heat shock protein 70 (Hsp70) suppresses the α-SN-induced phosphorylation of tau by GSK-3β through its direct binding to α-SN, suggesting that Hsp70 acts as a physiological suppressor of α-SN-mediated tau hyperphosphorylation. These results suggest that the cellular level of Hsp70 may be a novel therapeutic target to counteract α-SN-mediated tau phosphorylation in the initial stage of neurodegenerative disease.  相似文献   

7.
α-Synuclein (ASN) aggregation plays a key role in neurodegenerative disorders including Parkinson's disease, and inhibition of fibril formation is a potential therapeutic strategy for these conditions. The aim of the present study was to investigate polyamidoamine (PAMAM) dendrimers (generations 4 and 3.5) as inhibitors of fibril formation in vitro by examining their interaction with ASN intrinsic tyrosine fluorescence. Furthermore, the effect of dendrimers on ASN aggregation was studied using circular dichroism (CD) spectroscopy and CD studies were complemented by a fluorescence assays using the dye thioflavin T (ThT). The PAMAM G4 dendrimer caused an increase in tyrosine residue fluorescence, and inhibited fibrillation of ASN; inhibited fibrillation was not observed with PAMAM G3.5 dendrimers.  相似文献   

8.
9.
α-Synuclein (α-syn) is the major component of filamentous Lewy bodies found in the brains of patients diagnosed with Parkinson's disease (PD). Recent studies demonstrate that, in addition to the wild-type sequence, α-syn is found in several modified forms, including truncated and phosphorylated species. Although the mechanism by which the neuronal loss in PD occurs is unknown, aggregation and fibril formation of α-syn are considered to be key pathological features. In this study, we analyze the rates of fibril formation and the monomer-fibril equilibrium for eight disease-associated truncated and phosphorylated α-syn variants. Comparison of the relative rates of aggregation reveals a strong monotonic relationship between the C-terminal charge of α-syn and the lag time prior to the observation of fibril formation, with truncated species exhibiting the fastest aggregation rates. Moreover, we find that a decrease in C-terminal charge shifts the equilibrium to favor the fibrillar species. An analysis of these findings in the context of linear growth theories suggests that the loss of the charge-mediated stabilization of the soluble state is responsible for the enhanced aggregation rate and increased extent of fibril fraction. Therefore, C-terminal charge is kinetically and thermodynamically protective against α-syn polymerization and may provide a target for the treatment of PD.  相似文献   

10.
The aggregation of α-synuclein is associated with progression of Parkinson's disease. We have identified submicrometer supramolecular structures that mediate the early stages of the overall mechanism. The sequence of structural transformations between metastable intermediates were captured and characterized by atomic force microscopy guided by a fluorescent probe sensitive to preamyloid species. A novel ~0.3-0.6 μm molecular assembly, denoted the acuna, nucleates, expands, and liberates fibers with distinctive segmentation and a filamentous fuzzy fringe. These fuzzy fibers serve as precursors of mature amyloid fibrils. Cryo-electron tomography resolved the acuna inner structure as a scaffold of highly condensed colloidal masses interlinked by thin beaded threads, which were perceived as fuzziness by atomic force microscopy. On the basis of the combined data, we propose a sequential mechanism comprising molecular, colloidal, and fibrillar stages linked by reactions with disparate temperature dependencies and distinct supramolecular forms. We anticipate novel diagnostic and therapeutic approaches to Parkinson's and related neurodegenerative diseases based on these new insights into the aggregation mechanism of α-synuclein and intermediates, some of which may act to cause and/or reinforce neurotoxicity.  相似文献   

11.
Aggregation of α-synuclein is involved in the pathogenesis of Parkinson's disease (PD). Studies of in vitro aggregation of α-synuclein are rendered complex because of the formation of a heterogeneous population of oligomers. With the use of confocal single-molecule fluorescence techniques, we demonstrate that small aggregates (oligomers) of α-synuclein formed from unbound monomeric species in the presence of organic solvent (DMSO) and iron (Fe3+) ions have a high affinity to bind to model membranes, regardless of the lipid-composition or membrane curvature. This binding mode contrasts with the well-established membrane binding of α-synuclein monomers, which is accompanied with α-helix formation and requires membranes with high curvature, defects in the lipid packing, and/or negatively charged lipids. Additionally, we demonstrate that membrane-bound α-synuclein monomers are protected from aggregation. Finally, we identified compounds that potently dissolved vesicle-bound α-synuclein oligomers into monomers, leaving the lipid vesicles intact. As it is commonly believed that formation of oligomers is related PD progression, such compounds may provide a promising strategy for the design of novel therapeutic drugs in Parkinson's disease.  相似文献   

12.
The spontaneous self-assembly of α-synuclein (α-syn) into aggregates of different morphologies is associated with the development of Parkinson's disease. However, the mechanism behind the spontaneous assembly remains elusive. The current study shows a novel effect of phospholipid bilayers on the assembly of the α-syn aggregates. Using time-lapse atomic force microscopy, it was discovered that α-syn assembles into aggregates on bilayer surfaces, even at the nanomolar concentration range. The efficiency of the aggregation process depends on the membrane composition, with the greatest efficiency observed for of 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine (POPS). Importantly, assembled aggregates can dissociate from the surface, suggesting that on-surface aggregation is a mechanism by which pathological aggregates may be produced. Computational modeling revealed that dimers of α-syn assembled rapidly, through the membrane-bound monomer on POPS bilayer, due to an aggregation-prone orientation of α-syn. Interaction of α-syn with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) leads to a binding mode that does not induce a fast assembly of the dimer. Based on these findings, we propose a model in which the interaction of α-syn with membranes plays a critical role initiating the formation of α-syn aggregates and the overall aggregation process.  相似文献   

13.
Aggregation of α-synuclein plays a crucial role in the pathogenesis of synucleinopathies, a group of neurodegenerative diseases including Parkinson disease (PD), dementia with Lewy bodies (DLB), diffuse Lewy body disease (DLBD) and multiple system atrophy (MSA). The common feature of these diseases is a pathological deposition of protein aggregates, known as Lewy bodies (LBs) in the central nervous system. The major component of these aggregates is α-synuclein, a natively unfolded protein, which may undergo dramatic structural changes resulting in the formation of β-sheet rich assemblies. In vitro studies have shown that recombinant α-synuclein protein may polymerize into amyloidogenic fibrils resembling those found in LBs. These aggregates may be uptaken and propagated between cells in a prion-like manner. Here we present the mechanisms and kinetics of α-synuclein aggregation in vitro, as well as crucial factors affecting this process. We also describe how PD-linked α-synuclein mutations and some exogenous factors modulate in vitro aggregation. Furthermore, we present a current knowledge on the mechanisms by which extracellular aggregates may be internalized and propagated between cells, as well as the mechanisms of their toxicity.  相似文献   

14.
Protein misfolding and aggregation is a ubiquitous phenomenon associated with a wide range of diseases. The synuclein family comprises three small naturally unfolded proteins implicated in neurodegenerative diseases and some forms of cancer. α-Synuclein is a soluble protein that forms toxic inclusions associated with Parkinson's disease and several other synucleinopathies. However, the triggers inducing its conversion into noxious species are elusive. Here we show that another member of the family, γ-synuclein, can be easily oxidized and form annular oligomers that accumulate in cells in the form of deposits. Importantly, oxidized γ-synuclein can initiate α-synuclein aggregation. Two amino acid residues in γ-synuclein, methionine and tyrosine located in neighboring positions (Met(38) and Tyr(39)), are most easily oxidized. Their oxidation plays a key role in the ability of γ-synuclein to aggregate and seed the aggregation of α-synuclein. γ-Synuclein secreted from neuronal cells into conditioned medium in the form of exosomes can be transmitted to glial cells and cause the aggregation of intracellular proteins. Our data suggest that post-translationally modified γ-synuclein possesses prion-like properties and may induce a cascade of events leading to synucleinopathies.  相似文献   

15.
Human α-synuclein is the causative protein of several neurodegenerative diseases, such as Parkinson's disease (PD) and dementia with Lewy Bodies (DLB). The N-terminal half of α-synuclein contains seven imperfect repeat sequences. One of the PD/DLB-causing point mutations, E46K, has been reported in the imperfect repeat sequences of α-synuclein, and is prone to form amyloid fibrils. The presence of seven imperfect repeats in α-synuclein raises the question of whether or not mutations corresponding to E46K in the other imperfect KTKE(Q)GV repeats have similar effects on aggregation and fibrillation, as well as their propensities to form α-helices. To investigate the effect of E(Q)/K mutations in each imperfect repeat sequence, we substituted the amino acid corresponding to E46K in each of the seven repeated sequences with a Lys residue. The mutations in the imperfect KTKE(Q)GV repeat sequences of the N-terminal region were prone to decrease the lag time of fibril formation. In addition, AFM imaging suggested that the Q24K mutant formed twisted fibrils, while the other mutants formed spherical aggregates and short fibrils. These observations indicate that the effect of the mutations on the kinetics of fibril formation and morphology of fibrils varies according to their location.  相似文献   

16.

Background

The simultaneous accumulation of different misfolded proteins in the central nervous system is a common feature in many neurodegenerative diseases. In most cases, co-occurrence of abnormal deposited proteins is observed in different brain regions and cell populations, but, in some instances, the proteins can be found in the same cellular aggregates. Co-occurrence of tau and α-synuclein (α-syn) aggregates has been described in neurodegenerative disorders with primary deposition of α-syn, such as Parkinson''s disease and dementia with Lewy bodies. Although it is known that tau and α-syn have pathological synergistic effects on their mutual fibrillization, the underlying biological effects remain unclear.

Methodology/Principal Findings

We used different cell models of synucleinopathy to investigate the effects of tau on α-syn aggregation. Using confocal microscopy and FRET–based techniques we observed that tau colocalized and interacted with α-syn aggregates. We also found that tau overexpression changed the pattern of α-syn aggregation, reducing the size and increasing the number of aggregates. This shift was accompanied by an increase in the levels of insoluble α-syn. Furthermore, co-transfection of tau increased secreted α-syn and cytotoxicity.

Conclusions/Significance

Our data suggest that tau enhances α-syn aggregation and toxicity and disrupts α-syn inclusion formation. This pathological synergistic effect between tau and α-syn may amplify the deleterious process and spread the damage in neurodegenerative diseases that show co-occurrence of both pathologies.  相似文献   

17.
Neurobiology of α-synuclein   总被引:4,自引:0,他引:4  
  相似文献   

18.
A hallmark of Alzheimer’s disease is production of amyloid β peptides resulting from aberrant cleavage of the amyloid precursor protein. Amyloid β assembles into fibrils under physiological conditions, through formation of neurotoxic intermediate oligomers. Tachykinin peptides are known to affect amyloid β neurotoxicity in cells. To understand the mechanism of this effect, we studied how tachykinins affect Aβ(1–40) aggregation in vitro. Fibrils grown in the presence of tachykinins exhibited reduced thioflavin T (ThT) fluorescence, while their morphology, observed in transmission electron microscopy (TEM), did not alter. Cross linking studies revealed that the distribution of low molecular weight species was not affected by tachykinins. Our results suggest that there may be a specific interaction between tachykinins and Aβ(1–40) that allows them to co-assemble. This effect may explain the reduction of Aβ(1–40) neurotoxicity in cells treated with tachykinins.  相似文献   

19.
Parkinson's disease (PD) and other synucleinopathies are characterized by accumulation of misfolded aggregates of α-synuclein (α-syn). The normal function of α-syn is still under investigation, but it has been generally linked to synaptic plasticity, neurotransmitter release and the maintenance of the synaptic pool. α-Syn localizes at synaptic terminals where it can bind to synaptic vesicles as well as to other cellular membranes. It has become clear that these interactions have an impact on both α-syn functional role and its propensity to aggregate. In this study, we investigated the aggregation process of α-syn covalently modified with 4-hydroxy-2-nonenal (HNE). HNE is a product of lipid peroxidation and has been implicated in the pathogenesis of different neurodegenerative diseases by modifying the kinetics of soluble toxic oligomers. Although HNE-modified α-syn has been reported to assemble into stable oligomers, we found that slightly acidic conditions promoted further protein aggregation. Lipid vesicles delayed the aggregation process in a concentration-dependent manner, an effect that was observed only when they were added at the beginning of the aggregation process. Co-aggregation of lipid vesicles with HNE-modified α-syn also induced cytotoxic effects on differentiated SHSY-5Y cells. Under conditions in which the aggregation process was delayed cell viability was reduced. By exploring the behavior and potential cytotoxic effects of HNE-α-syn under acidic conditions in relation to protein-lipid interactions our study gives a framework to examine a possible pathway leading from a physiological setting to the pathological outcome of PD.  相似文献   

20.
《Gene》1996,173(2):179-181
We describe a vector, λZLG6, combining the high efficiency of cDNA library cloning in bacteriophage λ, with filamentous phage display of cDNA-encoded products. The cDNAs are expressed as fusions to the 3′ end of M13 gene VI. The λZLG6 library is converted to a pZLG6-cDNA phagemid library by in vivo mass excision. Helper phage infection generates a library of phagemid particles displaying the cDNA-encoded products and containing the corresponding nucleotide sequences within.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号